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We carry out the effect of the induced magnetic field on peristaltic transport of an incompressible
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induced magnetic field, and current distribution across the channel. Expressions for the shear
stresses are also obtained. The effects of pertinent parameters on the pressure rise per wavelength
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lines are further discussed.
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1. Introduction

It is well known that many physiological fluids behave in general like suspensions of
deformable or rigid particles in a Newtonian fluid. Blood, for example, is a suspension of
red cells, white cells, and platelets in plasma. Another example is cervical mucus, which is a
suspension of macromolecules in a water-like liquid. In view of this, some researchers have
tried to account for the suspension behavior of biofluids by considering them to be non-
Newtonian [1–6].

Eringen [7] introduced the concept of simple microfluids to characterise concentrated
suspensions of neutrally buoyant deformable particles in a viscous fluid where the
individuality of substructures affects the physical outcome of the flow. Such fluid models can
be used to rheologically describe polymeric suspensions, normal human blood, and so forth,
and have found applications in physiological and engineering problems [8–10]. A subclass of
these microfluids is known as micropolar fluids where the fluid microelements are considered
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to be rigid [11, 12]. Basically, these fluids can support couple stresses and body couples and
exhibit microrotational and microinertial effects.

The phenomenon of peristalsis is defined as expansion and contraction of an extensible
tube in a fluid generate progressive waves which propagate along the length of the tube,
mixing and transporting the fluid in the direction of wave propagation. It is an inherent
property of many tubular organs of the human body. In some biomedical instruments, such
as heart-lung machines, peristaltic motion is used to pump blood and other biological fluids.
It plays an indispensable role in transporting many physiological fluids in the body in various
situations such as urine transport from the kidney to the bladder through the ureter, transport
of spermatozoa in the ductus efferentes of the male reproductive tract, movement of ovum
in the fallopian tubes, vasomotion of small blood vessels, as well as mixing and transporting
the contents of the gastrointestinal passage.

Peristaltic pumping mechanisms have been utilized for the transport of slurries,
sensitive or corrosive fluids, sanitary fluid, noxious fluids in the nuclear industry, and
many others. In some cases, the transport of fluids is possible without moving internal
mechanical components as in the case with peristaltically operated microelectromechanical
system devices [13].

The study of peristalsis in the context of fluid mechanics has received considerable
attention in the last three decades, mainly because of its relevance to biological systems
and industrial applications. Several studies have been made, especially for the peristalsis in
non-Newtonian fluids which have promising applications in physiology [14–23]. The main
advantage of using a micropolar fluid model to study the peristaltic flow of suspensions in
comparison with other classes of non-Newtonian fluids is that it takes care of the rotation of
fluid particles by means of an independent kinematic vector called the microrotation vector.

Magnetohydrodynamic (MHD) is the science which deals with the motion of a highly
conducting fluids in the presence of a magnetic field. The motion of the conducting fluid
across the magnetic field generates electric currents which change the magnetic field, and the
action of the magnetic field on these currents gives rise to mechanical forces which modify the
flow of the fluid [24]. MHD flow of a fluid in a channel with elastic, rhythmically contracting
walls (peristaltic flow) is of interest in connection with certain problems of the movement
of conductive physiological fluids (e.g., the blood and blood pump machines) and with the
need for theoretical research on the operation of a peristaltic MHD compressor. Effect of a
moving magnetic field on blood flow was studied by Stud et al. [25], Srivastava and Agrawal
[26] considered the blood as an electrically conducting fluid and it constitutes a suspension of
red cells in plasma. Also Agrawal and Anwaruddin [27] studied the effect of magnetic field
on blood flow by taking a simple mathematical model for blood through an equally branched
channel with flexible walls executing peristaltic waves using long wavelength approximation
method.

Some recent studies [28–41] have considered the effect of a magnetic field on peristaltic
flow of a Newtonian and non-Newtonian fluids, and in all of these studies the effect of the
induced magnetic field have been neglected.

The first investigation of the effect of the induced magnetic field on peristaltic flow
was studied by Vishnyakov and Pavlov [42] where they considers the peristaltic MHD flow
of a conductive Newtonian fluid; they used the asymptotic narrow-band method to solve the
problem and only obtained the velocity profiles in certain channel cross-sections for definite
parameter values. Currently, there is only two attempts [43, 44] for a study of the effect
of induced magnetic field, one for a couple-stress fluid and the other for a non-Newtonian
fluid (biviscosity fluid). To the best of our knowledge , the influence of a magnetic field on
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peristaltic flow of a conductive micropolar fluid has not been investigate with or without the
induced magnetic field.

With keeping the above discussion in mind, the goal of this investigation is to study
the effect of the induced magnetic field on peristaltic flow of a micropolar fluid (as a blood
model). The flow analysis is developed in a wave frame of reference moving with the
velocity of the wave. The problem is first modeled and then solved analytically for the
stream function, magnetic-force function, and the axial pressure gradient. The results for
the pressure rise , shear stresses, the axial induced magnetic field, and the distribution of
the current density across the channel have been discussed for various values of the problem
parameters. Also, the contour plots for the magnetic force and stream functions are presented,
the pumping characteristics and the trapping phenomena are discussed in detail. Finally, The
main conclusions are summarized in the last section.

2. Mathematical modelling

Consider the unsteady hydromagnetic flow of a viscous, incompressible, and electrically
conducting micropolar fluid through an axisymmetric two-dimensional channel of uniform
thickness with a sinusoidal wave traveling down its wall. We choose a rectangular
coordinate system for the channel with X′ along the centerline in the direction of wave
propagation and Y ′ transverse to it. The system is stressed by an external transverse uniform
constant magnetic field of strength H ′0, which will give rise to an induced magnetic field
H ′(h′X′(X

′, Y ′, t′), h′Y ′(X
′, Y ′, t′), 0) and the total magnetic field will be H ′+(h′X′(X

′, Y ′, t′),H ′0 +
h′Y ′(X

′, Y ′, t′), 0). The plates of the channel are assumed to be nonconductive, and the
geometry of the wall surface is defined as

h′(X′, t′) = a + b cos
2π
λ

(X′ − c t′), (2.1)

where a0 is the half-width at the inlet, b is the wave amplitude, λ is the wavelength, c is the
propagation velocity, and t′ is the time.

Neglecting the body couples, the equations of motion for unsteady flow of an
incompressible micropolar fluid are

�∇· �V ′ = 0,

ρ

{
∂�V ′

∂t′
+ �V ′·�∇ �V ′

}
= −�∇p′ + k�∇ × �w′ + (μ + k)�∇2 �V ′ + ρ �f ′,

ρj

{
∂�V ′

∂t′
+ �V ′·�∇ �w′

}
= −2k �w′ + k�∇ × �V ′ − γ

(
�∇ × �∇ × �w′

)
+ (α + β + γ)∇

(
�∇· �w′

)
,

(2.2)

where �V ′ is the velocity vector, �w′ is the microrotation vector, p′ is the fluid pressure, �f ′

is the body force, and ρ and j are the fluid density and microgyration parameter. Further,
the material constants (new viscosities of the micropolar fluid) μ, k, α, β, and γ satisfy the
following inequalities (obtained by Eringen [11] ):

2μ + k ≥ 0, k ≥ 0, 3α + β + γ ≥ 0, γ ≥ |β|. (2.3)
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The governing equations for a magneto-micropolar fluid are as follows:
Maxwell’s equations

∇· �H ′ = 0, ∇·�E′ = 0, (2.4)

∇ ∧ �H ′ = �J ′, with �J ′ = σ
{
�E′ + μe

(
�V ′ ∧ �H ′+

)}
, (2.5)

∇ ∧ �E′ = −μe
∂ �H ′

∂t′
, (2.6)

the continuity equation

∇· �V ′ = 0, (2.7)

the equations of motion

ρ

{
∂ �V ′

∂ t′
+
(
�V ′·�∇

)
�V ′
}

= −∇
(
p′ +

1
2
μe

(
H ′+

)2
)
+ (μ + k)∇2 �V ′ + k�∇ × �w′ − μe

(
�H ′+·�∇

)
�H ′+,

ρj

{
∂�V ′

∂t′
+
(
�V ′·�∇

)
�w′
}

= −2k �w′ + k�∇ × �V ′ − γ
(
�∇ × �∇ × �w′

)
+ (α + β + γ)�∇

(
�∇· �w′

)
,

∇2 =
∂2

∂X′2
+

∂2

∂Y ′2
,

(2.8)

where �E′ is an induced electric field, �J ′ is the electric current density, μe is the magnetic
permeability, and σ is the electrical conductivity.

Combining (2.4) and (2.5)–(2.7), we obtain the induction equation:

∂ �H ′+

∂t′
= �∇ ∧

{
�V ′ ∧ �H ′+

}
+

1
ζ
∇2 �H ′+, (2.9)

where ζ = 1/σμe is the magnetic diffusivity.
We should carry out this investigation in a coordinate system moving with the wave

speed c, in which the boundary shape is stationary. The coordinates and velocities in the
laboratory frame (X′, Y ′) and the wave frame (x′, y′) are related by

x′ = X′ − ct′, y′ = Y ′,

u′ = U′ − c, v′ = V ′,
(2.10)

where U′, V ′, and u′, v′ are the velocity components in the corresponding coordinate
systems.
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Using these transformations and introducing the dimensionless variables

x =
x′

λ
, y =

y′

a
, u =

u′

c
, v =

λv′

ac
, h =

h′(x′)
a

,

p =
a2

λμc
p′(x′), t =

ct′

λ
, j =

j ′

a2
, ψ =

ψ ′

ca
, φ =

φ′

H0a
,

(2.11)

we find that the equations which govern the MHD flow for a micropolar fluid in terms of the
stream function ψ(x, y) and magnetic-force function φ(x, y) are

Reδ
{(

ψy
∂

∂x
− ψx

∂

∂y

)
ψy

}
= −

∂pm
∂x

+
1

1 −N∇
2ψy +

N

1 −N
∂w

∂y
+ ReS2φyy

+ ReS2δ

(
φy

∂

∂x
− φx

∂

∂y

)
φy,

(2.12)

Reδ3
{(

ψx
∂

∂y
− ψy

∂

∂x

)
ψx

}
= −

∂pm
∂y
− δ2

1 −N∇
2ψx −

δ2N

1 −N
∂w

∂x
− ReS2δ2φxy

− ReS2δ3
(
φy

∂

∂x
− φx

∂

∂y

)
φx,

(2.13)

Reδj
(

1 −N
N

){(
ψy

∂

∂x
− ψx

∂

∂y

)
w

}
= −2w − ∇2ψ +

(
2 −N
m2

)
∇2w, (2.14)

ψy − δ(ψyφx − ψxφy) +
1
Rm
∇2φ = E, (2.15)

where

u =
∂ψ

∂y
, v = −δ

∂ψ

∂x
, hx =

∂φ

∂y
, hy = −δ

∂φ

∂x
,

∇2 = δ2 ∂
2

∂x2
+

∂2

∂y2
,

(2.16)

and the dimensionless parameters as follows:

(i) Reynolds number Re = caρ/μ,

(ii) wave number δ = a/λ,

(iii) Strommer’s number (magnetic-force number) S = (H0/c)
√
μe/ρ,

(iv) the magnetic Reynolds number Rm = σμeac,

(v) the coupling number N = k/(k + μ) (0 ≤ N ≤ 1), m2 = a2k(2μ + k)/(γ(μ + k)) is
the micropolar parameter,

(vi) the total pressure in the fluid, which equals the sum of the ordinary and magnetic
pressure, is pm = p + (1/2)Reδ(μe(H+)2/ρc2), and E(= −E/cH0) is the electric field
strength. The parameters α, β do not appear in the governing equations as the
microrotation vector is solenoidal. However, (2.12)–(2.15) reduce to the classical
MHD Navier-Stokes equations as k → 0.
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Excluding the total pressure from (2.12) and (2.13), we obtain

Reδ
{(

ψy
∂

∂x
− ψx

∂

∂y

)
∇2ψ

}
=

1
1 −N∇

4ψ +
N

1 −N∇
2w + ReS2∇2φy

+ ReS2δ

(
φy

∂

∂x
− φx

∂

∂y

)
∇2φ,

Reδj
(

1 −N
N

){(
ψy

∂

∂x
− ψx

∂

∂y

)
w

}
= −2w − ∇2ψ +

(
2 −N
m2

)
∇2w.

(2.17)

The instantaneous volume flow rate in the fixed frame is given by

Q =
∫h′

0
U′

(
X′, Y ′, t

)
dY ′, (2.18)

where h′ is a function of X′ and t.
The rate of volume flow in the wave frame is given by

q =
∫h′

0
u′
(
x′, y′

)
dy′, (2.19)

where h′ is a function of x′ alone. If we substitute (2.10) into (2.18) and make use of (2.19),
we find that the two rates of volume flow are related through

Q = q + ch′. (2.20)

The time mean flow over a period T at a fixed position X′ is defined as:

Q =
1
T

∫T

0
Qdt. (2.21)

Substituting (2.20) into (2.21), and integrating, we get

Q = q + ac. (2.22)

On defining the dimensionless time-mean flows θ and F, respectively, in the fixed and
wave frame as

θ =
Q

ac
, F =

q

ac
, (2.23)

one finds that (2.22) may be written as

θ = F + 1, (2.24)
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where

F =
∫h

0

∂ψ

∂y
dy = ψ(h) − ψ(0). (2.25)

We note that h represents the dimensionless form of the surface of the peristaltic wall:

h(x) = 1 + α cos(2πx), (2.26)

where

α =
b

a
(2.27)

is the amplitude ratio or the occlusion.
If we select the zero value of the streamline at the streamline (y = 0)

ψ(0) = 0, (2.28)

then the wall (y = h) is a streamline of value

ψ(h) = F. (2.29)

For a non-conductive elastic channel wall, the boundary conditions for the dimen-
sionless stream function ψ(x, y) and magnetic-force function φ(x, y) in the wave frame are
[42, 44]

ψ = 0,
∂2ψ

∂y2
= 0, w = 0,

∂φ

∂y
= 0 on y = 0,

∂ψ

∂y
= −1, ψ = F, w = 0, φ = 0,

∂φ

∂y
= 0 on y = h(x).

(2.30)

Under the long wavelength and low Reynolds number consideration [4–6, 34–36], the
dimensionless equations of the problem are expressed in the following form:

∂4ψ

∂y4
+N

∂2w

∂y2
+ ReS2(1 −N)

∂3φ

∂y3
= 0,

2 −N
m2

∂2w

∂y2
= 2w +

∂2ψ

∂y2
, (2.31)

∂2φ

∂y2
= Rm

(
E −

∂ψ

∂y

)
. (2.32)
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Combining these equations gives

ψ =
1

H2(1 −N)

{
2 −N
m2

(
∂2w

∂y2
−m2w

)
+ ηy − C1y − C2

}
,

∂4w

∂y4
−
{
m2 +H2(1 −N)

}∂2w

∂y2
+

2m2H2(1 −N)
2 −N w = 0,

(2.33)

where H2 = ReS2Rm, H = (μeH0)a
√
σ/μ is the Hartmann number (suitably greater than√

2), η = EH2(1 −N), and C1, C2 are an integration constants.

3. Exact solution

The general solutions of the microrotation component w and the stream function ψ are

w = Acosh(θ1y) + B sinh(θ1y) + Ccosh(θ2y) +D sinh(θ2y),

ψ =
1

H2(1 −N)

{
2 −N
m2

[(θ2
1 −m

2)(Acosh(θ1y) + B sinh(θ1y))

+ (θ2
2 −m

2)(Ccosh(θ2y) +D sinh(θ2y))] + ηy − C1y − C2

}
,

(3.1)

where

θ1 =
1√
2

√√√√((1 −N)H2 +m2) +

√
((1 −N)H2 +m2)2 − 4

(
2m2(1 −N)H2

(2 −N)

)
,

θ2 =
1√
2

√√√√((1 −N)H2 +m2) −

√
((1 −N)H2 +m2)2 − 4

(
2m2(1 −N)H2

(2 −N)

)
.

(3.2)

Using the corresponding boundary conditions in (2.20), we get

A = 0, C = 0, C2 = 0,

D =
H2m2

(2 −N)
(1 −N)(F + h)

sinh(θ2h)[ξ2(1 − θ2hcoth(θ2h)) − ξ1(1 − θ1hcoth(θ1h))]
,

B =
−H2m2

2 −N
(1 −N)(F + h)

sinh(θ1h)[ξ2(1 − θ2hcoth(θ2h)) − ξ1(1 − θ1hcoth(θ1h))]
,

C1 = H2(1 −N)
{

1 +
(F + h)

ζ
(θ2ξ2coth(θ2h) − θ1ξ1coth(θ1h))

}
+ η,

ζ = ξ2(1 − θ2hcoth(θ2h)) − ξ1(1 − θ1hcoth(θ1h)), ξi = θ2
i −m

2, i = 1, 2.

(3.3)
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Thus the stream function and the microrotation component w will take the forms

ψ(x, y) =
(F + h)

ζ

{
ξ2

sinh(θ2y)
sinh(θ2h)

− ξ1
sinh(θ1y)
sinh(θ1h)

}

−
{

1 +
(F + h)

ζ
(θ2ξ2coth(θ2h) − θ1ξ1coth(θ1h))y

}
,

w(x, y) =
(F + h)(1 −N)H2m2

(2 −N)ζ

{
sinh(θ2y)
sinh(θ2h)

−
sinh(θ1y)
sinh(θ1h)

}
.

(3.4)

Now solving (2.32) with the corresponding boundary conditions in (2.30), we get the
magnetic force function in the form

φ(x, y) = Rm

{
ξ1(F + h)

θ1ζ

cosh(θ1y)
sinh(θ1h)

− ξ2(F + h)
θ2ζ

cosh(θ2y)
sinh(θ2h)

+
y2

2

(
1 +

F + h
ζ

(θ2ξ2coth(θ2h) − θ1ξ1coth(θ1h)) + E
)}

+ C3y + C4,

(3.5)

where

C3 = 0,

C4 = −Rm

{
ξ1(F + h)

θ1ζ

cosh(θ1h)
sinh(θ1h)

− ξ2(F + h)
θ2ζ

cosh(θ2h)
sinh(θ2h)

− h
2

2

(
1 +

(F + h)
ζ

(
θ2ξ2coth(θ2h) − θ1ξ1coth(θ1h)

)
+ E

)}
.

(3.6)

Also, the axial-induced magnetic field and the current density distribution across the
channel will take the forms

hx(x, y) = Rm

{
ξ1(F + h)

ζ

sinh(θ1y)
sinh(θ1y)

− ξ2(F + h)
ζ

sinh(θ2y)
sinh(θ2h)

+ y
(

1 +
F + h
ζ

(
θ2ξ2coth(θ2h) − θ1ξ1coth(θ1h)

)
+ E

)}
,

Jz(x, y) = Rm

{
θ1ξ1(F + h)

ζ

cosh(θ1y)
sinh(θ1h)

− θ2ξ2(F + h)
ζ

cosh(θ2y)
sinh(θ2h)

+
(

1 +
F + h
ζ

(
θ2ξ2coth(θ2h) − θ1ξ1coth(θ1h)

)
+ E

)}
.

(3.7)

In the formulation under consideration, the field strength E is the determining factor
and its value can be found by integrating (2.32), which represents Ohm’s law in differential
form, across the channel, taking into account the boundary conditions for φ and ψ in (2.30).
In this case, we obtain the dimensionless E = F/h.
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When the flow is steady in the wave frame, one can characterize the pumping
performance by means of the the pressure rise per wavelength. So, the axial pressure gradient
can be obtained from the equation

∂p

∂x
=

1
(1 −N

∂3ψ

∂y3
+

N

1 −N
∂w

∂y
+H2

(
E −

∂ψ

∂y

)
. (3.8)

Using (3.4), the axial pressure gradient will take the form

∂p

∂x
=

(F + h)θ2

ζ

{
ξ2

(
θ2

2

1 −N −H
2
)
+
NH2m2

2 −N

}
cosh(θ2y)
sinh(θ2h)

− (F + h)θ1

ζ

{
ξ1

(
θ2

1

1 −N −H
2
)
+
NH2m2

2 −N

}
cosh(θ1y)
sinh(θ1h)

+H2
{
(E + 1) − (F + h)

ζ
(θ1ξ1coth(θ1h) − θ2ξ2coth(θ2h))

}
.

(3.9)

The pressure rise Δpλ for a channel of length L in its nondimensional forms is given
by

Δpλ =
∫1

0

∂p

∂x
dx. (3.10)

The integral in (3.10) is not integrable in closed form, it is evaluated numerically using a
digital computer.

An interesting property of the micropolar fluid is that the stress tensor is not
symmetric. The nondimensional shear stresses in the problem under consideration are given
by

τxy =
∂2ψ

∂y2
− N

1 −Nw,

τyx =
(

1
1 −N

)
∂2ψ

∂y2
+

N

1 −Nw.

(3.11)

The shear stresses τxy and τyx are calculated at both the lower and upper walls and
graphical results are shown in Figures 4–6.

4. Numerical results and discussion

This section is divided into three subsections. In the first subsection, the effects of various
parameters on the pumping characteristics of a magneto-miropolar fluid are investigated.
The magnetic field characteristics are discussed in the second subsection. The trapping
phenomenon and the magnetic-force lines are illustrated in the last subsection.
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Figure 1: The axial pressure gradient versus the wavelength for α = 0.3, θ = −1.2, H = 2 and different
values of m and N.
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Figure 2: The pressure rise versus flow rate for α = 0.4, N = 0.4, H = 2, and H = 8 at different values of
m.

4.1. Pumping characteristics

This subsection describes the influences of various emerging parameters of our analysis
on the axial pressure gradient ∂p/∂x, the pressure rise per wavelength Δpλ, and the shear
stresses τxy, τyx on the lower and upper walls. The effects of these parameters are shown in
Figures 1–6, and in most of the figures, the case of N → 0 corresponds to that of Newtonian
fluid.

Figure 1 illustrates the variation of the axial pressure gradient with x for different
values of the microrotation parameter m and the coupling number N. We can see that in the
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Figure 4: The shear stresses τxy for α = 0.5, θ = 1.2, m = 3, N = 0.6, and different values of H.

wider part of the channel xε [0, 0.2] and [0.8,1.0], the pressure gradient is relatively small,
that is, the flow can easily pass without imposition of large pressure gradient. Where, in
a narrow part of the channel xε [0.2, 0.8], a much larger pressure gradient is required to
maintain the same flux to pass it, especially for the narrowest position near x = 0.5. This is in
well agreement with the physical situation. Also from this figure, we observe the effect of m
andN on the pressure gradient for fixed values of the other parameters, where the amplitude
of dp/dx decrease as m increases and increases with increasing N, and the smallest value
of such amplitude corresponds to the case N → 0 (Newtonian fluid). The effect of the
Hartmann number H on dp/dx is not included, where it is illustrated in a previous paper
[44], where the amplitude of dp/dx increases as H increases.
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Figures 2 and 3 illustrate the change of the pressure rise Δpλ versus the time-averaged
mean flow rate θ for various values of the parametersm (= 0.001, 10,100 withN = 0.4, α = 0.4
and different values of H) and N(= 0.2, 0.4, 0.6 with m = 2, α = 0.4 and different values of
H).

The graph is sectored so that the upper right-hand quadrant (I) denotes the region
of peristaltic pumping, where θ > 0 (positive pumping) and Δpλ > 0 (adverse pressure
gradient). Quadrant (II), where Δpλ < 0 (favorable pressure gradient) and θ > 0 (positive
pumping), is designated as augmented flow (copumping region). Quadrant (IV), such that
Δpλ > 0 (adverse pressure gradient) and θ < 0, is called retrograde or backward pumping.
The flow is opposite to the direction of the peristaltic motion, and there is no flows in the
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0.9, Rm = 1, and different values of m and H.

−0.8 −0.6 −0.4 −0.2 0 0.2 0.4 0.6 0.8

hx

−1.5

−1

−0.5

0

0.5

1

1.5

y

H = 8

H = 2

N = 0.2
N = 0.4
N = 0.6
Newtonian

N = 0.2
N = 0.4
N = 0.6
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last quadrant (Quadrant (III)). It is shown in both Figures 2 and 3, that there is an inversely
linear relation between Δpλ and θ, that is, the pressure rise decreases with increasing the flow
rate and the pumping curves are linear both for Newtonian and micropolar fluid. Moreover,
the pumping curves for micropolar fluid lie above the Newtonian fluid in pumping region
(Δpλ > 0), but asm increases, the curves tend to coincide. In copumping region (Δpλ < 0), the
pumping increases with an increase in m. Figure 3 shows the effects of the coupling number
N on Δpλ, where the pumping increases with an increase in N and the pumping curve for



Kh. S. Mekheimer 15

−0.4 −0.2 0 0.2 0.4

hx

−1.5

−1

−0.5

0

0.5

1

1.5

y

α = 0
α = 0.3

α = 0.6
α = 0.8

Figure 9: Variation of the axial-induced magnetic field across the channel for m = 3, N = 0.6, H = 4, Rm =
2, θ = −1.2 and different values of α.

−1 −0.5 0 0.5 1

θ

−0.4

−0.3

−0.2

−0.1

0

0.1

0.2

0.3

0.4

h
x

N = 0.2
H = 5
m = 0.01

N = 0.8
H = 10
m = 40

Figure 10: Axial-induced magnetic field versus flow rate for α = 0.5 for different values of N at m =
2, H = 4, Rm = 2 for different values of m at N = 0.7, H = 7, Rm = 1, and for different values of H at
m = 4, N = 0.6, Rm = 2.

the Newtonian fluid lies below the curves for micropolar fluid in the pumping region, and in
the copumping region, the pumping decreases with an increase in N.

It is known that the stress tensor is not symmetric in micropolar fluid, that is why the
expressions for τxy and τyx are different. In Figures 4 and 5, we have plotted the shear stresses
τxy and τyx at the upper and lower walls for various values of the Hartmann number H. It
can be seen that both shear stress are symmetric about the line x = 0. However, its magnitude
increases as H increases. Moreover, both shear stresses have directions opposite to the upper
wave velocity, while the directions of these shear stresses are along the direction of the lower
wave velocity. Figure 6 indicates that the shear stress τyx decreases with an increase in the
microrotation parameter m, while it increases as the coupling number N increases, and so,
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the magnitude value of shear stress for a Newtonian fluid is less than that for a micropolar
fluid.

4.2. Magnetic field characteristics

The variations of the axial-induced magnetic field hx across the channel at x = 0 and the
current density distribution Jz across the channel for various values of m, N, H, Rm, and α
are displayed in Figures 7–12.

In Figures 7-8, m (= 5, 20, 100 with N = 0.9, Rm = 1, α = 0.4 and θ = 1.2 and different
values of H), N (= 0.2, 0.4, 0.6 with m = 2, Rm = 1, α = 0.4 and θ = 1.2 and different values
of H).
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These figures indicate that the magnitude of the axial-induced magnetic field hx
decreases as the microrotation parameter m and the Hartmann number H increases while
it increases as the coupling number N increases. Further in the half region, the induced
magnetic field is one direction, and in the other half, it is in the opposite direction and it is zero
at y = 0. Figure 9 illustrates the variation of hx across the channel for different values of the
amplitude ratio α at x = 0.5, where α (= 0, 0.3, 0.6, 0.9 with m = 3, N = 0.6, H = 4, Rm = 2,
and θ = −1.2). It is clear that the magnitude of the axial-induced magnetic field hx at α = 0
(no peristalsis) is larger, and it decreases with increasing α. The distributions of hx within the
time-averaged mean flow rate θ are exhibited in Figure 10 at x = 0.25, y = 0.5, where hx is
plotted for various values of the parameters N (= 0.2, 0.8 with m = 2, H = 4, Rm = 2, α = 0.5
), m (= 0.01, 40 with N = 0.7, H = 7, Rm = 1, α = 0.5) and H (= 5, 10 with m = 4, N =
0.6, Rm = 2, α = 0.5). From this figure, we observe that there is an inversely linear relation
between hx and θ for any value of the above-mentioned parameters, that is, hx decreases
with increasing the flow rate θ and that the obtained curves will intersect at the point θ = 0.
It is found also that for any value of θ ≤ 0, the effect of increasing each of M and H is to
decrease hx values whereas the effect of increasing N is to increase the value of hx. On the
other hand, for any value of θ ≥ 0, all the obtained lines will behave in an opposite manner
to this behavior when θ ≤ 0.

Figures 11–13 describe the distribution of the current density Jz within y for different
values of m, N, H, and Rm at the central line of the channel (x = 0), where H (= 2, 4, 6, 8,
10 with m = 3, N = 0.2, Rm = 1, α = 0.5, θ = 1.6), m (= 3, 6, 9 with N = 0.8, H = 2, Rm =
1, α = 0.5 and θ = 1.6), N (= 0.1, 0.3, 0.5 with m = 3, H = 2, Rm = 1, α = 0.5 and θ = 1.6),
andRm (= 1, 2, 3, withm = 3, N = 0.2, H = 4, α = 0.5, θ = 1.6). The graphical results of these
figures indicate that the dimensionless current density Jz decreases as H and M increase in
the region near the center of the channel while it increases for the same values of H and M in
the region near to the lower and upper walls, that is, the net current flow through the channel
is zero and this corresponds to the case of open circuit. However, an opposite behavior is
noticed as N and Rm increases. Also, the current value for a micropolar fluid is higher than
that for a Newtonian fluid.
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Figure 14: Stream lines for different values of m.

4.3. Trapping phenomena and magnetic-force lines

Another interesting phenomenon in peristaltic motion is trapping. In the wave frame,
streamlines under certain conditions split to trap a bolus which moves as a whole with the
speed of the wave. To see the effects of microrotation parameter m and the coupling number
N on the trapping, we prepared Figures 14 and 15 for various values of the parameters m
(= 3, 6, 9 with N = 0.5, H = 2, θ = 0.7, α = 0.5) and N = (0.2, 0.4, 0.8 with m = 7, H =
2, θ = 0.7, α = 0.5). Figures 14 and 15 reveal that the trapping is about the center line
and the trapped bolus decrease in size as the microrotation parameter m increases, while
the size of the bolus increases as N increases. Also the effects of m and N on the magnetic-
force function φ are illustrated in Figures 16 and 17 for various values of the parameters
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Figure 15: Stream lines for different values of N.

m (= 0.01, 3, 10, with N = 0.5, H = 2, θ = 0.7, Rm = 1, α = 0.4) and N = (0.1, 0.4, 0.8, with
m = 3, H = 2, θ = 0.7, Rm = 1, α = 0.4). It is observed that as m increases, the size of the
magnetic-force lines will decrease, and for large values of m, these lines will vanish at the
center of the channel. An opposite behavior will occur as the coupling number N increase,
where the width of the magnetic-force lines will increase and more magnetic-force lines will
be created at the center of the channel as the coupling number N increases.

5. Concluding remarks

The effect of the induced magnetic field on peristaltic flow of a magneto-micropolar
fluid is studied. The exact expressions for stream function, magnetic-force function, axial
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Figure 16: Magnetic-force lines for different values of m.

pressure gradient, axial-induced magnetic field, and current density are obtained analytically.
Graphical results are presented for the pressure rise per wave length, shear stresses on the
lower and upper walls, axial-induced magnetic field, and current density and trapping. The
main findings can be summarized as follows.

(1) The value of the axial pressure gradient dp/dx is higher for a magneto-micropolar
fluid than that for a Newtonian fluid.

(2) The magnitude of pressure rise per wavelength for a magneto-micropolar fluid
is greater than that of a Newtonian fluid in the pumping region, while in the
copumping region, the situation is reversed.
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Figure 17: Magnetic-force lines for different values of N.

(3) Shear stresses at the lower wall are quite similar to those for the upper wall except
that at the upper wall has its direction opposite to the upper wave velocity while at
the lower wall has its direction along the wave velocity.

(4) The shear stresses decrease with an increase of m and increases with increasing N.

(5) The axial-induced magnetic field is higher for a Newtonian fluid than that for a
micropolar fluid and smaller as the transverse magnetic field increases.

(6) There is an inversely linear relation between the axial-induced magnetic field and
the flow rate.
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(7) The current density Jz at the center of the channel is higher for a micropolar fluid
than that for a Newtonian fluid, and it will decrease as the microrotation parameter
and transverse magnetic field increases, while it increases as the coupling number
increases.

(8) As we move from the Newtonian fluid to a micropolar fluid, more trapped bolus
created at the center line and the size of these bolus increases.

(9) More magnetic force lines created at the center of the channel as the fluid moves
from Newtonian fluid to a micropolar fluid.
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