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The velocity induced by a plane, uniform vortex is investigated through the use of an integral
relation between Schwarz function of the vortex boundary and conjugate of the velocity. The
analysis is restricted to a certain class of vortices, the boundaries of which are described through
conformal maps onto the unit circle and the corresponding Schwarz functions possess two poles
in the plane of the circle. The dependence of the velocity field on the vortex shape is investigated
by comparing velocity and streamfunction with the ones of the equivalent Rankine vortex (which
has the same vorticity, area, and center of vorticity). By changing the parameters of the Schwarz
function (poles and corresponding residues), rather complicated vortex shapes can be easily
analyzed, some of them mimicing an incipient filamentation of the vortex boundary.
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1. Introduction

The present paper investigates the self-induced velocity field of a uniform vortex having
Schwarz function of its boundary with two simple poles on a suitable transformed plane.
This analysis is viewed as a first step towards the study of the dynamics of such a vortex in
terms of the related Schwarz function.

The use of the Schwarz function in searching vortex equilibria and also in investigating
their stability properties dates back to the eighties of the last century (e.g., see the elegant
discussion in [1, Section 9.2]). As well known, the Schwarz function Φ(x) of an analytic curve
L in the plane of the complex variable x1 + ix2 = Re(x) + i Im(x) = x satisfies the request
Φ(x) := x1 − ix2 = x (a definition is indicated by joining the two symbols “:” and “=”, with the
first one on the side in which the new quantity appears) in any point x ∈ L and is defined via
analytic continuation on a suitable neighbourhood of the curve L. In general, singularities of
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Figure 1: Integration path for studying the asymptotic behavior of the function G(x).

the function Φ are found inside and outside L. An extensive theoretical background on the
Schwarz function can be found in [2], while an attempt to summarize the original ideas on
the use of such a function in searching vortex equilibria may be the following one.

The curveL is taken as the boundary ∂P of a uniform vortex P (with unitary vorticity,
for the sake of simplicity) and it is assumed that Φ can be rewritten as the sum of two
functions: Φ = F + G, where F and G are analytic inside and outside ∂P , respectively. It is
worth noticing that the behavior of G(x) for x → ∞ follows just from the above splitting of
Φ. Indeed, consider the integral on the path of Figure 1 of the function G(y)/[2πi(x − y)],
for x fixed away from the vortex. It gives the value of G(x) in terms of the moments of the
Schwarz function:

G(x) =
1

2πi

∫
∂P

dy
G(y)
x − y

=
1

2πi

∫
∂P

dy
Φ(y)
x − y

=
∞∑
k=0

1
xk+1
· 1
2πi

∫
∂P

dy ykΦ(y), (1.1)

with the integral having F in place of G vanishing, because F is analytic inside P . By
accounting for that the integral for k = 0 gives 2i times the area |P | of the vortex, the
asymptotic behavior of G follows as G(x)∼ |P |/(πx).

It can be noticed that the conjugate of the velocity u is analytic outside P , while u −
x/(2i) is analytic inside the vortex (both cases will be unified in terms of a Cauchy integral of
Φ in (2.9) below); it follows that u must have the form

u(x) =

⎧⎪⎪⎨
⎪⎪⎩

x − F(x)
2i

inside P,

G(x)
2i

outside P.
(1.2)

Indeed, the continuity across the vortex boundary follows by that G = x − F on the ∂P , u
behaves at infinity as |P |/(2πix), and the corresponding vorticity is uniform and unitary
inside P and vanishes outside. At this stage, it is also easy to show that the asymptotic
behavior of the velocity is related to the (complex) moments of the Schwarz function, through
the power series of 1/x (1.1).
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The formula (1.2) relates velocity and Schwarz function in a very appealing way.
However, the identification of the functions F and G is often a quite complicated goal, which
is reached by firstly identifying G through its asymptotic behavior (1.1) and then by taking
F as Φ − G. In the present paper, an approach which is alternative to the use of the relation
(1.2) is proposed: u and Φ are related through a Cauchy integral, which is evaluated without
splitting the Schwarz function. The two approaches are completely equivalent: if the Schwarz
function is not too complicated, the splitting (1.2) is still more convenient, but in other cases
the present approach can give some advantage. As an important example, for the class of
vortices investigated in the present paper the use of the integral approach results in being
much easier than the one of the splitting (1.2).

When the shape of the uniform vortex P is not far from a circular one (quasicircular
vortex), the identification of F and G is rather simple and the analysis can go ahead [3].
The vortex boundary belongs to a ring inside which the Schwarz function is evaluated via
a Laurent series, with F and G being the analytic continuations of its regular and singular
parts, respectively. Due to the small differences from a circle, it is also convenient to use a
Laurent series in order to define the vortex shape through a conformal map between the
unit circle and ∂P . The coefficients of the series for Φ are nonlinear combinations of the
ones of the map. Configurations of absolute equilibrium in presence of external rotation
and stationary strain (intensity and principal axes of which are kept fixed in time) have
been investigated by imposing that the normal velocity of the fluid at the vortex boundary
vanishes: u∂zx ≡ u∂zx. This relation is enforced to be identically satisfied in z, that is,
any power of z is multiplied times a vanishing coefficient: a nonlinear system in the map
coefficients follows, to which conditions concerning the area of the vortex and the position
of its center of vorticity are added. The system is numerically solved via a multidimensional
Newton solver. Finally, the linear stability of stationary solutions also is investigated with the
above approach. The coefficients of the conformal map are taken as functions of time, and it is
enforced that the normal components of the velocity of the fluid and of the vortex boundary
agree: (∂tx − u)∂zx ≡ (∂tx − u)∂zx. The above constraint is linearized around a stationary
solution, time dependence is fixed in the form exp(σt) (with σ being a complex number,
the real part of which determines the stability properties of the vortex) and an eigenvalue
problem is deduced. Several interesting cases of bifurcations of equilibria are discussed, with
particular regard to the energy conservation. Also the dynamics of quasicircular vortices
has been investigated [4], but by using a quite different approach. The vortex boundary is
described in terms of a Fourier series and an equation of evolution for the Fourier coefficients
is deduced. It is also found that the derivatives along the vortex boundary of the velocity and
of the Schwarz function are related through a Cauchy integral.

In the last ten years, a large research activity has been devoted to find and analyze
stationary solutions of the Euler equation by using the Schwarz function. The vortex shape is
searched by starting from the following form of the streamfunction ψr in a corotating frame
of reference:

ψr(x) ∝ xx −
∫x

dyΦ(y) −
∫x

dyΦ(y). (1.3)

The form (1.3) is assumed valid outside or inside the vortex, while ψr is taken as vanishing
on the complementary part of the physical plane. Multipolar equilibria have been analyzed
in [5], where symmetrical configurations of point vortices are placed into a uniform one,
in such a way that the total circulation vanishes. In this paper, the form (1.3) is built as
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an extension to general shapes of the streamfunction for the shielded Rankine vortex (see
also [6], in which the discussion is carried out in the framework of the quadrature domains
by using a fundamental theorem of Aharonov and Shapiro). The stability properties of the
above equilibria have been analyzed in [7], both in the framework of a linear theory and
through fully nonlinear numerical simulations with a contour dynamics approach (see (2.2)
below). Quadrupoles, pentapoles, and higher have been found to be stable equilibria, while
the tripoles result in being linearly unstable. Other interesting equilibria involving a doubly
connected uniform vortex and an internal set of pointwise ones are found in [8], mimicing
the overlapping of shielded Rankine vortices. An irrotational region remains trapped at the
center of the vortex. In [9], a class of stationary solutions consisting in a uniform vortex
surrounded by a certain number of point corotating vortices placed on the vertices of a
regular polygon is built and analyzed. This vortex pattern depends on an integer number
N, which specifies the number of satellite vortices, and on a parameter a belonging to a
lower bounded interval of the real axis. In correspondence to the minimum value of a and
for a given N, called a

(N)
crit , the central uniform vortex exhibits a nonanalytic boundary in

which N cusps are present. For growing a > a
(N)
crit , the central uniform vortex becomes

smaller and smaller (its area decreasing as 1/a2), with its shape going to a circular one. In
[10], the streamfunction (1.3) is used to generalize to finite-area vortices the ideas of Aref
and Vainchtein [11] who search asymmetric equilibria of point vortices by inserting new
vortices on points of relative rest (in a corotating reference frame). By such an approach,
growing uniform vortices are inserted in a corotating vortex pair until the Rankine vortex is
reached. The stability of such one-parameter family of equilibria has been also tested through
numerical simulations with a contour dynamics approach. Other equilibria depending on
two parameters and involving uniform vortices and point vortices are found in [12], still
starting from the streamfunction (1.3). A central uniform vortex is surrounded by an alternate
distribution of pointwise and uniform vortices. Also in this case, vortex shapes with cusps
are found for certain critical values of the parameters and numerical simulations show the
formation of filaments in configurations having large satellite vortices with cusps, as well as
in perturbed (by displacing point vortices) equilibria.

The present paper deals with the self-induced velocity of any vortex, the boundary
of which possesses a Schwarz function with two simple poles (on a suitable transformed
plane). This vortex shape appears to be the simplest, but nontrivial, possible one: the velocity
can be evaluated analytically by using an integral link with the corresponding function Φ
of its boundary. For this reason, it has been selected by the authors as the starting point of
an analysis of the vortex motion through the dynamics of Φ, which satisfies the evolution
equation [13]:

∂tΦ = u − u∂xΦ. (1.4)

In order to investigate nontrivial sample cases, the analytical forms of the velocity are needed
in (1.4). The present analysis achieves the first step of such a way. At the same time, it shows
the advantage of using an integral link between Φ and u.

The paper is organized as follows. The integral relation between Schwarz function and
velocity is presented in Section 2. In Section 3, an overall view of the geometrical properties of
the vortices having Schwarz function with two simple poles is given. A classification of this
kind of vortices is proposed in Section 4, while a discussion of several sample cases follows
in Section 5. In Section 6, the inverse map (from the physical plane to the transformed one)
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is built and the self-induced velocity is analytically evaluated. The different velocity fields
(together with the corresponding streamfunctions) are shown and discussed in Section 7,
where we also propose the use of an equivalent Rankine vortex in order to investigate the
dependence of the velocity on the vortex shape. Conclusions are offered in Section 8, together
with a sketch of the principal research lines under investigation at the present time.

2. An integral relation between Schwarz function and velocity

The velocity induced by a uniform vortex P (inside which the vorticity is unitary, for the sake
of simplicity) depends only on the shape of its boundary ∂P : if it is smooth and its length is
finite, then in any point x of the plane the velocity is given by

u(x) = −
∫
∂P

dyG(x − y), (2.1)

where G is the Green function of the Laplace operator, that is, G(x) = (logx)/(2π) (the
modulus of a vector is represented with the same symbol, but without using the bold
character, e.g., x = |x| = (x2

1 + x2
2)

1/2), and dy is the curve element. The motion of such a
kind of vortex is defined by the time evolution of its boundary, starting from a smooth and
finite-length boundary at the initial time (t = 0). In order to numerically investigate that
motion, the form (2.1) of the velocity is used as briefly described below.

Consider a parameter σt on ∂P at time t. With the vortex motion being a material one,
it is possible to write σt as a function of the corresponding parameter σ0 at the initial time
(t = 0) and of the time t itself: σt = σt(σ0, t). The Lagrangian representation of the position
on the vortex boundary x = x[σt(σ0, t), t] = x(L)(σ0, t) becomes natural and the velocity (2.1)
evaluated on that point, that is u[x(L)(σ0, t)], gives the Lagrangian velocity ∂tx(L)(σ0, t). It
follows that the motion of ∂P is the solution of the Cauchy problem:

∂tx(L)
(
σ0, t

)
= u

[
x(L)

(
σ0, t

)]
,

x(L)
(
σ0, 0

)
given.

(2.2)

The above approach is known as contour dynamics [14, 15], a powerful tool to investigate
the inviscid, incompressible two-dimensional vortex motion. Obviously, in the numerical
practice a certain number of nodes are selected on the initial boundary and their motion
is followed in time. In the discrete framework, the velocity (2.1) is evaluated through an
interpolation procedure which rebuilds an approximation of ∂P .

By starting from the contour dynamics form of the velocity (2.1), in the present section
an integral relation between Schwarz function and velocity is deduced, which is equivalent
to the form (1.2) but it does not require the splitting of the Schwarz function in the sum F+G.
The key observation about (2.1) lies in considering that if the point x is not on the vortex
boundary, an integration by parts enables us to write

u = − 1
2π

∫
∂P

(x − y)·dy
|x − y|2

y, (2.3)
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with the dot indicating a scalar product. By conjugating both sides of the above relation, it
may be rewritten in the following complex form:

u =
1
2i

[
1

2πi

∫
∂P

dy
y − x

x +
1

2πi

∫
∂P

dy
Φ(y)
x − y

]
. (2.4)

Notice that the first integral in the right-hand side of the above equation holds 1 if x lies
inside the vortex (x ∈ P̊), while it vanishes when x is external to the vortex (x ∈ P ′). Equation
(2.4) relates velocity and Schwarz function in any point x which does not lie on the vortex
boundary, while if the point x belongs to that curve, the discussion must be carried out in a
more sophisticated way.

The tangent derivative of the conjugate of the velocity on the vortex boundary ∂P has
been investigated in a previous paper [4], where it has been shown that it is related to the
tangent derivative of the Schwarz function, that is, to the function φ := Φ′ = 1/τ2, with τ
being the unit vector which is tangent to ∂P . The relation is through a Cauchy integral (see
[4, equation (18)], rewritten here for reader’s convenience):

∂xu(x) =
1
2i

[
1
2
φ(x) +

1
2πi
−
∫
∂P

dy
φ(y)
x − y

]
=:

1
2i

V(x). (2.5)

By changing φ(y) with −∂y(x − y), an integration by parts gives

V =
1

2πi
−
∫
∂P

dy
x − y

(x − y)2
+

1
2
φ(x)

= − d
dx

1
2πi
−
∫
∂P

dy
x − y
x − y

+
φ(x)
2πi

−
∫
∂P

dy
x − y

+
1
2
φ(x),

(2.6)

in which the second integral in the last side holds −πi, it follows that

V =
d

dx

[
1
2
Φ(x) +

1
2πi
−
∫
∂P

dy
Φ(y)
x − y

]
. (2.7)

In this way, the conjugate of the velocity in the point x belonging to the patch boundary
becomes

u =
1
2i

[
1
2
Φ +

1
2πi
−
∫
∂P

dy
Φ(y)
x − y

]
. (2.8)

Equations (2.4) and (2.8) are summarized by introducing the characteristic function of
the domain P : χP : C → {0, 1/2, 1}, which holds 1 inside P , 0 outside P , and 1/2 on the
boundary, in the following new form of the self-induced velocity:

u
(
x, x

)
=

1
2i

[
χP (x)x +

1
2πi

∫
∂P

dy
Φ(y)
x − y

]
, (2.9)
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with the position that the integral must be a Cauchy one if the point x lies on the curve ∂P .
It is worth noticing that the velocity (2.9) is a function of both x and x inside the vortex,
while it depends on x only on ∂P (through the Schwarz function) and outside the vortex. The
velocity (2.9) is a continuous function across ∂P : indeed if x approaches x0 ∈ ∂P from the
inside of the vortex, χP (x)x goes to x0 and the integral to −x0 plus continuous terms (given
by the singularities of the Schwarz function), while if x reaches x0 from the outside, the first
term vanishes and only the above continuous contribution remains. On the vortex boundary,
χP (x)x holds x0/2, while the integral must be considered as Cauchy’s one and it leads to a
contribution −x0/2 plus the continuous contribution due to the singularities of Φ. The above
form of the velocity gives also the correct asymptotic behavior: u(x)∼ |P |/(2πix) for x going
to infinity, |P | being the area of the vortex. It is also important to notice that once the splitting
Φ = F + G is inserted into the integral at the right-hand side of (2.9), the original formulation
(1.2) is recovered.

As a first sample case for the use of (2.9), consider an elliptical vortex having center of
vorticity on the origin and semiaxes a along x1 and b (< a) along x2 (the related quantities
c =
√
a2 − b2, δ = (a2+b2)/c2, χ = 2ab/c2, and μ = (a−b)/(a+b) < 1 will be also used below).

By using the angle θ ∈ [0, 2π), the curve ∂P is parametrized as x(θ) = a cos θ+ ib sin θ, which
is rewritten in terms of z = exp(iθ) as

x(z) =
a + b

2

(
z +

μ

z

)
. (2.10)

Equation (2.10) defines a conformal map between the plane of the unit circle (z) and the
physical one (x). Due to the fact that the ellipse is a simple curve, the equation in ζ : x(z) =
x(ζ) cannot have another solution on C unless ζ = z. Indeed, it also possesses the solution
ζ = ζ	(z) = μ/z (notice that ζ	[ζ	(z)] = z). The solutions z and ζ	 are expressed in terms of x
in the following way:

z(x) =

(√
x + c +

√
x − c

)2

2(a + b)
,

z	(x) := ζ	[z(x)] =

(√
x + c −

√
x − c

)2

2(a + b)
.

(2.11)

If the point x belongs to the vortex, then μ < z < 1 and the same holds also for z	, while for
x ∈ P ′, z lies outside the unit circle and z	 < μ. By conjugating both sides of (2.10) for z ∈ C,
the Schwarz function follows naturally as the function of z:

Φ(z) =
a + b

2

(
μz +

1
z

)
. (2.12)

The velocity is evaluated by rewriting (2.9) in the transformed plane z:

u =
1
2i

[
χP (x)x −

1
2πi

a + b
2

∫
C
dζ

(
ζ2 − μ

)(
μζ2 + 1

)
ζ2(ζ − z)

(
ζ − z	

)
]
. (2.13)
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If x ∈ P̊ , then both poles z and z	 are internal to C and the above equation gives

u
(
x, x

)
=

1
2i

(
x − a − b

a + b
x
)
, (2.14)

while if x ∈ P ′, z lies outside the unit circle and z	 ∈ C̊, so that the velocity becomes

u(x) =
1
2i

ab

a2 − b2

(√
x + c −

√
x − c

)2
. (2.15)

However, in the present case the splitting of the Schwarz function (2.12) can be easily
performed:

Φ[z(x)] =
a − b
a + b

x︸ ︷︷ ︸
F(x)

+ ab
2

x +
√

x2 − c2︸ ︷︷ ︸
G(x)

, (2.16)

which still gives the fields (2.14) and (2.15) through the relation (1.2). As discussed above,
when the functional form of the Schwarz function is rather simple, as in (2.12), the old
formulation (1.2) is convenient with respect to the new one (2.9). This is not the case of the
class of vortices investigated in the present paper.

3. The Schwarz function with two pole singularities

The present paper deals with a uniform vortex having Schwarz function of its boundary with
two pole singularities (it is worth noticing that the vortex having Schwarz function of its
boundary with only the pole z1: Φ(z) = x(z) = a1/(z − z1) is a circular, with center in x(z1)
and radius a1|w1/(w1 − z1)| ) on a suitable transformed plane, with the aim to investigate the
corresponding self-induced velocity field. For z ∈ C, the Schwarz function

Φ(z) = x(z) =
a1

z − z1
+

a2

z − z2
(3.1)

is considered. The residues a1, a2 in (3.1) are assumed to be nonvanishing complex numbers
(notice that one of them, e.g. a1, can be assumed unitary without loss of generality), while
the poles z1, z2 are chosen outside C and the origin (z1,2 /= 0). It is also assumed that their
conjugates with respect to C, that is, 1/z1 =: w1 and 1/z2 =: w2, satisfy the two conditions
z1 /=w2 and z2 /=w1. The Schwarz function (3.1) gives the position x ∈ ∂P in the point z ∈ C as

x(z) = −
(
a1w1 + a2w2

)
−

a1w2
1

z −w1
−

a2w2
2

z −w2
. (3.2)

The point x(z) given by (3.2) can move counterclockwise or clockwise along ∂P , even if z
runs always counterclockwise on C. In order to specify the direction in which x(z) moves on
∂P , a parameter σ is introduced, which holds +1 when x runs counterclockwise and −1 in the
other case. It will be evaluated in Section 4.
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ζ∗

Ci(t)

ρi(t)

ζi(t)
ζio(−1)

ζio(+1)

ζ-plane

x

Ci(t) ri(t)

zi(t) zio(−1)

zio(+1)

z-plane

C̃i(t)

x+io

Ri(t)

xi(t)
x−io

Ci(t)

x-plane

Figure 2: Sketch of the invariant circle Ci(t) in the planes of the variables z and ζ and its image C̃i(t) in the
physical plane. The points zio(±1) and their images x±io are represented with green dots. The same colours
(blue and red) are used for the arcs that are images through the maps z �→ ζ	 and z �→ x of the two arcs in
which Ci(t) is divided by the points z = zio(±1). For z running on Ci(t), the point x(z) moves on the closed
curve C̃i(t), first in a direction and then in the reverse one. C̃i(t) is composed by two superimposed arcs of
the circle Ci(t) (yellow line) between the points x−io and x+io: its inside has a vanishing area.

Analytic continuations of the Schwarz function (3.1) and of the map (3.2) outside C
will be considered in the following, so that the definition of the inverse map x �→ z outside
the vortex boundary needs also to be discussed (see Section 6). It is shown that z(x) exists
almost everywhere, unless on a closed curve C̃i, the inside of which has a vanishing area (see
Figure 2).

3.1. Constants α, β, and γ

In the following, the poles and the corresponding residues of the Schwarz function (3.1) will
often appear combined into the constants:

α = a1w2
1 + a2w2

2, β = w1w2
(
a1w1 + a2w2

)
, γ = w2

1w2
2
(
a1 + a2

)
; (3.3)

moreover the related quantities: αβ = αβ exp(iω), βγ = βγ exp(iχ), β′ = β/(w1w2), and γ ′ =
γ/(w1w2) will be also employed. In terms of the above constants, for example, the compact
form of a vector τ which is tangent to the vortex boundary on its point x(z):

τ = iz
αz2 − 2βz + γ(

z −w1
)2(z −w2

)2
, (3.4)

is obtained. The function (3.4) suggests a first constraint on the Schwarz one (3.1): τ cannot
vanish on C. The nonvanishing zeros of τ are given by (β± iδ)/α =: zio(±1), with δ being the
branch of the square root of αγ − β2 for which βδ + βδ ≥ 0 (see also Appendix D. Notice that
δ /= 0 and its modulus verifies the relation δ4 = α2γ2 − 2αβ2γ cos ν + β4, with ν being the phase
difference ω − χ). As a consequence, in order to enforce τ(z)/= 0 on the unit circle, the points
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zio(±1) are hereafter assumed external to C. Other important constraints will be discussed in
the next section.

3.2. Map z �→ ζ	 and constraints on Schwarz function

The Schwarz function (3.1) cannot be assigned in an arbitrary way: for the curve x(C) is the
boundary of a uniform vortex, it must be simple. This constraint can be enforced by requiring
that for any z ∈ C, the equation in ζ : x(ζ) = x(z) has no other solutions on C, unless ζ = z.
The only solution ζ of that equation which differs from z is

ζ =
βz − γ
αz − β =: ζ	(z), (3.5)

so that the above condition results to be equivalent to the one: |ζ	(z)|/= 1 for each z ∈ C.
Equation (3.5) implies also that the points z and ζ	(z) go on the same point x(z): the analytic
continuation of the function (3.2) cannot be defined on the whole z-plane, but only on a
suitable subset of it including C (see Section 5).

It is worth noticing here that the function (3.5) maps the points w1 and w2 (on which
x goes to the infinity) one in the other one and viceversa: for this reason these points w1 and
w2 will be called hereafter as “conjugate” through the map z �→ ζ	. Moreover, z = ∞ goes in
ζ	 = β/α =: ζ	∞ and viceversa z = ζ	∞ is mapped in ζ	 = ∞; the same occurs for z = 0, which
goes in ζ	 = γ/β =: ζ	0 and viceversa z = ζ	0 is transformed in ζ	 = 0. More details about the
map z �→ ζ	 can be found in Appendix A, in particular the “viceversa” parts of the above
statements are trivial consequences of the property (A.1). As well known and summarized
also in that appendix, ζ	 transforms any circle in another circle. In the important example of
the unit circle, its image ζ	(C) =: C	 is for α/= β, the circle having center ζc(1) and radius ρc(1)
given by the following relations:

ζc(1) = ζ
	
∞ +

β2

α2 − β2

(
ζ	∞ − ζ	0

)
, ρc(1) =

δ2∣∣β2 − α2
∣∣ , (3.6)

while C	 becomes a straight line in the case of α = β. As discussed below, the position of C	
relative to C will be one of the key-points in order to understand the analytical structure of
the velocity (see Section 4).

Coming back to the constraint on x(C), the condition |ζ	(z)| = 1 with z = exp(iθ) leads
from the definition (3.5) to the following equation in θ:

β2 − 2βγ cos(θ + χ) + γ2

α2 − 2αβ cos(θ +ω) + β2
= 1, (3.7)

which has no solutions if and only if

∣∣α2 − γ2∣∣ > 2βR, (3.8)

where R2(α, γ | ν) = |αβ − βγ |/β2 = α2 − 2αγ cos ν + γ2 ≥ (α − γ)2. If the constraint (3.8) is
verified, C	 cannot intersect C: this fundamental property, implying that ∂P is a simple curve,
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depends only on the function ζ	 (3.5), or on the constants α, β, and γ (3.3). Hereafter, it will
be assumed always satisfied.

3.3. Invariant circles for the map z �→ ζ	

An interesting issue about the map z �→ ζ	 (3.5) lies in searching a circle which is transformed
in itself by ζ	: such a circle will be called invariant. Two families at one parameter (t ∈ R) of
invariant circles have been found. In the first (and most important) one, center and radius,
indicated with zi, ri in the z-plane and with ζi , ρi in the ζ-plane, are the following functions
of t:

zi(t) ≡ ζi(t) = ζ	∞ +
δ

α
t, ri(t) ≡ ρi(t) =

δ

α

√
t2 + 1 (3.9)

(the branch of the square root δ affects the sign of t, but not the definition of the center).
Centers (3.9) move along a straight line parallel to δ/α and passing on the point ζ	∞ for t
running on the real axis. The importance of the circles of the first family lies in the fact that
one of them (called Ci(t) hereafter, see Figure 2) will be used in order to define the inverse
map x �→ z. It divides the complex plane in two parts which are mapped one in the other
by the function ζ	 (3.5), one of them being the image of the physical plane. As shown in
Figure 2, another interesting feature of Ci(t) is that its image x[Ci(t)], called C̃i(t), results from
the overlapping of two equal arcs of a circle Ci(t) (see Appendix E for details): for z running
on Ci(t), x(z) moves along C̃i(t) first in a direction and then in the reverse one. The branch
of the inverse map, as well as the geometry of the two arcs on Ci(t) (unless their endpoints,
which do not change with t), will depend on the value of the parameter t (see Appendix D).

Centers of the second family lie along the straight line orthogonal to the one of the first
family, but still passing through the point ζ	∞. Center and radius of a circle are in that case the
functions of t:

zio(t) ≡ ζio(t) = ζ	∞ + i
δ

α
t, rio(t) ≡ ρio(t) =

δ

α

√
t2 − 1, (3.10)

|t| being larger than 1. An inspection of the formulae (3.9) and (3.10) shows that circles
of the first family intersect on the points zio(±1). Notice also that Ci(t) is divided into two
complementary arcs by the points zio(±1): if the point z runs on Ci(t) from zio(−1) to zio(+1)
in the counterclockwise sense, its image ζ	(z) moves on the same circle and between the same
points, but in the reverse direction. Finally, it is found that the function z �→ x maps the points
zio(±1) in the endpoints x±io of the two arcs of Ci(t) which form C̃i(t).

4. Vortex classification

A classification of the vortices having the Schwarz function of their boundaries of the form
(3.1) will be proposed below. It is based on two important properties of the maps z �→ ζ	 (3.5)
and z �→ x (3.2) and allows us to build the inverse map x �→ z and then the analytical velocity
field.

The first property specifies the relative position of the curve C	 with respect to the unit
circle (hereafter, the case α = β, in which the circle C	 becomes a straight line, is excluded):
C	 can be internal to C (the vortex is classified of kind 1), or external and including C
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Table 1: Behaviour with respect to the first property, consequences on the position of the circle C	 = ζ	(C),
and corresponding constraints on α, β, and γ . The quantities βl and βu are defined in (B.1).

Kind Relative position of C	 and C Constraints
1 C	 internal to C α > β, γ and β < βl
2 C	 includes C β < α < γ

3 C	 external to C and not including it α < β < γ and β < βu

Table 2: Behaviour with respect to the second property, consequences on the map z �→ x and corresponding
constraints on the poles z1, z2.

Kind x(A) Position of C	 Constraints on z1, z2

1 Inside P Internal to C One inside and one outside C
External to C Both inside C

2 Outside P Internal to C Both outside C
External to C One inside and one outside C

(kind 2), or external and not including C (kind 3). Vortices of the first kind have the inside
of C, say C̊, naturally decomposed as C̊	 joined with an annular set external to C	. In order
to use compact notations, this annular set or the whole C̊ (for vortices of kind 2 or 3) will be
hereafter indicated withA. In turn, vortices of the second kind have the inside of C	 naturally
decomposed asA joined with an annular subset external to C, that will be indicated with D.
For vortices of kind 3, the same symbol will indicate the unbounded region external to both
circles C and C	. Appendix B is devoted to a comprehensive discussion of the first property,
the results of which are summarized in Table 1. The above classification enables us to specify
whereA goes through the function z �→ ζ	: it is found (see Appendix C for details) thatA is
mapped onto itself for vortices of kind 1, while it goes onto the outside or the inside of C	 for
vortices of kind 2 or 3, respectively.

A second property specifies whereA goes via the other map z �→ x: it can go onto the
inside of the vortex (which is classified of kind 1) or onto its outside (kind 2), depending on
the values of the constants β, γ and on the positions of the poles z1 and z2 with respect to the
unit circle. This issue is investigated by evaluating if the image of the origin in the z-plane
(which is still the origin in the physical one) lies or not inside P . To this aim, the logarithmic
index I of the point 0 with respect to the curve ∂P

I(0) = 1
2πi

∫
∂P

dx
x − 0

= −w1w2

2πiβ

∫
C
dz

[
a1w2

1(
z −w1

)2
+

a2w2
2(

z −w2
)2

](
z −w1

)(
z −w2

)
z
(
z − ζ	0

)
(4.1)

is considered. The residues (times 2πi) of the integral (4.1) on the poles 0 and ζ	0 (if they lie
in C̊) hold +1, while those on w1 and w2 (if they lie in C̊) hold −1 (notice that both pairs of
points are conjugate through the map z �→ ζ	). Results of the discussion of the logarithmic
index (4.1) are summarized in Table 2.

In our classification, the vortices belonging to a given class are of the same kind with
respect to both properties: a class is identified by the couple of numbers which indicate the
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kinds with respect to the first and second properties. As an example, vortices in the class (3, 2)
have the circle C	 external and not including C and x(A) is the outside of the vortex.

The last issue about the map z �→ x concerns the orientation of the vortex boundary,
that is, the evaluation of σ. To this aim, the logarithmic index of the point x(1) with respect to
∂P

I[x(1)] = 1
2πi
−
∫
∂P

dx
x − x(1)

=

(
w1 − 1

)(
w2 − 1

)
2πi(α − β) −

∫
C
dz

αz2 − 2βz + γ(
z −w1

)(
z −w2

)
(z − 1)

[
z − ζ	(1)

]
(4.2)

has to be evaluated: it holds +1/2 when ∂P is oriented counterclockwise and −1/2 in the
other case. In the last integral, the residue (multiplied times 2πi) on the point 1 holds +1/2,
the ones on w1 and w2 (if they lie in C̊) give −1 and the residue on ζ	(1) (if it lies inside C)
holds +1. By accounting for the behaviour with respect to the second property summarized
in Table 2, it can be easily shown that any vortex of kind 1 has a counterclockwise (σ = +1)
oriented boundary, while the orientation of the boundary of any vortex of kind 2 is clockwise
(σ = −1).

5. Geometrical discussion

In the present section, the information about the maps z �→ ζ	 and z �→ x given in Sections
3 and 4 are joined to give a comprehensive picture of their geometrical properties. In order
to reach an intuitive representation of the behaviour of these functions, in Figures 3, 4, and 5
families of circles will be transformed through these two maps. Hence, the circles and their
images are drawn with the same colour.

Our analysis starts from vortices of kind 1 with respect to the first property, having
C	 ⊂ C̊. For such vortices, the function z �→ ζ	 maps A onto itself, while it goes onto P̊ (e.g.,
z1 ∈ C̊, z2 outside, see Table 2) or onto P ′ (z1, z2 outside C, see Table 2) through the map
z �→ x. In Figure 3, samples of the planes z (Figures 3(a) and 3(d)), ζ (Figures 3(b) and 3(e)),
and x (Figures 3(c) and 3(f)) for vortices of kind (1, 1) (first row) and (1, 2) (second row) are
shown.

In order to determine a branch of the inverse function z(x), a neighbourhood ofC in the
z-plane must be defined, such that its image through the map z �→ ζ	 is just its complementary
set. This goal is reached by defining two subsets Ao and Ai of A which go one in the other
one through that map: they are necessarily separated by an invariant circle of the first family
Ci(t) ⊂ A, so thatAo andAi lie outside and inside Ci(t), respectively. The value of t is chosen
in the following way. As shown in Appendix D, two circles of the first family, corresponding
to the values t1 and t2 (D.4) of the parameter, are tangent to C and then to C	, at the same
time. It follows that every invariant circle Ci(t) for t1 < t < t2 lies insideA and then is a good
candidate for our aims. In Figure 3, the parameter is chosen as the mean value (t1 + t2)/2 =: t.
Once the subsets Ai and Ao have been introduced, by joining Ao with the outside of C a
neighbourhood of the unit circle is obtained, on which the behaviour of the maps z �→ ζ	 and
z �→ x is investigated. To this aim, in Figures 3(a) and 3(d) two sets of circles are considered,
one outside C and the other one inside Ao. Their images through the map z �→ ζ	 are shown
in Figures 3(b) and 3(e), respectively. Circles inside Ao go inside Ai, while circles outside C
are transformed in circles lying inside C	. The behaviour of the map z �→ x is then shown
in Figures 3(c) and 3(f): in the first row, circles in Ao are mapped in curves lying inside the
vortex, while circles outside C are transformed in curves external to the vortex. The contrary
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Figure 3: Planes of the variables: z (first column), ζ (second), and x (third) for vortices of kind 1 with
respect to the first property. In the first row, a vortex of kind (1, 1) (a1 = 1, a2 = 0.1 + i, z1 = −0.70 + 0.05i,
z2 = −1.0 + 1.5i) and in the second one a vortex of kind (1, 2) (a1 = 1, a2 = −0.2 − 0.1i, z1 = 0.2 + 1.3i,
z2 = 0.50 + 0.92i) are investigated. Two families of circles are considered in the z-plane: one inside Ao

(yellow lines) and the other one outside C (blue lines). Image curves (that are still circles in the ζ-plane)
are drawn with the corresponding colours. Circles C, C	 (a), (b), (d), and (e) are drawn with red lines, as
well as the vortex boundaries in (c) and (f). Invariant circles Ci(t) are drawn with green lines in (a), (b),
(c), and (d). The same line is used to draw C̃i(t) in (c) and (f). The centers of C and C	 (squared filled
symbols), the poles z1 and z2 (solid black circular symbols) and the conjugate points (empty triangular
symbols) w1 and w2 are also drawn.

occurs in the second row. In other words, the branch of the inverse map x �→ z corresponding
to the present choice of the parameter t is such that the image of P̊ is Ao (first row) or the
outside of C (second row), while the image of P ′ is the outside of C (first row) orAo (second
row).

In Figure 4, the above analysis is extended to vortices of kind (2, 1) (first row) and (2, 2)
(second row): as discussed below, the main difference between this case and the other ones
lies in the boundness of the image of the physical plane through the inverse map x �→ z. Being
the vortex of kind 2 with respect to the first property, the image circle C	 = ζ	(C) includes C.
In the first row, both poles belong to C̊ (see Table 2), so that w1 and w2 ∈ D, while in the
second row z1 ∈ C̊ and z2 lies outside C (see Table 2), so that w2 ∈ C̊ and w1 is external
to C	. The set C̊ is mapped by the function z �→ ζ	 onto the outside of the image circle C	,
while the annular region D is transformed onto itself by the same function. As above, two
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Figure 4: As in Figure 3, but for vortices of kind (2, 1) (first row, with a1 = 1, a2 = 0.8−0.2i, z1 = 0.65−0.60i,
and z2 = −0.15 + 0.25i) and of kind (2, 2) (second row, with a1 = 1, a2 = 0.8 − 0.2i, z1 = 0.6 − 1.1i, and
z2 = −0.1 + 0.3i).

complementary subsets Di and Do of D (one going in the other one and viceversa through
the map z �→ ζ	) are identified as the parts of D inside (Di) or outside (Do) an invariant circle
of the first family belonging to D (its t is still chosen as the mean value between the ones
corresponding to the tangent circles). In order to explain the behaviours of the maps z �→ ζ	

and z �→ x (Figures 3(a) and 3(d)), two sets of circles have been considered in Figures 4(a)
and 4(d): one inside C (yellow dashed lines) and the other one inside Di (blue). The image
circles through the map z �→ ζ	 are drawn in Figures 4(b) and 4(e). Finally, in Figures 4(c)
and 4(f) the image curves through the function z �→ x are shown: the inside of the unit circle
is mapped in the inside (first row) or in the outside (second) of the vortex and Di goes onto
the complementary set. A neighbourhood Di ∪ C̊ of the curve C is determined, with its image
through the map z �→ x filling the whole physical plane.

Vortices of kind (3, 1) (first row) and (3, 2) (second row) are investigated in Figure 5:
they have image circles C	 external and not including C. In Figure 5(a), the poles z1 and z2

belong to the inside of the unit circle so that w1 and w2 ∈ D, while in Figure 5(b) z1 ∈ C̊
and z2 lies outside the unit circle: as a consequence, w2 ∈ C̊ and w1 ∈ C̊	. Also in the present
case, D is divided in two subsets Di and Do through the introduction of a suitable invariant
circle: the choice of its parameter t is not obvious, but comprehensive details can be found in
Appendix D. The subset Di is defined as the outside of the unit circle which lies inside Ci(t)
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Figure 5: As in Figure 3, but for vortices of kind (3, 1) (first row, with a1 = 1, a2 = 0.5 − 0.1i, z1 = 0.3 − 0.7i,
and z2 = 0.45 + 0.25i) and of kind (3, 2) (second row, with a1 = 1, a2 = 0.5 − 0.1i, z1 = 0.80 − 0.75i, and
z2 = 0.4 + 0.2i).

(if C ⊂ C̊i(t), as in Figure 5) or outside it (if C	 ⊂ C̊i(t)). With the neighbourhood C̊ ∪ Di of C
being the image of the physical plane through the inverse map x �→ z, two sets of circles: one
inside Di (blue dashed lines) and the other one in C̊ (yellow), are introduced in order to give
a picture of the behaviours of the maps z �→ ζ	 (Figures 5(b) and 5(e)) and z �→ x (Figures 5(c)
and 5(f)). As discussed before, C̊ goes onto C̊	 and Di onto Do through the function z �→ ζ	.
Moreover, the function z �→ x maps the inside of the unit circle onto the inside or the outside
of the vortex of kind (3, 1) or (3, 2), respectively.

We are now ready to use the analysis of the maps z �→ ζ	 and z �→ x to obtain the
analytical form of the velocity field induced by the vortex.

6. Inverse map and general form of the velocity field

In the present section, the inverse map x �→ z is explicitly built and then the velocity (2.9) is
analytically evaluated. Before calculating the inverse function, the following quantities:

ε1 = w1

√
a1, ε2 = w2

√
a2, (6.1)
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have to be introduced for the sake of simplicity of the algebraic calculations. They enable us
to write the quantity δ without square roots. Indeed, δ2 = αγ − β2 = (w1 −w2)

2ε2
1ε

2
2, so that

the roots (6.1) can be chosen to give δ = (w1 −w2)ε1ε2. The inverse map x �→ z is then built
by solving the second degree algebraic equation in z : x(z) = x. From the definition (3.2) of
the map z �→ x one obtains

z(x) =
w1 + w2

2
+

(
w1 −w2

)(
x − x+io

)1/2(x − x−io
)1/2 − α

2
(
x + β′

) , (6.2)

in which the zeros x±io of the discriminant have the following form:

x±io =

(
w2ε1 ± iw1ε2

)2

w1w2
(
w1 −w2

) = x
[
zio
(
± 1

)]
. (6.3)

The branches of the square roots in the inverse (6.2) must be carefully chosen through the
considerations about the map z �→ x that are discussed below. However, from the inverse
point of view, it is only important to know if the branches are equal (i.e., both roots use
arg(x − x±io)/2 or both arg(x − x±io)/2 + π) or different: an integer k is introduced, which holds
2 in the first case and 1 in the second one. It will be found that k changes in passing from the
inside to the outside of unbounded regions as the ones in Figure 6, obtained by joining the
arc of the circle Ci superimposed on C̃i with two half straight lines parallel to the real axis
and departing from the points x±io.

The index k on a given point x is calculated by performing the following two steps.
In the first one, the parameter t is related to the phase difference Δω = ω+ − ω− between the
vectors x′ − x+io and x′ − x−io for x′ ∈ C̃i(t) (see Figure 6). This particular phase difference will
be indicated with Δω	 and does not depend on the position x′ on C̃i: as shown in Figure 6,
if ϕ is the nonoriented and positive angle (in turn, ϕ can be related to t via the function f(t)
(E.14)) between the vectors x′ − x+io and x′ − x−io in a fixed x′ ∈ C̃i, Δω	 is identically given by
+ϕ in Figure 6(a) and by −ϕ in Figure 6(b) for any x′ ∈ C̃i. The second step consists in relating
the phase difference Δω − Δω	 in the given x to the corresponding value of the index k, by
replacing t with the proper function of Δω	 (6.5).

The starting point is the equation

∣∣∣∣∣
(
ε1 − iε2

)
(1 − it)

(
x′ − x+io

)1/2 +
(
ε1 + iε2

)
(1 + it)

(
x′ − x−io

)1/2

(
ε1 − iε2

)(
x′ − x+io

)1/2 −
(
ε1 + iε2

)(
x′ − x−io

)1/2

∣∣∣∣∣ =
√
t2 + 1, (6.4)

which is obtained by enforcing that |z(x′) − zi| = ri for x′ ∈ C̃i. By introducing the arguments
τ1, τ2 of the vectors ε1− iε2, ε1 + iε2 and the angle θ	 = Δω	/2+(τ1−τ2), it leads to the relation

t = − cot gθ	. (6.5)

The second step consists in evaluating the index k in the given point x. It is achieved
by reconsidering the z-planes in Figures 3, 4, 5 and the classification with respect to the first
property. Indeed, the inverse map for vortices of kind 1 (or 3 with C	 ⊂ C̊i) satisfies the
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Figure 6: Qualitative behaviour of the phase difference Δω. Notice that if the point x+
io moves

counterclockwise on C̃i(t) to reach x−io, then Δω	 > 0. The angle Δω	 holds identically +ϕ (a) or −ϕ (b)
on C̃i(t) (bold line).

Table 3: Branches to be used for the square roots (x − x+
io)

1/2 and (x − x−io)
1/2 in any x ∈ E, expressed through

the index k (k = 2 equal, k = 1 different). They are specified in terms of the kind of the vortex with respect
to the first property (first column) and of the phase difference Δω	 (second column). Here it has been
assumed that sin θ	 > 0, while if sin θ	 < 0, the complementary value 3 − k has to be considered.

Kind Range of Δω	 k

1 or 3 with C̊i(t) ⊃ C	
(−2π,−π) ∪ (0,+π) 1
(−π, 0) ∪ (+π,+2π) 2

2 or 3 with C̊i(t) ⊃ C
(−2π,−π) ∪ (0,+π) 2
(−π, 0) ∪ (+π,+2π) 1

relation |z(x)− zi| > ri. On the contrary, the same map for vortices of kind 2 (or 3 with C ⊂ C̊i)
verifies the opposite condition |z(x) − zi| < ri. By introducing the function g = sin[(Δω −
Δω	)/2], the conditions |z(x)− zi| ≷ ri together with the relation (6.5) lead to the inequalities

(−1)kg ≶ 0, (6.6)

for sin θ	 > 0, or to the opposite ones for sin θ	 < 0. On the basis of the relations (6.6), k is
defined by the sign of g, which in turn follows from the behaviour of the phase difference Δω
inside and outside E. In the case of Figure 6(a), (Δω−Δω	)/2 belongs to intervals (0, π−ϕ/2)
inside and (−π/2 − ϕ/2, 0) outside E: the function g is positive inside and negative outside.
The contrary occurs in the case of Figure 6(b): (Δω − Δω	)/2 belongs to the intervals (−π +
ϕ/2, 0) inside and (0, π/2 + ϕ/2) outside E: g is negative inside and positive outside. The
present discussion can be extended to cover the more general case in which the half straight
lines departing from x±io have other intersections with the curve C̃i. Results of such analysis
are summarized in Table 3, in terms of the values of Δω	.

Once the index k has been calculated, the final issue about the inverse map x �→ z (6.2)
concerns it asymptotic behaviour, which can be written in the following form:

z(x) = wk −
akw2

k

x
+O

(
1
x2

)
, (6.7)



G. Riccardi and D. Durante 19

with k being the index measured inside E. For the sake of simplicity and without any loss of
generality, the poles z1 and z2 and the corresponding residues a1 and a2 in the definition (3.1)
of the Schwarz function are hereafter renamed in such a way that z → w1 for x → ∞.

The velocity in x/= −β′ follows from the general form (2.9), via the change of variables
from y ∈ ∂P to ζ ∈ C:

u
(
x, x

)
=

1
2i

{
χP (x)x +

1
2πi

1
x + β′

∫
C
dζ

(
αζ2 − 2βζ + γ

)
Φ(ζ)(

ζ −w1
)(
ζ −w2

)[
ζ − z(x)

][
ζ − z	(x)

]
}
, (6.8)

with z	(x) being ζ	[z(x)]. Fixing a point x as different from x1 or x2, the velocity contribution
u[z] of the corresponding inverse point z(x), if it lies inside C, follows as

u[z](x) = − σ
2i
Φ[z(x)], (6.9)

which is evaluated by inserting the inverse value z(x) (6.2) inside the definition (3.1) of
the Schwarz function Φ. On the contrary, if z	(x) lies inside C, an analogous contribution
is produced with z	 replacing z. Moreover, the velocity contribution of a pole zm (m = 1, 2),
if it lies inside C, has the form of a point vortex/source singularity:

u
[
zm
]
(x) =

σam
2i

{
1

z − zm
+

1(
zm −w1

)(
zm −w2

)
[(

zm − z	m
)
−
(
z	m −w1

)(
z	m −w2

)
z − z	m

]}

=
Γm + iμm

2πi
1

x − xm
,

(6.10)

where the (complex) intensity of the point vortex/source is

Γm + iμm = σπam

[
a1

(
w1

zm −w1

)2

+ a2

(
w2

zm −w2

)2]
. (6.11)

On the point xm (m = 1, 2), that is, z → zm or z → z	m, the pole zm becomes of multiplicity
two. In both cases, the contribution to the velocity (m′ = 3 −m) is as follows:

u
[
zm
](

xm
)
= u

[
z	m
](

xm
)
=
σ

2i

[
am

(
1

zm −w1
+

1
zm −w2

− 1
zm − z	m

)
− am′

zm − zm′

]
. (6.12)

Finally, the contribution of the point wm (m = 1, 2), if it lies inside C, is constant:

u
[
wm

]
(x) ≡ σ

2i
Φ
(
wm

)
. (6.13)
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On the point x = −β′, which corresponds to z → ∞ and z	 = β/α, the following form of the
velocity is obtained:

u
(
− β′

)
=

1
2i

[
χP (x)x +

1
2πi

1
α

∫
C
dζ

(
αζ2 − 2βζ + γ

)
Φ(ζ)(

ζ −w1
)(
ζ −w2

)(
ζ − ζ	∞

)
]
. (6.14)

Also in this case the contribution of a pole wm (m = 1, 2) assumes the previous form (6.13),
while the one of the pole ζ	∞ is −σΦ(ζ	∞)/(2i), according to the formula (6.9) in z	(x). In the
next section, the velocity is explicitly built for each kind of vortices and comparisons with
suitable simple vortices are carried out in order to explain the dependence of velocity and
streamfunction on the vortex shape.

7. Analysis of the velocity field

In the present section, the velocity and streamfunction fields for the six classes of vortices
introduced before (see in particular Section 5) are built, by accounting for the different
contributions evaluated in the previous section and the orientation of the vortex boundary
established in Section 4. All the fields, with the only exception of the external velocity field
for the vortices of kind (2, 1), involve the inverse map x �→ z which has been analyzed in the
previous section. It is also found that vortices of kinds (3, 1), (3, 2) have the same analytical
structure of the velocity of the ones of kinds (2, 1), (2, 2), respectively.

7.1. Vortices of kind (1, 1)

Our analysis starts from vortices of kind (1, 1), which have the pole z1 inside C, while z2 lies
outside: as a consequence w1 lies outside C and w2 inside C	. The velocity in a point x of the
physical plane is the following one:

u(x) =
χP (x)

2i
{

x −Φ
[
z(x)

]}
− 1

2i
{
Φ
[
z	(x)

]
−Φ

(
w2

)}
+
Γ1 + iμ1

2πi
1

x − x1
, (7.1)

the behaviour of which in neighbourhoods of the point x1, of the closed curves ∂P and C̃i(t),
as well as at infinity must be discussed. First of all, it is worth noticing that the field is regular
in a neighbourhood of x1: the singular behaviour of 1/(x − x1) for x → x1 is corrected by
Φ[z(x)] when z1 ∈ Ao (x1 ∈ P̊), or by Φ[z	(x)] when z1 ∈ Ai (x1 ∈ P̊) or z1 ∈ C̊	 (x1

external to the vortex); see (6.10). The continuity across the vortex boundary is enforced by
the definition of the Schwarz function: it implies that χP (x) {x −Φ[z(x)]} → 0 for x going to
any point on ∂P from the inside of the vortex, while that term vanishes outside P , due to the
presence of the characteristic function of the vortex χP (x).

Another issue concerns the continuity of the velocity (7.1) across the closed curve
C̃i(t), which lies entirely inside the vortex in the present case. Indeed, the Schwarz function
Φ evaluated in z(x) or in z	(x) gives rise to a composite function of x which is discontinuous
across that curve, due to an analogous behaviour of the inverse function z(x). As discussed
in Sections 3 and 6, a point x0 on C̃i(t) (different from the endpoints x	1 and x	2) must be
considered as the superimposition of two points (say x′0 and x′′0) which come through the
map z �→ x from a point z′0 ∈ Ci(t) and from its image ζ	(z′0) = z′′0. With these points on
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Ci(t) being different, the limit value of z(x) in a point x0 ∈ C̃i(t) from one side of that curve
(x → x′0) or from the other side (x → x′′0) is also different. The continuity of the velocity (7.1)
is proved by noticing that the sum of the Schwarz functions calculated on both points z(x)
(z′0 in the above discussion) and z	(x) (that is (z′′0)) is in fact present into the velocity for any
x ∈ P̊ and that sum results to be continuous across C̃i(t).

Finally, the field (7.1) has the right behaviour at infinity. Indeed, the inverse function
z(x) goes to w1 (and then z	(x) → w2) when x → ∞, as a consequence:

Φ
[
z	(x)

]
−Φ

(
w2

)
=

b12 + b22

x
+O

(
1
x2

)
, (7.2)

where the coefficients bpq := apaqw2
q/(zp − wq)

2 for p, q = 1, 2 have been introduced (notice

that b11 and b22 are real and positive, so that b11 = b11 and b22 = b22, moreover b12 = b21). By
inserting the above asymptotic expansion inside the one for the velocity (7.1), one obtains

u(x) =
b11 − b22

2ix
+O

(
1
x2

)
, (7.3)

in which it is worth noticing that the area of the vortex is given in the present case by the
following relation:

|P | = 1
2

Im
(∫

P

dxΦ
)

= π
(
b11 − b22

)
. (7.4)

Once the above value of the area is accounted for, the asymptotic expansion (7.3) becomes
the expected one: u(x)∼ |P |/(2πix).

On the basis of the velocity (7.1), the streamfunction which behaves as −|P |G(x) for
x → ∞ is now evaluated. To this aim, the velocity is rewritten in the following form:

u(x) −
χP (x)

2i
x

=
1
2i

[(
a1

z1 −w1
− a2

z2 −w2
+

a2

z2 − ζ	∞

)
+

a1χP ′(x)
z(x) − z1

−
a2χP (x)
z(x) − z2

− δ
2

α2

a2(
z2 − ζ	∞

)2

1
z(x) − z	2

]

(7.5)

in which only the inverse function z(x) appears. Notice that the right-hand side of the above
equation is an analytic function of z in its domain of definition (being z = z(x), it is an analytic
function of x, too) called v(z) hereafter. As a consequence, a complex potential P[z(x)] (the
imaginary part of which is just the streamfunction ψ) exists and is defined by the differential
relation

v =
dP
dx

=
P′

x′
, (7.6)
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in which apices indicate derivatives in z. In this way, the complex potential is calculated via
an integration of the equation P′ = x′v, which gives in any point x external to the vortex
(dependences on x are omitted, for the sake of simplicity) the streamfunction:

ψ =
|P |
2π

log
∣∣z −w1

∣∣ − b11

2
log

∣∣z − z1
∣∣ + b22

2
log

∣∣z − z	2
∣∣

+
1
2

Re

{
b12 log

z −w2

z − z1
− b21 log

z −w2

z − z	2
+
[
Φ
(
w2

)
−Φ

(
w1

)] a2w2
2

z −w2

}
.

(7.7)

The points z1, z	2, and w2 lie inside the unit circle, so that the branches which are
discontinuous on the segments joining z1 with w2 and w2 with z	2 must be chosen for the
first and the second complex logarithms, respectively. Moreover, by taking into account the
asymptotic expansion of the inverse function z(x) (6.7), one can observe that the modulus
|z−w1| behaves as 1/x for growing x: as a consequence, ψ (7.7) has the right behaviour, that is,
−|P |G(x), for x going to the infinity. In any point x belonging to the vortex the streamfunction
has the form

ψ = −x
2

4
− b22

2
log

∣∣z −w1
∣∣∣∣z −w2|∣∣z − z2
∣∣∣∣z − z	2

∣∣ +
1
2

Re

[
b21 log

(
z − z2

)(
z − z	2

)
(
z −w1

)(
z −w2

) +Φ
(
w1

)
x

]
+ const.,

(7.8)

with the constant being evaluated by calculating in a point of the vortex boundary the
external streamfunction (7.7). In (7.8), the points z2, w1 are external to C, while the ones w2,
z	2 are internal to C	. This fact enables us to adopt the branch which is discontinuous on the
straight segment joining w2 with z	2 for the logarithm log[(z −w2)/(z − z	2], while the branch
to be used for log[(z−w1)/(z−z2)] depends on the positions of the points w1, z2 with respect
to C: if the segment joining w1 with z2 intersects C, the branch which is continuous on that
segment is used. On the contrary, the branch which is discontinuous on the same segment
must be employed.

The streamlines for the vortex of kind (1, 1) in Figure 3(c) are drawn in Figure 7(a).
From that figure, it appears rather hard to investigate the dependence of ψ (and then of u)
on the shape of the vortex, mainly for the presence of the prevailing isotropic component of
such field, responsible for the isotropic behaviour ψ ∼ − |P |/(2π) logx at infinity. In order
to overcome this intrinsic difficulty, a Rankine vortex of unitary vorticity with center on the
center of vorticity of P and area |P | is considered: the induced streamfunction and velocity are
indicated with ψR and uR, respectively. In Figures 7(b) and 7(c), the circular boundary of such
an equivalent vortex PR is drawn with green dashed lines. Now, the differences ψ − ψR =: ψ̃,
u−uR =: ũ are much more meaningful than the fields ψ, u, with the dependence on the vortex
shape of such quantities being easily identified, due to the linear behaviour with respect to
the vorticity of Biot-Savàrt’s law. The streamfunction ψ̃, as well as the differential velocity ũ,
can be interpreted as generated by a vortex having only two levels of vorticity: +1 in the parts
of P that are external to Rankine’s vortex (P ′R ∩ P) and −1 in the regions of the equivalent
vortex outside P (P ′ ∩ PR), while it vanishes in the central region of the vortex (PR ∩ P) and
outside P . For the present vortex, the isolines of ψ̃ as well as the vectors ũ on a finite set of
points (Figures 7(b) and 7(c)) exhibit a four-lobed structure of both fields, more evident in
the streamfunction rather than in the velocity. Two intense regions are located near the tip of
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Figure 7: (a), (d) The streamlines (blue lines, (a) Δψ = 0.1 and (d) 0.2) are drawn for the vortices in Figures
3(c) and 3(f), respectively. (b), (c), (e), (f) The boundaries of the vortices are drawn with thick red lines,
while the ones of the equivalent Rankine vortices with green dashed lines. The differential streamlines and
velocities (with a scale factor of 3) are shown in (b) (Δψ = 0.01), (e) (0.04), and (c), (f), respectively.

the vortex, generated by two adjacent zones having opposite signs of the vorticity. As a result,
strong ingoing velocities are produced near the tip. From Figure 7(c), it can be also seen that
the velocity ũ vanishes in a rapid way at infinity (ũ∼ 1/x2 for x → ∞).

The above kinematical analysis enables us to investigate the onset of the filamentation
of the vortex boundary in the region near the tip. According to Pullin [16], the filamentation
consists in the ejection of thin streams of vorticity which “may form patterns of ever
increasing complexity and apparently ever decreasing minimum spatial scale as they are
convected and strained by the irrotational flow outside the vortex.” A heuristic explanation
of the filamentation is based on the presence in a neighbourhood of the vortex boundary
of hyperbolic critical points of the velocity which “rapidly distort the vorticity and convect
filaments away from the vortex core.” In the present case, the evaluation of the relative
streamfunction in a corotating frame, obtained by using the diagnostic ellipse approach [17]
and the analytical form of the streamfunction (7.7), (7.8) shows the presence of one hyperbolic
critical point near the tip: as a consequence, the vortex has high probabilities to develop
filaments in that region. Even if different paths to filamentation have been proposed, the
analysis of the time behaviour of the Schwarz function in a neighbourhood of the tip could
offer other interesting interpretations.
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7.2. Vortices of kind (1, 2)

A vortex of kind (1, 2) has both poles (z1 and z2) in the Schwarz function (3.1) outside C, so
that w1 ∈ Ao and w2 ∈ Ai. The velocity is evaluated as

u(x) =
χP (x)

2i
x +

χP ′(x)
2i

Φ
[
z(x)

]
−
Φ
(
w1

)
2i

+
1
2i
{
Φ
[
z	(x)

]
−Φ

(
w2

)}
, (7.9)

the behaviour of which in neighbourhoods of the curves ∂P and C̃i(t), as well as at infinity,
must be investigated. The velocity (7.9) is continuous across ∂P due to the definition of the
Schwarz function of that curve Φ. Indeed, if x → x0 ∈ ∂P from the inside of the vortex,
the sum of the first two terms (the other ones are continuous across ∂P) gives x0/(2i) and
the same limit value is obtained from the outside. By accounting for the property χP (x0) =
χP ′(x0) = 1/2, the above limit agrees also with the value assumed by the sum on the point
x0 ∈ ∂P . About the continuity across C̃i(t), the same explanation which has been given for
the vortices of kind (1, 1) holds also in the present case, with the only difference that C̃i(t) lies
outside the vortex. The behaviour for x → ∞ is evaluated by considering that z(x) → w1

and z	(x) → w2 and by using the asymptotic expansion:

Φ
[
z(x)

]
−Φ

(
w1

)
=
b11 + b21

x
+O

(
1
x2

)
, (7.10)

together with the above one (7.2). It follows that u(x)∼v|P |/(2πix), with the area |P | of the
vortex assuming in the present case the form

|P | = −1
2

Im
(∫

P

dxΦ
)

= π
(
b11 + b12 + b21 + b22

)
, (7.11)

once the clockwise orientation of the vortex boundary has been accounted for.
The streamfunction in any point x outside the vortex follows from the velocity field

(7.9) as

ψ =
|P |
2π

log
(∣∣z −w1

∣∣∣∣z −w2
∣∣) − b11

2
log

(∣∣z − z1
∣∣∣∣z − z	1

∣∣) − b22

2
log

(∣∣z − z2
∣∣∣∣z − z	2

∣∣)

− b12 + b21

4
log

(∣∣z − z1
∣∣∣∣z − z2

∣∣∣∣z − z	1
∣∣∣∣z − z	2

∣∣) + 1
4

Re

[
(b21 − b12

)
log

(
z − z1

)(
z − z	1

)
(
z − z2

)(
z − z	2

)
]
,

(7.12)

where the branches of two complex logarithms must be chosen. The first one is log[(z −
z	1)/(z−z	2)]: it is evaluated by using the branch which is discontinuous on the segment joining
the point z	1 with z	2, lying that segment in C̊	. In order to evaluate the second logarithm, that
is log[(z − z1)/(z − z2)], two cases must be distinguished: if the segment joining the point z1

with z2 intersects the unit circle, the branch which is continuous on that segment must be used
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and viceversa, if the above segment does not intersect C, the branch which is discontinuous
on the same segment must be adopted. The streamfunction in a point x ∈ P̊ is

ψ = −x
2

4
+
b11

2
log

∣∣z −w2
∣∣∣∣z − z	1
∣∣ +

b22

2
log
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∣∣∣∣z − z	2
∣∣ +

b12 + b21

4
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∣∣∣∣z −w2

∣∣∣∣z − z	1
∣∣∣∣z − z	2

∣∣

− 1
2

Re

[
a1w2

1Φ
(
w1

)
z −w1

+
a2w2

2Φ
(
w2

)
z −w2

+
b12 − b21

2
log

(
z − z	1

)(
z −w2

)
(
z − z	2

)(
z −w1

)
]
+ const.,

(7.13)

in which the above constant is calculated by evaluating (7.12) in a point z ∈ C. The complex
logarithm is evaluated by considering that the points z	1, z	2 are internal to C	, while w1 ∈ Ao

and, as a consequence, w2 ∈ Ai. It follows that the branches of the above logarithms to be
used are discontinuous along the segments joining z	1 with z	2 and joining w1 with w2.

The isolines of the streamfunction (7.12), (7.13) for the vortex of Figure 3(f) are drawn
in Figure 7(d), together with the boundary of the vortex itself (red thick line). A certain
anisotropy of such field appears from the figure, but in order to quantify such behaviour
it is more convenient to analyze the differential streamfunction ψ̃, and the isolines are drawn
in Figure 7(e). Four regions in which the differential vorticity holds +1 or −1 can be identified,
while it vanishes in the region PR ∩ P and outside P . As a consequence, two regions of the
vortex boundary experience intense inward velocities, while in other two regions act strong
outward velocities (see Figure 7(f)).

7.3. Vortices of kind (2, 1)

Vortices of kind (2, 1) have both poles inside C: as a consequence, w1 ∈ Di and w2 ∈ Do. The
velocity is given by

u(x) =
χP (x)

2i
{

x −Φ
[
z(x)

]}
+

1
2πi

2∑
m=1

Γm + iμm
x − xm

, (7.14)

in which the singularities in the points x1 and x2 are only apparent, due to the form (6.10)
of the term (Γm + iμm)/(x − xm). About the form of the field (7.14) outside the vortex it is
worth observing that it coincides with the one due to a couple of vortices/sources placed
on the points x1 and x2. With the area |P | of the vortex being given by (7.11), the relation
Γ1 + Γ2 + i(μ1 + μ2) = |P | follows: the total source intensity μ1 + μ2 vanishes (due to the
incompressible nature of the fluid).

The streamfunction in any point x external to the vortex has the form

ψ =
|P |
2π

log
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(7.15)

The first complex logarithm, that is, log[(z − z1)/(z − z2)], is evaluated by using the branch
which is discontinuous on the segment joining z1 with z2 (internal to the unit circle), while
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for the second logarithm, that is, log[(z−z	1)/(z−z	2)], the branch is chosen by considering the
relative positions of the points z	1, z	2 with respect to the invariant circle Ci(t). For example, if
the segment joining the point z	1 with z	2 intersects Ci(t), the branch which is continuous on
that segment must be used. Inside the vortex the streamfunction holds:

ψ = −x
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+
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2
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where the constant is evaluated as above. The complex logarithms log[(z−w1)/(z−w2)] and
log[(z − z	1)/(z − z	2)] are evaluated by using suitable branches which depend on the relative
positions of the points w1, w2 and z	1, z	2 with respect to the unit circle. For example, if the
segment joining w1 with w2 intersects C, the branch which is continuous on that segment is
used.

The isolines of the streamfunction (7.15), (7.16) are drawn in Figure 8(a): they exhibit a
high level of isotropy, at least qualitatively. This is due to the small amount of circulation with
respect to the total one which characterizes the vortex tip and it still suggests the analysis of
the above differential fields. Indeed, the differential streamfunction ψ̃, the isolines of which
being drawn in Figure 8(b), enables a more quantitative analysis: an intense region generated
by a differential vorticity level +1 appears in correspondence with the tip on the vortex
boundary, while other regions are much less intense and then they can be discarded in a first
analysis. As a consequence, intense outward and inward velocities appear before and after
the tip (see Figure 8(c)), while the remaining vortex boundary appears to be quasistationary.

7.4. Vortices of kind (2, 2)

Vortices of kind (2, 2) have z1 external to the unit circle and z2 ∈ C̊, as a consequence w1 ∈ C̊
and w2 lies outside the image circle C	. The velocity assumes the following form:

u(x) =
χP (x)

2i
x +

χP ′(x)
2i

Φ[z(x)] − Φ(w1)
2i

+
Γ2 + iμ2

2πi
1

x − x2
. (7.17)

the behaviour of which in neighbourhoods of the point x2 and of the vortex boundary ∂P
needs to be discussed. The apparent singularity x2 lies outside the vortex and, as before, it is
compensated by the term Φ[z(x)]. Moreover, if x → x0 ∈ ∂P from the inside of the vortex,
the sum of the first two terms goes to x0/(2i), while if x → x0 from the outside, the term with
the Schwarz function goes to the same limit and the first one vanishes. That limit agrees also
with the value of the sum on the vortex boundary due to the property of the characteristic
functions: χP (x0) = χP ′(x0) = 1/2 for x0 ∈ ∂P . The behaviour of the velocity (7.17) at infinity
is the right one: u(x)∼ |P |/(2πix) and it follows from the asymptotic expansion (7.10) of
Φ[z(x)], by accounting for that the area of the vortex is still given by (7.4).
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Figure 8: As in Figure 7, but for the vortices of Figures 4(c) and 4(f). The steps between two streamlines
are (a) 0.5, (c) 0.1, and (b), (d) 0.04, while the scale factor in drawing the differential velocities ũ is 4.

The streamfunction in any point x external to the vortex is given by
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(7.18)

The branches used for the complex logarithms log[(z−z	2)/(z−w2)] and log[(z−w2)/(z−z1)]
depend on the positions of the points z	2, w2 and w2, z1 with respect to the unit circle. For
example, if the straight segment joining z	2 with w2 intersects C, then the branch which is
continuous on that segment is used. In any point x ∈ P̊ the streamfunction is given by the
following formula:

ψ = −x
2

4
+
b22

2
log

∣∣z − z2
∣∣∣∣z − z	2

∣∣∣∣z −w1
∣∣∣∣z −w2

∣∣ +
1
2

Re

[
b21 log

(
z − z2

)(
z − z	2

)
(
z −w1

)(
z −w2

) +Φ
(
w1

)
x

]
+ const.,

(7.19)
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Figure 9: As in Figure 7, but for the vortices in Figures 5(c) and 5(f). The jumps between two consecutive
streamlines are (a) 0.2, (b) 0.01, (d) 0.5, and (e) 0.02. The scale factors in drawing the differential velocities
are (c) 5 and (f) 8.

with the constant being evaluated as described before. The first complex logarithm, that is,
log[[z − z2)/(z − w1)], is calculated by using the branch which is discontinuous along the
segment joining z2 with w1 (internal to the unit circle), while the branch employed for the
second logarithm, that is, log[(z− z	2)/(z−w2)], depends on the positions of the points z	2, w2

with respect to the invariant circle Ci(t).
The isolines of the streamfunction (7.18), (7.19) are drawn in Figure 8(d): a cer-

tain anisotropy appears that becomes strongly evident in the differential streamlines of
Figure 8(e). Also in this case a four-lobed structure of the field appears with a very intense
region generated by a negative level of vorticity −1 near the center of vorticity. The central
region is predominant on the other ones: indeed, if this picture is reread in velocity
(Figure 8(f)), a strong differential clockwise velocity is found near the center of vorticity.
Two less intense regions generated by counterclockwise differential vorticity are identified
on both tips, leading to a very complicated distribution of normal velocities on the vortex
boundary. The analysis of a relative streamfunction in a suitable rotating frame shows the
presence of two hyperbolic critical points near both tips of the vortex, just outside the vortex.
As it is shown by Figure 8(f), the normal differential velocities are oriented inward on the
left tip and outward on the right one, so that filamentation could occur in the region near the
right tip only.
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7.5. Vortices of kinds (3, 1) and (3, 2)

Vortices of kind (3, 1) have both poles z1 and z2 inside C, so that w1 ∈ Di and w2 ∈ Do.
The velocity assumes a form identical to the one of (7.14), which holds for vortices of kind
(2, 1). Finally, for vortices of kind (3, 2) the pole z1 lies outside C, while z2 is internal to the
same curve. As a consequence w1 ∈ C̊ and w2 ∈ C̊	 and the form assumed by the velocity is
identical to the one of (7.17) which holds for vortices of kind (2, 2).

The streamfunction induced by the vortex in Figure 5(c) is shown in Figure 9(a),
where its isolines are drawn, together with the vortex boundary (red thick line). The
streamfunction appears to be quasi-isotropic, due to the small amount of circulation, with
respect to the circulation of the vortex itself, which is contained into the vortex tip. This
suggest to investigate the differential streamfunction, the isolines of which are drawn in
Figure 9(b), together with the boundaries of the vortex (red thick line) and of the equivalent
Rankine vortex (green dashed line). From that figure, the role of the tip is clarified: it
induces an intense differential streamfunction and corresponding counterclockwise velocities
(see Figure 9(c)), while two regions before and after the tip are characterized by clockwise
velocities. As a consequence, strong outward and inward normal velocities are experienced
by the vortex boundary before and after the tip.

The streamfunction for the sample of vortex of kind (3, 2) which is shown in
Figure 5(f) is investigated in Figure 9(d). The isolines are quasi-isotropic, while the ones of
the differential streamfunction ψ̃ (see Figure 9(e)) exhibit a strong region near the vortex tip,
which generate intense clockwise velocities (Figure 9(f)). As a consequence, strong inward
normal velocities appear before the tip, while outward velocities are generated just on the tip.
The other part of the vortex boundary appears to be quasistationary, unless small tangential
velocities in counterclockwise direction on the right and on the left of the tip, while clockwise
velocities are experienced by the region of the boundary which is opposite to the tip.

8. Concluding remarks and perspectives

The present paper consists in a first application of the relation (2.9) to the study of the
dependence of the self-induced velocity on the shape of the vortex. Although this shape is
described in terms of only three complex parameters (a2/a1, z1 and z2), the corresponding
family of vortices appears to be very rich and of great interest. In particular, vortices of shapes
very far from the circular one can be obtained, the self-induced streamfunction and velocity
of which being analytically calculated, without any approximation.

A classification of all the vortices having the Schwarz function with two simple poles
is proposed, by stressing the different ways in which the inverse map x �→ z is built
and their consequences on the self-induced streamfunction and velocity fields. Six kinds of
vortices have been identified, on the basis of the relative positions of the circles C and C	
and of the global behaviour of the map z �→ x. The velocity in a point x is found to be a
linear combination of Schwarz functions evaluated in z(x) and in ζ	[z(x)] and of pointwise
source/vortex singularities, together with the contribution of the solid body rotation x inside
the vortex. Depending on the kind of the vortex, as well as on the fact that x lies inside or
outside the vortex, one or more of the above terms disappear. Vortices having only Schwarz
function contributes are found (kind (1, 2), see Section 7.2), as well as vortices the external
velocity of which is due only to two pointwise source/vortex singularities (kind (2, 1), see
Section 7.3). Tools to build inverse map x �→ x, streamfunction, and velocity for the vortices
here analyzed are available on the website http://www.meccanicadeifluidi.it/. Numerical
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tools (using the contour dynamics approach) for a comparison with the present analytical
results may be also found.

The qualitative understanding of the analytical streamlines and velocities is strongly
simplified by introducing the differential fields ψ̃, ũ which assume the equivalent Rankine
vortex PR as the reference one. These fields are viewed as induced by the regions P ′R ∩ P and
P ′∩PR, where the vorticity holds +1 and −1, respectively. The remaining part of the plane does
not contribute. In a lot of vortices, a qualitative inspection to the differential fields enables us
to estimate normal velocities on the vortex boundaries, which is the first step to understand
their small-time dynamics.

As briefly discussed in Section 1, the final aim of such an analysis lies in representing
the vortex motion by following the time evolution of the corresponding Schwarz function. At
the present time, the forms (7.1), (7.9), (7.14), and (7.17) of the velocity have been used in the
right-hand side of (1.4), which becomes a sum of rational functions of z. Several important
issues can be now addressed. First of all, does a vortex among the ones here analyzed that
retains in time the structure of its Schwarz function exist? In other words, does the left-hand
side of (1.4) have the same algebraic structure of the right one? If this is the case, the evolution
equations for poles and residues can be easily deduced. Moreover, why the two sides have
different poles? Were new singularities born at the initial time? and so on. In the opinion of
the authors, some of the above questions could find their answers in the near future.

Appendices

A. Some properties of the map z �→ ζ	

The function (3.5), known in literature as Möbius map, plays a crucial role in the present
analysis. Fixing an arbitrary point x0 in the physical plane, this point maps the corresponding
inverse point z = z(x0) in a new one, that is ζ = ζ	[z(x0)], on which the function z �→ x (3.2)
still assumes the value x0.

The most important property is that the inverse of the map ζ	(z) coincides with the
map itself:

ζ	
[
ζ	(z)

]
≡ z, (A.1)

so that the function ζ	(z) is a self-inverse one. A picture of the global behaviour of the map
ζ	(z) is obtained by rewriting it in the more general form:

ζ	(z) = a +
b

z − c
(A.2)

(here a = c = β/α and b = (β2 − αγ)/α2 /= 0). As it is well known, the form (A.2) is relevant,
showing that ζ	 maps a circle C(rc | zc) of radius rc and center on zc in another circle when
the function (A.2) remains bounded, that is, c does not belong on C(rc | zc).

First of all, it is proved that a redefinition of the coefficients b and c enables us to
reduce the mapping of any circle to the one of the unit circle C. Indeed, consider the circle
having center on the point zc and radius rc, a point z of which is written as z = zc + rcz′ for
z′ ∈ C. It follows that the function ζ	[z(z′)] can be rewritten as ζ	(z′), that is, in the form
(A.2), by changing its coefficients b and c in b′ = b/rc and c′ = (c − zc)/rc, respectively. For
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this reason, it is sufficient to prove that the function (A.2) transforms the unit circle in another
one, for |c| = c /= 1. This property is verified through the search for a point ζc (the center of the
transformed circle) and a positive constant ρc (its radius) such that the following equation
(where the constant d stays for c − b/(a − ζc)):

ρ2
c ≡

[
ζ	(z) − ζc

][
ζ
	
(z) − ζc

]
=
(
a − ζc

)(
a − ζc −

b
c

) (z − d)
(
z − 1/d

)
(z − c)

(
z − 1/c

) , (A.3)

holds identically for any z ∈ C. In order to reach the independence of z of the third side, d = c
or d = 1/c must be assumed. But the first choice implies b = 0, so that only the second one
is really possible, leading to the following specification of the center and of the radius of the
transformed circle ζ	(C):

ζc = a +
bc

1 − c2
, ρc =

|b|∣∣1 − c2
∣∣ . (A.4)

In order to specify the above relation for the function (3.5), its values on the origin
(ζ	0 = γ/β) and at infinity (ζ	∞ = β/α) are introduced, the coefficients b and c are changed
in b/rc and c/rc, and the relations between a, b, and c and the constants α, β, and γ (3.3)
are used. A circle C(rc | 0) of radius rc /= r	 = ζ	∞ = β/α and center on the origin zc = 0 of
the z-plane is mapped by the function ζ	(z) (3.5) in another circle having center ζc(rc) on the
point:

ζc(rc) = ζ
	
0 +

r2
c

r	2 − r2
c

(
ζ	0 − ζ	∞

)
= ζ	∞ +

r	2

r2
c − r	2

(
ζ	∞ − ζ	0

)
, (A.5)

the second side of which shows that this center moves from ζ	0 to the infinity along the
direction ζ	0 − ζ	∞ for rc growing from 0 to the critical value r	. From the third side it follows
that the center moves from the infinity to the point ζ	∞ along the direction ζ	∞ − ζ	0 when rc
runs from r	 to +∞. this way, the center results to be external to the line joining the points ζ	0
and ζ	∞ for any rc. The radius of the image circle is given by

ρc
(
rc
)
=

r	rc∣∣r	2 − r2
c

∣∣
∣∣ζ	0 − ζ	∞∣∣, (A.6)

which results to be greater than the distance from the center and the point ζ	0 for rc < r	 and
from the center and the point ζ	∞ for rc > r	: all the circles cut the segment joining ζ	0 with ζ	∞.
Moreover, two circles ζ	[C(rc1 | 0)] and ζ	[C(rc2 | 0)] do not intersect if rc1 /= rc2.

In what curve the function (A.2) maps the unit circle for c = 1? By assuming c =
exp(iτ) and z = exp(iθ) in the definition (A.2) one obtains

ζ	[exp(iθ)] = a − bc
2
− i

bc
2

cot g
θ − τ

2
, (A.7)
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from which it appears that the circle is transformed in a straight line. By introducing the
constants α, β, and γ (3.3) inside a, b, and c, the above relation implies that the circle C(r	 | 0)
having the critical radius r	 is transformed by the function (3.5) in the straight line:

ζ	
[
r	 exp(iθ)

]
=

1
2
(
ζ	0 + ζ

	
∞
)
− i

2
(
ζ	∞ − ζ	0

)
cot g

θ +ω
2

. (A.8)

The line (A.8) is orthogonal to the segment joining ζ	0 with ζ	∞ and it cuts that segment in its
middle point (ζ	0 + ζ

	
∞)/2.

B. Position of the circle C	 with respect to C

In the present section, the relative position of the two circles C and C	 is investigated, by
showing that it depends on the constants α, β, and γ and on the phase difference ν = ω − χ.
For the sake of clearness, some issues about the position of the center ζc(1) and of the radius
ρc(1) (3.6) of the transformed circle C	 need to be preliminarily discussed. An important
information about ζc(1) concerns if it lies (|ζc(1)| < 1) or not (|ζc(1)| > 1) in C̊. By accounting
for that |ζc(1)| = βR/|β2−α2|, the modulus |ζc(1)| holds 1 for β = βl(α, γ | ν) or for β = βu(α, γ |
ν) with

βl =
1
2

(√
R2 + 4α2 − R

)
< α, βu =

1
2

(√
R2 + 4α2 + R

)
> α. (B.1)

In terms of the above quantities, |ζc(1)| results to be larger than 1 for βl < β < βu and smaller
for β < βl or β > βu. About ρc(1), it is larger than 1 for β < α < γ and smaller for α > β, γ .

Our analysis of the relative positions between the two circles C and C	 starts by
searching the conditions in which C	 lies inside C. As stated above, it is needed that β < βl or
β > βu, so that |ζc(1)| < 1. In this hypothesis on β, the inequality 1− |ζc(1)| > ρc(1) leads to the
relation

(
α2 − β2)(α2 − γ2) > 2β

∣∣α2 − β2∣∣R, (B.2)

that is satisfied via the constraint (3.8) for α > β, γ or for α < β < γ , but it can be shown that
the second case cannot be verified. It follows that C	 ⊂ C̊ when α > β, γ and β < βl: the vortex
is said to be of kind 1. Instead, the image circle C	 is external and not including the unit circle
C if α > β, γ and β > βl or if α < β, γ and β < βu, the condition |ζc(1)| − 1 > ρc(1) leading also
in this case to the inequality (B.2) and |ζc(1)| > 1 implying βl < β < βu. However, it can be
shown that the first case (α > β, γ) cannot be verified. It follows that C	 is external and not
including C for α < β, γ and β < βu: in this case the vortex is said to be of kind 3. Finally, the
conditions to have the image circle C	 including the unit one C are deduced by solving the
inequality ρc(1) > 1 + |ζc(1)|, which can be rewritten as

(
α2 − β2)(γ2 − α2) > 2β

∣∣α2 − β2∣∣R. (B.3)

It is satisfied for β < α < γ by using the condition (3.8). The same condition inhibits the other
possible solution γ < α < β, because α and γ cannot be both smaller than β. It follows that C	
is external and including C for β < α < γ : in this case the vortex is said to be of kind 2.
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C. Global behaviour of the map z �→ ζ	

As summarized in Appendix A, the global behaviour of the map z �→ ζ	 is easily understood
by considering its action on a circle C(rc | 0) with center on the origin and growing radius
and by accounting for that the image of such a circle is still a circle with center in ζc(rc) (A.5)
and radius ρc(rc) (A.6). For rc growing from 0 to the critical value r	 = β/α, ζc moves along
the straight line passing through the points ζ	0 and ζ	∞, r∞0 say, in direction ζ	0 − ζ	∞ from ζ	0
(rc = 0) to the infinity (rc → r	). At the same time, ρc grows from 0 (rc = 0) to infinity
(rc → r	). Indeed, the circle C(r	 | 0) is mapped by the function z �→ ζ	 in a straight line
which is orthogonal to r∞0 and cuts the segment joining ζ	0 with ζ	∞ in its middle point. When
rc grows above r	, the curve ζ	[C(rc | 0)] becomes still a circle: ζc moves on r∞0 always in
direction ζ	0 − ζ	∞ from the infinity (rc → r	) to ζ	∞ (rc → ∞), while ρc decreases from the
infinity (rc → r	) to 0 (rc → ∞). The behaviour of the map z �→ ζ	 is now specified on the
basis of the classification with respect to the first property.

A vortex of kind 1 has r	 < 1 (see Table 1) and its corresponding set A does not fill
the whole C̊. The image of each circle C(rc | 0) with rc < 1 goes outside C	 through the
map z �→ ζ	, even if its position is still not known with respect to A. It can be deduced as
follows. With the circle C	 lying inside the unitary one, select an arbitrary radius rc (in case,
it approaches the unity from below) such that C(rc | 0) ⊂ A. The image of C(rc | 0) through
the map z �→ ζ	 cannot lie outside C, because for rc → 1− it goes on C	 ⊂ C̊. Moreover, it
cannot intersect C (or C	). Indeed, suppose that two intersection points exist. For the map
z �→ ζ	 is self-inverse (see Appendix A) and ζ	(C) = C	, it means that these points come from
two points of the z-plane lying on C	 (or C), which is absurd. As a consequence, the image of
the circle C(rc | 0) still lies in A. It follows that A is mapped onto itself, while C̊	 goes onto
the outside of C. For this reason, a circle C(rc | 0) with rc < 1 and rc /= r	 that intersects C	 is
mapped in a circle which has an arc inside C, the complementary one outside C, and does not
intersect C	. The arc inside C is the image of the arc of C(rc | 0) that lies outside C	, while the
arc lying outside C is the image of the arc inside C	.

Consider now a vortex of kind 2, for which (see Table 1) r	 < 1. The setA = C̊ goes in
that case onto the outside of the circle C	. Indeed, the other possibility (ζ	(A) = C̊	) cannot
occur, because for rc → r	 < 1 the image of C(rc | 0) through the map z �→ ζ	 does not remain
bounded. As a consequence,D is mapped onto itself. Finally, a vortex of kind 3 has r	 > 1 (see
Table 1): its corresponding setA = C̊ goes onto the inside of C	, for the same reason about the
behaviour of z �→ ζ	 in a neighbourhood of the critical radius. Also in this case, D is mapped
onto itself.

D. Invariant circle tangent to C and C	

In the present appendix, the values of the parameter t for invariant circles (3.9) tangent to
both C and C	 are calculated: they are needed in order to define a branch of the inverse map
x �→ z.

D.1. Invariant circle tangent to C

Consider an invariant circle Ci(t) which is also tangent to C. That invariant circle can lie inside
C (I) or outside it, in this latter case Ci(t) can include (II) or not (III) the unit circle. At this
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stage, one does not know which case among the above ones holds. The position zi of its center
and its radius ri satisfy one of the following relations:

∣∣zi(t) − 0
∣∣ =

⎧⎨
⎩
∓
[
ri(t) − 1

]
− : I, + : II,

ri(t) + 1 III.
(D.1)

Due to the form (3.9) of the functions zi and ri, it is convenient to evaluate the quantity

β
2
δ2 = β2(αγ exp(iν)−β2) and then to calculate the square (βδ + βδ)

2
. In this way, by selecting

the branch of δ (square root of αγ − β2) such that βδ + βδ ≥ 0, one obtains

βδ + βδ =
√

2βS, (D.2)

with S being the positive root of δ2 + αγ cos ν − β2. The definition of center and radius (3.9) of
the invariant circle, together with the relation (D.2) are inserted in (D.1), so that the following
equation in the parameter t is obtained:

α2 − β2 + δ2︸ ︷︷ ︸
p

−
√

2βS︸︷︷︸
q

t = ± 2αδ︸︷︷︸
s

√
t2 + 1, (D.3)

where the upper sign holds in the cases I and II and the lower one when Ci(t) is external and
not including C(III). The above equation has the following two real solutions:

−β
(
α2 − β2 + δ2)S ± √2α2δ

√
α2 + γ2 − 2

(
β2 + δ2

)
√

2
(
2α2δ2 − β2S2

) , (D.4)

which are called t1 and t2 (with t2 < t1): as a consequence t must be equal to t1 or to
t2. Moreover, the sign of the quantity α2 − β2 + δ2 −

√
2βSt (D.3) specifies if the circle is

in the conditions I, II (it is positive) or III (negative) and a calculation of ri (if needed)
discriminates between the cases I (ri < 1) or II (ri > 1).

D.2. Invariant circle tangent to C	

Consider now another invariant circle Ci(t) which is also tangent to C	. The same relations
(D.1) hold, with ζc(1) in place of 0 in the left-hand side and ρc(1) in place of 1 in the right
one. As before, the first row holds for Ci inside C	 (sign −, condition I) or outside C	 (sign +,
condition II), while the second row holds for the invariant circle external and not including
C	. By using the forms (3.9), (3.6) of the position of the center and of the radius of the invariant
circle (zi and ri) and of C	 (ζc(1) and ρc(1)), the following equation in t:

α2 − β2 + δ2 −
√

2βSt = ±2
α2 − β2∣∣α2 − β2

∣∣αδ
√
t2 + 1, (D.5)

is obtained. As before, the upper sign holds in the conditions I and II, while the lower one
must be selected in the condition III. Notice that (D.5) is identical to the one (D.3) for vortices
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Figure 10: Functions y = ±s
√
t2 + 1 (red lines), their asymptotes (yellow), and the straight line y = p − qt

(red) versus t, for (a) p = 1.5, q = 0.5 < s = 1 and (b) q = 1 > s = 0.5. In (a) also the tangent lines at

p = ±
√
s2 − q2 are drawn with green lines. Intersection points are marked with blue symbols.

of kind 1 or 2 with respect to the first property (α > β), while its right-hand side has opposite
sign for vortices of kind 3 (α < β).

D.3. Position of Ci(t) with respect to C and C	

At this stage, the following key remark is needed: the circle C	 is the image through the map
z �→ ζ	 of the unit one C, so that if an invariant circle is tangent to C, it must be also tangent
to C	. For this reason, some of the previous possibilities (labeled with I, II, and III) must be
ruled out, once the relative position of C	 with respect to C is known. The invariant circle lies
inside C and includes C	 for vortices of kind 1 with respect to the first property: the right-hand
side of (D.3) is positive. The same holds for vortices of kind 2: Ci lies inside C	 and includes C.
For vortices of kind 3, the signs in the right-hand sides of (D.3), (D.5) are necessarily different,
being (α2 − β2)/|α2 − β2| = −1. In this way, if the invariant circle includes C, it is also external
to C	, or, on the contrary, if it includes C	, it lies also outside C: the tangent Ci cannot include
both circles C and C	 or lie outside them, at the same time.

Another way to understand this behaviour is based on the discussion of (D.3),
rewritten for the sake of shortness as p − qt = ± s(t2 + 1)1/2 with p = α2 − β2 + δ2, q =
2βδ cosμ > 0 and s = 2αδ > 0. It defines the intersection points between the straight
line y = p − qt and the two curves y = ±s(t2 + 1)1/2 in a plane (t, y), as shown in
Figure 10. Two conditions must be considered, as discussed below. If q < s, solutions
exist only for p ≥ (s2 − q2)1/2 (p ≤ −(s2 − q2)1/2): they stay both above (below) the
axis t, so that only the positive (negative) sign holds in the right-hand side of (D.3).
On the contrary, if q ≥ s, the intersection points always exist: one lies on the curve
y = +s(t2 + 1)1/2 and the other one on y = −s(t2 + 1)1/2 (for q = s and p = 0
the values t = ±∞ are obtained). Vortices of kinds 1 and 2 with respect to the first
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property satisfy this condition, having q < s and p ≥ (s2 − q2)1/2. Moreover, from
the latter condition, it follows that the right-hand side of (D.3) must be taken positive, as
shown also above. Vortices of kind 3 can verify the first (q < s) or the second (q ≥ s) of the
above conditions, depending on the positions of the poles z1 and z2 and on the ratio a2/a1 in
the Schwarz function (3.1).

D.4. Choice of the parameter t

The last issue to be discussed concerns the choice of an invariant circle which neither
intersects C nor C	. This choice is based on the values t1 and t2 of the parameter t given in
(D.4), which correspond to invariant circles that are tangent to C and C	, and on the position
of the straight line y = p − qt relative to the curves y = ±s(t2 + 1)1/2.

As discussed before, a vortex of kind 1 with respect to the first property has Ci ⊂ C̊
and C	 ⊂ C̊i, while for a vortex of kind 2 the relations C ⊂ C̊i and Ci ⊂ C̊	 are verified. In both
the above cases, the inequality p − qt > s(t2 + 1)1/2 follows (see Figure 10(a)): it is verified for
any t ∈ (t1, t2) and, in particular, for the mean (t1 + t2)/2, which is the value of the parameter t
adopted in the paper. As a consequence, the branch of the inverse map x �→ z used for vortices
of kind 1 satisfies for any x the inequality |z(x) − zi| > ri, while the branch for vortices of kind
2 verifies the inequality |z(x) − zi| < ri.

Consider now the vortices which are of kind 3 with respect to the first property. If
q < s and p ≥ (s2 − q2)1/2, the roots (D.4) verify (D.3) with the upper sign: both circles Ci(t1),
Ci(t2) include C. Moreover, p − qt > s(t2 + 1)1/2 for any t belonging to the interval (t1, t2), as
shown in Figure 10(a). In the same interval, the inequality |ζi − ζc(1)| > ρi + ρc(1) is verified:
any invariant circle Ci(t), with t ∈ (t1, t2), includes C and does not intersect C	. As before,
the mean value (t1 + t2)/2 of the parameter t is selected and the corresponding branch of
the inverse satisfies the inequality |z(x) − zi| < ri, for any x. If q < s and p ≤ −(s2 − q2)1/2,
the roots (D.4) verify (D.3) with the lower sign: both circles Ci(t1) and Ci(t2) include C	. The
inequality p−qt < −s(t2 + 1)1/2 is also verified for any t ∈ (t1, t2), it follows that |ζi −0| > 1+ ri,
so that each invariant circle Ci does not intersect C. The mean value of the parameters t1
and t2 is still adopted and the corresponding branch of the inverse verifies the inequality
|z(x) − zi| > ri, for any x. Finally, consider the vortices such that q ≥ s, having p − qt1 > 0
and p − qt2 < 0. The invariant circle Ci(t1) includes C, while the other one Ci(t2) includes
C	. Moreover, p − qt > s(t2 + 1)1/2 for any t < t1 and p − qt < −s(t2 + 1)1/2 for any t > t2
(see Figure 10(b)): as a consequence, the inequalities |ζi − ζc(1)| > ρi + ρc(1) for t < t1 and
|zi − 0| > 1 + ri for t > t2 hold. In the first case, (t < t1) Ci(t) includes C and does not intersect
C	, while in the other range of the parameter (t > t2) Ci includes C	 and does not intersect C.
In the paper, the value 2t1 − t2 < t1 of the parameter t is adopted, leading to a branch of the
inverse map which satisfies the inequality |z(x) − zi| < ri, for any x.

E. Some properties of the map z �→ x

In the present appendix, the conditions under which the function x(z) (3.2) maps the points
of a given circle z = z0 + rζ for ζ ∈ C (z0 is the center and r the radius) in points lying on
another circle (with center on x0 and radius R0) are investigated. The map z �→ x has the form

x(z) = a +
b

z − p
+

c
z − q

, (E.1)
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with a, b, c, p, q being complex constants. Conditions among the coefficients b, c, the rescaled
ones pr = p − z0, qr = q − z0 and the radius r (which is assumed different from pr and qr)
have to be specified. As it results from the following analysis, the center x0 and the radius R0

of the image circle will be also defined.
In order to map points of the circle z = z0 + rζ in points on another circle, the quantity

[
x(ζ) − x0

][
x(ζ) − x0

]
= ar

[
x(z0) − x0

] P1(ζ)(
ζ − pr/r

)(
ζ − qr/r

) P2(ζ)(
ζ − r/pr

)(
ζ − r/qr

) (E.2)

must be (positive and) independent of the position ζ. In (E.2), the rescaled coefficient ar is also
used, with ar being defined as a − x0. The functions P1 and P2 are the following polynomials
of second degree in ζ:

P1(ζ) = ζ2 +
1
r

[
b + c

ar
−
(
pr + qr

)]
ζ +

1
r2

(
prqr −

bqr + cpr

ar

)
,

P2(ζ) = ζ2 + r
b + c − ar

(
pr + qr

)
arprqr − bqr − c pr

ζ +
r2ar

arprqr − bqr − c pr

.

(E.3)

The right-hand side of (E.2) results to be independent of ζ if the zeros of the polynomial P1

are in r/pr , r/qr and the ones of the polynomial P2 in pr/r, qr/r. In terms of the quantity
ηr = prqr , these conditions on P1 and P2 lead to the following two relations:

ar = −pr

(
b

r2 − p2
r

+
c

r2 − ηr

)
= −qr

(
b

r2 − ηr
+

c
r2 − q2

r

)
, (E.4)

with the condition P1(r/pr) = 0 giving the same coefficient ar as the one P2(pr/r) = 0, as it
occurs for P1(r/qr) = P2(qr/r) = 0. The last two sides in the above formula give a constraint
on the center z0 (through the quantities pr and qr) and the radius r of the circle in the z-plane.
By conjugating both sides of the following equation in r2:

bqr

r2 − ηr
−

cpr

r2 − ηr
=

bpr

r2 − p2
r

−
cqr

r2 − q2
r

, (E.5)

a linear system in 1/(r2 − ηr) and 1/(r2 − ηr) is obtained, the solution of which implies that
the following complex quantity:

d1q
2
r + d2p

2
r

d1 + d2
, (E.6)

must be real and positive, with d1 = b(p−q)(cpr+bqr) and d2 = c(p−q)(c pr+bqr). Moreover,
the squared radius r2 must also be equal to the above quantity. The quantity (E.6) must be
real and positive, or d1 is not parallel to d2 and pr = qr , or d1 is parallel to d2. The first case is
not possible: it implies r = pr = qr and the corresponding quantity ar (E.4) becomes singular.
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It follows that d1 must be parallel to d2. Hereafter, d′1 and d′2 will indicate the components
of d1 and d2 in direction of their sum d1 + d2. Apices are needed to distinguish d′

k
(k = 1, 2)

by |dk| = dk: actually d′
k

may be +dk or −dk, if the difference between the arguments of dk

and of d1 + d2 vanishes or holds ±π , respectively. Real quantities d′1 and d′2 depend on the
parameters in (E.1) by the relations d′1 = |p−q||bqr + cpr |b′ (with the above convection on the
apex) and d′2 = |p − q||bqr + cpr |c′. Then the radius r must satisfy the relation:

r2 =
d′1q

2
r + d

′
2p

2
r

d′1 + d
′
2

(E.7)

which leads through the forms of ar (E.4) to the position of the center of the image circle:

x0 = a − ar = a +

(
b′ + c′

)2

(
q2
r − p2

r

)(
b2q2

r − c2p2
r

)prqr

(
bqr + cpr

)
, (E.8)

as well as to its radius:

R0 =
[

ar
(

ar −
b
pr

− c
qr

)]1/2

=

∣∣b′ + c′∣∣∣∣b′q2
r + c

′p2
r

∣∣∣∣q2
r − p2

r

∣∣∣∣b2q2
r − c2p2

r

∣∣
∣∣bqr + cpr

∣∣. (E.9)

In the present case, we have to consider the images through the map z �→ x of the
circles of the first family. The center position z0 assumes the value zi(t) (3.9) and pr and qr

become

pr =
w1 −w2

ε2
1 + ε

2
2

ε1
(
ε1 − tε2

)
, qr = −

w1 −w2

ε2
1 + ε

2
2

ε2
(
ε2 + tε1

)
, (E.10)

by using the quantities (6.1). As discussed before, the vectors d1 and d2 must be parallel.
Indeed, a direct computation by using the quantities (E.10) gives

d1 = −
∣∣w1 −w2

∣∣2
w2

1a1ε1ε2t, d2 = −
∣∣w1 −w2

∣∣2
w2

2a2ε1ε2t (E.11)

which shows that d1 and d2 have just the same argument (d′1 = d1, d′2 = d2). The use of (E.10)
and (E.11) into the constraint for r (E.6) leads to the radius r = ri(t) (3.9) of a circle of the
first family (a similar behaviour is found also for each invariant circle of the second family,
having center on the point zio(t) (|t| ≥ 1): equation (E.7) still gives the corresponding radius
r = rio(t) (3.10)) with parameter t. It follows that points on an invariant circle of the first
family goes with the map z �→ x on another circle in the physical plane. By using the real
quantities ε′ = ε1ε2 + ε1ε2, ε′′ = ε2

1 − ε
2
2, it is found that the center of such a circle lies on the

point (E.8):

xi = −β′ −
α2

w1 −w2

(
ε1 − ε2t

)(
ε2 + ε1t

)
(
ε′t − ε′′

)(
ε′′t + ε′

) . (E.12)
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In order to obtain a more useful form of the position of the center, the conjugates ε1 and ε2

are written in terms of the corresponding quantities ε1 and ε2 from the definitions of ε′ and
ε′′, so that the above form of the position of the center becomes

xi(t) =
x+io + x−io

2
+ i

x−io − x+io
4

[
f(t) − 1

f(t)

]
, (E.13)

where the function f has the following form:

f(t) =
ε′t − ε′′
ε′′t + ε′

. (E.14)

Finally, the radius (E.9) of the image circle is written as

Ri(t) =

∣∣x−io − x+io
∣∣

4

[
|f(t)| + 1

|f(t)|

]
. (E.15)
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