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1. Introduction

Let {Xn, n ≥ 1} be a sequence of arbitrary continuous real random variables on the probability
space (Ω,F, P) with the joint density function

fn
(
x1, . . . , xn

)
> 0, n = 1, 2, . . . , (1.1)

where xi ∈ (−∞,∞), 1 ≤ i ≤ n. Let Q be another probability measure on F, and {Xn, n ≥ 1}
is a sequence of independent random variables on the probability space (Ω,F, Q) with the
marginal density functions gk(xk) (1 ≤ k ≤ n), and let

πn

(
x1, . . . , xn

)
=

n∏

k=1

gk
(
xk

)
. (1.2)
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In order to indicate the deviation between {Xn, n ≥ 1} on the probability measure P and
Q, we first introduce the following definitions.

Definition 1.1. Let {Xn, n ≥ 1} be a sequence of random variables with joint distribution (1.1),
and let gk(xk) (k = 1, 2, . . . , n) be defined by (1.2). Let

Zn(ω) =
fn
(
X1, . . . , Xn

)

πn

(
X1, . . . , Xn

) . (1.3)

In statistical terms, Zn(ω) is called the likelihood ratio, which is of fundamental importance in
the theory of testing the statistical hypotheses (cf. [1, page 388]; [2, page 483]).

The random variable

r(ω) = lim sup
n→∞

1
n
lnZn(ω) = −lim inf

n→∞
1
n
ln

[{
n∏

k=1

gk
(
Xk

)
}/

fn
(
X1, . . . , Xn

)
]

(1.4)

is called asymptotic logarithmic likelihood ratio, relative to the product of marginal
distribution of (1.2), of Xn, n ≥ 1, where ln is the natural logarithm, ω is the sample point.
For the sake of brevity, we denote Xk(ω) by Xk.

Although r(ω) is not a proper metric between probability measures, we nevertheless
think of it as a measure of “dissimilarity” between their joint distribution fn(x1, . . . , xn) and
the product πn(x1, . . . , xn) of their marginals.

Obviously, r(ω) = 0, a.s. if and only if {Xn, n ≥ 1} are independent.
A stochastic process of fundamental importance in the theory of testing hypotheses is

the sequence of likelihood ratio. In view of the above discussion of the asymptotic logarithmic
likelihood ratio, it is natural to think of r(ω) as a measure how far (the random deviation of)
Xn is from being independent, how dependent they are. The smaller r(ω) is, the smaller the
deviation is (cf. [3–5]).

In [3], the strong deviation theorems for discrete random variables were discussed by
using the generating function method. Later, the approach of Laplace transform to study
the strong limit theorems was first proposed by Liu [4]. Yang [6] further studied the limit
properties for Markov chains indexed by a homogeneous tree through the analytic technique.
Many comprehensive works may be found in Liu [7]. The purpose of this paper is to establish
a kind of strong deviation theorems represented by inequalities with random bounds for
functions of arbitrary continuous random variables, by combining the analytic technique
with the method of Laplace transform, and to extend the strong deviation theorems to the
differential entropy for arbitrary-dependent continuous information sources in more general
settings.

Definition 1.2. Let {hn(xn), n ≥ 1} be a sequence of nonnegative B orel measurable functions
defined on R, the Laplace transform of random variables hn(Xn) on the probability space
(Ω,F, Q) is defined by

f̃n(s) =
∫∞

−∞
e−shn(xn)gn

(
xn

)
dxn = EQe

−shn(Xn), n = 1, 2, . . . , (1.5)

where EQ denotes the expectation under Q.
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We have the following assumptions in this paper.

(1) Assume that there exists s0 ∈ (0,∞) such that

f̃n(s) < ∞, s ∈ [ − s0, s0
]
, n = 1, 2, . . . . (1.6)

(2) Assume M > 0 is a constant, satisfying

sup
n

EQhn

(
Xn

) ≤ M < ∞. (1.7)

In order to prove our main results, we first give a lemma, and it will be shown that it
plays a central role in the proofs.

Lemma 1.3. Let fn(x1, . . . , xn), gn(x1, . . . , xn) be two probability functions on (Ω,F, P), let

Tn(ω) =
gn

(
X1, . . . , Xn

)

fn
(
X1, . . . , Xn

) , (1.8)

then

lim sup
n→∞

1
n
ln Tn(ω) ≤ 0 a.s. (1.9)

Proof. By [8], {Tn,F, n ≥ 1} is a nonnegative martingale and ETn = 1, we have by the Doob
martingale convergence theorem, there exists an integral random variable T∞(ω), such that
Tn → T∞, a.s. and (1.9) follows.

2. Main results

Theorem 2.1. Let {Xn, n ≥ 1}, Zn(ω), r(ω), f̃n(s) be defined as before, and under the assumptions of
(1) and (2), let

lim sup
n→∞

1
n

n∑

k=1

EQe
s0hk(Xk) = lim sup

n→∞

1
n

n∑

k=1

f̃k
( − s0

)
= M

(
s0
)
< ∞. (2.1)

Then

lim inf
n→∞

1
n

n∑

k=1

[
hk

(
Xk

) − EQhk

(
Xk

)] ≥ −β(r(ω)
)
, a.s. (2.2)

lim sup
n→∞

1
n

n∑

k=1

[
hk

(
Xk

) − EQhk

(
Xk

)] ≤ β
(
r(ω)

)
, a.s. (2.3)

where

β(x) = inf
{
φ(s, x),−s0 < s < 0

}
, x ≥ 0, (2.4)

φ(s, x) = −2e
−2sM

(
s0
)

(
s0 − |s|)2

− x

s
, x ≥ 0, (2.5)

0 ≤ β(x) ≤
√
x
(
1 +

√
x
)

s0

[
2e−2M

(
s0
)
+ 1

]
, lim

x→0+
β(x) = β(0) = 0. (2.6)
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Remark 2.2. Let

α(x) = sup
{
φ(s, x), 0 < s < s0

}
, x ≥ 0, (2.7)

then

α(x) = −β(x). (2.8)

Proof. Let s be an arbitrary real number in (−s0, s0), let

gn
(
s, xn

)
= e−shn(xn)gn

(
xn

)
/f̃n(s), xn ∈ (−∞,∞), n = 1, 2, . . . , (2.9)

then
∫∞
−∞ gn(s, xn)dxn = 1, and let

qn
(
s;x1, . . . , xn

)
=

n∏

k=1

gk
(
s, xk

)
. (2.10)

Therefore, qn(s;x1, . . . , xn) is an n multivariate probability density function, let

tn(s,ω) =
qn
(
s;X1, . . . , Xn

)

fn
(
X1, . . . , Xn

) , n = 1, 2, . . . . (2.11)

By Lemma 1.3, there exists a set A(s) such that P(A(s)) = 1, so we have

lim sup
n→∞

1
n
ln tn(s,ω) ≤ 0, ω ∈ A(s). (2.12)

By (1.3), (2.9), (2.11), and (2.12), we have

lim sup
n→∞

1
n

[

− s
n∑

k=1

hk

(
Xk

) −
n∑

k=1

ln f̃k(s) − lnZn(ω)

]

≤ 0, ω ∈ A(s). (2.13)

Therefore,

r(ω) ≥ 0, ω ∈ A(0). (2.14)

By (2.13) and (1.4), the property of the superior limit

lim sup
n→∞

(
an − bn

) ≤ 0 =⇒ lim sup
n→∞

an ≤ lim sup
n→∞

bn, (2.15)

and the inequality lnx ≤ x − 1 (x > 0), we have

lim sup
n→∞

1
n
(−s)

n∑

k=1

[
hk

(
Xk

) − EQhk

(
Xk

)]

≤ lim sup
n→∞

1
n

n∑

k=1

[
ln f̃k(s) + sEQhk

(
Xk

)]
+ r(ω)

≤ lim sup
n→∞

1
n

n∑

k=1

[
f̃k(s) − 1 + sEQhk

(
Xk

)]
+ r(ω)

= lim sup
n→∞

1
n

n∑

k=1

[
f̃k(s) − 1 − (−s)EQhk

(
Xk

)]
+ r(ω), ω ∈ A(s).

(2.16)
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By the inequality 0 ≤ ex − 1 − x ≤ (1/2)x2e|x|, which can be found in [9], we have

0 ≤ e−shk(Xk) − 1 − (−s)hk(Xk) ≤ (1/2)
(
shk

(
Xk

))2
e|shk(Xk)|. (2.17)

By (2.5) and (2.17), we have

lim sup
n→∞

1
n
(−s)

n∑

k=1

[
hk

(
Xk

) − EQhk

(
Xk

)]

≤ (1/2)s2lim sup
n→∞

1
n

n∑

k=1

EQ

[(
hk

(
Xk

))2
e|s|hk(Xk)

]
+ r(ω), ω ∈ A(s).

(2.18)

It is easy to see that ϕ(x) = txx2 (t > 1) attains its largest value ϕ(−2/ ln t) = 4e−2/(ln t)2

on the interval (−∞, 0], and ϕ(x) = txx2 (0 < t < 1) attains its largest value ϕ(−2/ ln t) =
4e−2/(ln t)2 on the interval [0,∞), we have

sup
{
e(s−s0)hk(Xk)

[
hk

(
Xk

)]2
, k ≥ 1

} ≤ 4e−2
(
s − s0

)2 =
4e−2

(
s0 − s

)2 , 0 < s < s0, (2.19)

sup
{
e(s0+s)(−hk(Xk))

[ − hk

(
Xk

)]2
, k ≥ 1

} ≤ 4e−2
(
s0 + s

)2 , −s0 < s < 0. (2.20)

Let 0 < s < s0 in (2.18), by (2.19) and (2.1), we obtain

(−s)lim inf
n→∞

1
n

n∑

k=1

[
hk

(
Xk

) − EQhk

(
Xk

)]

≤ (1/2)s2lim sup
n→∞

1
n

n∑

k=1

EQ

[(
hk

(
Xk

))2
e|s|hk(Xk)

]
+ r(ω)

= (1/2)s2lim sup
n→∞

1
n

n∑

k=1

EQ

[
es0hk(Xk)e(s−s0)hk(Xk)

(
hk

(
Xk

))2] + r(ω)

≤ 2e−2s2M
(
s0
)

(
s0 − s

)2 + r(ω), ω ∈ A(s).

(2.21)

Dividing the two sides of (2.21) by −s, we obtain

lim inf
n→∞

1
n

n∑

k=1

[
hk

(
Xk

) − EQhk

(
Xk

)] ≥ −2e
−2sM

(
s0
)

(
s0 − s

)2 − r(ω)
s

=̂φ
(
s, r(ω)

)
, 0 < s < s0, ω ∈ A(s) ∩A(0).

(2.22)

By (2.14) and 0 < s < s0, obviously φ(s, r(ω)) ≤ 0, hence α(r(ω)) ≤ 0. Let Q+ be the set of
rational numbers in the interval (0, s0), and let A∗ = ∩s∈Q+A(s), then P(A∗) = 1. By (2.22), then
we have

lim inf
n→∞

1
n

n∑

k=1

[
hk

(
Xk

) − EQhk

(
Xk

)] ≥ φ
(
s, r(ω)

)
, ω ∈ A∗ ∩A(0), ∀s ∈ Q+. (2.23)
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It is easy to see that φ(s, x) is a continuous function with respect to s on the interval
(0, s0). For each ω ∈ A∗ ∩A(0) (0 ≤ r(ω) < ∞), take sn(ω) ∈ Q+, n = 1, 2, . . . , such that

lim
n→∞

φ
(
sn(ω), r(ω)

)
= α

(
r(ω)

)
. (2.24)

By (2.23), (2.24), and (2.8), we have

lim inf
n→∞

1
n

n∑

k=1

[
hk

(
Xk

) − EQhk

(
Xk

)] ≥ −β(r(ω)
)
, ω ∈ A∗ ∩A(0). (2.25)

Since P(A∗ ∩A(0)) = 1, (2.2) follows from (2.25).
Let −s0 < s < 0 in (2.18), by (2.20) and (2.1), we have

lim sup
n→∞

1
n

n∑

k=1

[
hk

(
Xk

) − EQhk

(
Xk

)]

≤ −(1/2)s lim sup
n→∞

1
n

n∑

k=1

EQ

[(
hk

(
Xk

))2
e|s|hk(Xk)

] − r(ω)
s

= −(1/2)s lim sup
n→∞

1
n

n∑

k=1

EQ

[
es0hk(Xk)e(s0+s)(−hk(Xk))

( − hk

(
Xk

))2] − r(ω)
s

≤ −2e
−2sM

(
s0
)

(
s0 + s

)2 − r(ω)
s

=̂φ
(
s, r(ω)

)
, −s0 < s < 0, ω ∈ A(s) ∩A(0).

(2.26)

By (2.14) and −s0 < s < 0, obviously φ(s, r(ω)) ≥ 0, hence β(r(ω)) ≥ 0. Let Q− be the set of
rational numbers in the interval (−s0, 0), and letA∗ = ∩s∈Q−A(s), then P(A∗) = 1. Then we have
by (2.26)

lim sup
n→∞

1
n

n∑

k=1

[
hk

(
Xk

) − EQhk

(
Xk

)] ≤ φ
(
s, r(ω)

)
, ω ∈ A∗ ∩A(0), ∀s ∈ Q−. (2.27)

It is clear that φ(s, x) is a continuous function with respect to s on the interval (−s0, 0). For each
ω ∈ A∗ ∩A(0) (0 ≤ r(ω) < ∞), take λn(ω) ∈ Q−, n = 1, 2, . . . , such that

lim
n→∞

φ
(
λn(ω), r(ω)

)
= β

(
r(ω)

)
. (2.28)

By (2.27) and (2.28), we have

lim sup
n→∞

1
n

n∑

k=1

[
hk

(
Xk

) − EQhk

(
Xk

)] ≤ β
(
r(ω)

)
, ω ∈ A∗ ∩A(0). (2.29)

Since P(A∗ ∩A(0)) = 1, (2.3) follows from (2.29).
By (2.4), (2.5), and (2.14), if x > 0, we have

0 ≤ β(x) ≤ φ

(

− s0
√
x

1 +
√
x
, x

)

=
√
x
(
1 +

√
x
)

s0

[
2e−2M

(
s0
)
+ 1

]
. (2.30)

If x = 0, we have

β(0) ≤ φ
( − n−1, 0

)
=

2e−2M
(
s0
)

n
(
s0 − n−1)2

, n ≥ 1. (2.31)

Noticing that β(x) ≥ 0, (x ≥ 0), (2.6) follows from (2.30) and (2.31).
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Corollary 2.3. If P = Q, or {Xn, n ≥ 1} is a sequence of independent random variables, and under the
assumptions of (1) and (2), then

lim
n→∞

1
n

n∑

k=1

[
hk

(
Xk

) − Ehk

(
Xk

)]
= 0 a.s. (2.32)

Proof. In this case, fn(x1, . . . , xn) =
∏n

k=1gk(xk), and r(ω) = 0 a.s. Hence, (2.32) follows directly
from (2.2) and (2.3).

3. An extension of the Shannon-McMillan theorem

In order to understand better, we first introduce some definitions in information theory in this
section.

Let {Xn, n ≥ 1} be a sequence produced by an arbitrary continuous information source
on the probability space (Ω,F, P) with the joint density function

fn
(
x1, . . . , xn

)
> 0, xk ∈ (−∞,∞), 1 ≤ k ≤ n, n = 1, 2, . . . . (3.1)

For the sake of brevity, we denote fn > 0, and Xk stands for Xk(ω). Let

pn(ω) = −(1/n) ln fn
(
X1, . . . , Xn

)
, (3.2)

where ω is the sample point, pn(ω) is called the sample entropy or the entropy density of
{Xk, 1 ≤ k ≤ n}. Also let Q be another probability measure on F with the density function

qn
(
x1, . . . , xn

)
> 0, xk ∈ (−∞,∞), 1 ≤ k ≤ n, n = 1, 2, . . . . (3.3)

Let

Ln(ω) = ln
[
fn
(
X1, . . . , Xn

)
/qn

(
X1, . . . , Xn

)]
,

L(ω) = lim sup
n→∞

(1/n)Ln(ω)

= −lim inf
n→∞

(1/n) ln
[
qn
(
X1, . . . , Xn

)
/fn

(
X1, . . . , Xn

)]
,

D
(
fn‖qn

)
= EPLn

= EP ln
[
fn
(
X1, . . . , Xn

)
/qn

(
X1, . . . , Xn

)]
.

(3.4)

Ln(ω), L(ω), and D(fn‖qn) are called the sample relative entropy, the sample relative
entropy rate, and the relative entropy, respectively, relative to the reference density function
qn(x1, . . . , xn). Indeed, they all are the measure of the deviation between the true joint
distribution density function fn(x1, . . . , xn) and the reference distribution density function
qn(x1, . . . , xn) (cf. [10, pages 12, 18]).

A question of importance in information theory is the study of the limit properties of the
relative entropy density fn(ω). Since Shannon’s initial work was published (cf. [11]), there has
been a great deal of investigation about this question (e.g., cf. [12–20]).

In this paper, a class of small deviation theorems (i.e., the strong limit theorems
represented by inequalities) is established by using the analytical technique, and an extension
of the Shannon-McMillan theorem to the arbitrary-dependent continuous information sources
is given. Especially, an approach of applying the tool of Laplace transform to the study of the
strong deviation theorems on the differential entropy is proposed.
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Let hk(xk) = − ln gk(xk) (1 ≤ k ≤ n, n = 1, 2, . . .) in (1.5), then we give the following
definitions.

Definition 3.1. The Laplace transform of − ln gk(xk) is defined by

f̃k(s) = Ee−s(− ln gk(Xk)) =
∫∞

−∞
e−s(− ln gk(xk))gk

(
xk

)
dxk. (3.5)

Definition 3.2. The differential entropy for continuous random variables Xk is defined by

h
(
Xk

)
= E

[ − ln gk
(
Xk

)]
= −

∫∞

−∞
gk

(
xk

)
ln gk

(
xk

)
dxk. (3.6)

In the following theorem, let {Xn, n ≥ 1} be independent random variables with respect
to Q, then the reference density function qn(x1, . . . , xn) =

∏n
k=1gk(xk), and let hk(Xk) =

− ln gk(Xk) (1 ≤ k ≤ n) in Theorem 2.1.

Theorem 3.3. Let {Xn, n ≥ 1}, Ln(ω), L(ω), f̃n(s) be given as above, and under the assumptions of
(1) and (2), let

lim sup
n→∞

1
n

n∑

k=1

EQe
s0(− ln gk(Xk)) = lim sup

n→∞

1
n

n∑

k=1

f̃k
( − s0

)
= M

(
s0
)
< ∞. (3.7)

Then

lim inf
n→∞

1
n

n∑

k=1

[ − ln gk
(
Xk

) − h
(
Xk

)] ≥ −β(L(ω)
)
, a.s.

lim sup
n→∞

1
n

n∑

k=1

[ − ln gk
(
Xk

) − h
(
Xk

)] ≤ β
(
L(ω)

)
, a.s.

(3.8)

where

β(x) = inf
{
φ(s, x), −s0 < s < 0

}
, x ≥ 0, (3.9)

φ(s, x) = −2e
−2sM

(
s0
)

(
s0 − |s|)2

− x

s
, x ≥ 0, (3.10)

0 ≤ β(x) ≤
√
x
(
1 +

√
x
)

s0

[
2e−2M

(
s0
)
+ 1

]
, lim

x→0+
β(x) = β(0) = 0. (3.11)

Remark 3.4. Let

α(x) = sup
{
φ(s, x), 0 < s < s0

}
, x ≥ 0, (3.12)

then

α(x) = −β(x). (3.13)
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Corollary 3.5. Let pn(ω) be defined by (3.2). Under the condition of Theorem 3.3, then

lim inf
n→∞

[
pn(ω) − (1/n)h

(
X1, . . . , Xn

)] ≥ α
(
L(ω)

) − L(ω) +H∗ a.s.

lim sup
n→∞

[
pn(ω) − (1/n)h

(
X1, . . . , Xn

)] ≤ β
(
L(ω)

)
+H∗ a.s.

(3.14)

where h(X1, . . . , Xn) = E[− ln fn(X1, . . . , Xn)] is the differential entropy for (X1, . . . , Xn), and

H∗ = lim inf
n→∞

(1/n)

[
n∑

k=1

h
(
Xk

) − h
(
X1, . . . , Xn

)
]

= lim inf
n→∞

(1/n)D
(
fn‖qn

)
,

H∗ = lim sup
n→∞

(1/n)

[
n∑

k=1

h
(
Xk

) − h
(
X1, . . . , Xn

)
]

= lim sup
n→∞

(1/n)D
(
fn‖qn

)
,

(3.15)

where α(L(ω)), β(L(ω)) are denoted by (3.9)–(3.13).

Corollary 3.6. If P = Q, or {Xn, n ≥ 1} are independent random variables, and there exists s0 > 0,
such that (2.1) holds, then

lim
n→∞

[
pn(ω) − (1/n)h

(
X1, . . . , Xn

)]
= 0 a.s. (3.16)
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