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The obesity epidemic is considered a health concern of paramount importance in modern society.
In this work, a nonstandard finite difference scheme has been developed with the aim to solve
numerically a mathematical model for obesity population dynamics. This interacting population
model represented as a system of coupled nonlinear ordinary differential equations is used to
analyze, understand, and predict the dynamics of obesity populations. The construction of the
proposed discrete scheme is developed such that it is dynamically consistent with the original
differential equations model. Since the total population in this mathematical model is assumed
constant, the proposed scheme has been constructed to satisfy the associated conservation law
and positivity condition. Numerical comparisons between the competitive nonstandard scheme
developed here and Euler’s method show the effectiveness of the proposed nonstandard numerical
scheme. Numerical examples show that the nonstandard difference scheme methodology is a
good option to solve numerically different mathematical models where essential properties of the
populations need to be satisfied in order to simulate the real world.
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1. Introduction

Systems of nonlinear ordinary differential equations are used to model different kind of
diseases in mathematical epidemiology (see [1]). In these models, the variables commonly
represent populations of susceptible, infected, recovered, transmitted disease vectors, and so
forth. Since the system describes the evolution of different classes of populations, a solution
over the time is required. The ideal scenario is to obtain analytical solutions, but in most of the
cases, this is not possible to achieve. Therefore, it is necessary to turn to numerical methods
to obtain numerical simulations.
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Traditional schemes, like forward Euler, Runge-Kutta, and other numerical methods
used to solve nonlinear initial value problems, sometimes fail generating oscillations,
bifurcations, chaos, and false steady states [2]. Methods that use adaptive step size, also
may fail [3]. One approach to avoid this class of numerical instabilities is the construction
of nonstandard finite difference schemes. This technique, developed by Mickens [4, 5], has
brought a lot of applications where the nonstandard methods have been applied to various
problems in science and engineering [6–14] in which the numerical solutions preserve
properties of the solution of the continuous model, and additionally, in some cases, it is
possible to use large time step sizes. Furthermore, it has been shown that the nonstandard
finite difference schemes, generated using the rules created by Mickens [4], generally provide
accurate numerical solutions to differential equations.

The aim of this paper is to develop a nonstandard finite difference (NSFD) scheme free
of numerical instabilities in order to obtain the numerical solution of a mathematical model
of infant obesity with constant population size presented in [15]. This interacting population
model represented as a system of coupled nonlinear ordinary differential equations exhibits
two steady states: a trivial steady state called obesity free equilibrium (OFE) and a
nontrivial steady state called obesity endemic equilibrium (OEE). The general philosophy
for constructing NSFD schemes is to obtain numerical solutions dynamically consistent with
the underlying continuous model. This means that all of the critical, qualitative properties of
the solutions to the system of differential equations should also be satisfied by the solutions
of the discrete scheme [16].

The design of a nonstandard scheme is not a straightforward task, in fact, many
schemes may be developed for one model and several can fail to converge. Therefore the
innovative part in this work is the construction of a NSFD scheme, such that is consistent
with the properties of continuous dynamic model, as positivity and conservation of the
population. All the numerical simulations with different parameter values suggest that the
NSFD scheme developed here preserves numerical stability in larger regions in comparison
to the smaller regions of other standard numerical methods. However, theoretical justification
of this fact is not possible due to unmanageable analytic expression of the eigenvalues of the
Jacobian matrix corresponding to the linearization at the equilibrium points. It is important
to remark that most of the previous applications of nonstandard methods to ODE’s have been
done to one, two, and three equations, where theoretical analysis is easier.

Since subpopulations must never take on negative values, the proposed NSFD
scheme is designed to satisfy positivity condition. Furthermore, due to the fact that in
the mathematical model the population is assumed constant, the NSFD scheme has been
developed in order to always exactly satisfy the associated conservation law [17].

The organization of this paper is as follows. In Section 2, the mathematical model for
the evolution of overweight and obesity population is presented. The construction of the
proposed NSFD numerical scheme is carried out in Section 3. In Section 4, a basic analysis
of the stability of the mathematical model is developed using data of the region of Valencia,
Spain. Additionally, numerical analysis of the NSFD numerical scheme is done. Numerical
simulations for the NSFD scheme are reported also in this section in order to show its
computational advantages. Discussion and conclusions are presented in Section 5.

2. Mathematical model

In [15], a dynamic obesity model for the evolution of infant overweight and obesity
population was introduced. This continuous model is based on the partition of the infant
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population into six subpopulations. In this model, N(t) denotes the proportion of normal-
weight children, L(t) denotes the proportion of latent children, that is, children with the habit
of high consumption of unhealthy food but who are still normal weight, S(t) denotes the
proportion of children with overweight, O(t) denotes the proportion of obese children, DS(t)
denotes the proportion of overweight children on diet, and DO(t) denotes the proportion
of obese children on diet. The model is represented by the following nonlinear system of
ordinary differential equations:

N
′
(t) = μ + εDS(t) − μN(t) − βN(t)

[
L(t) + S(t) +O(t)

]
,

L
′
(t) = βN(t)

[
L(t) + S(t) +O(t)

]
−
[
μ + γL

]
L(t),

S
′
(t) = γLL(t) + ϕDS(t) −

[
μ + γS + α

]
S(t),

O
′
(t) = γSS(t) + δDO(t) − [μ + σ]O(t),

D
′

S(t) = γDDO(t) + αS(t) − [μ + ε + ϕ]DS(t),

D
′

O(t) = σO(t) −
[
μ + γD + δ

]
DO(t),

(2.1)

where the time-invariant parameters of the model are

(1) β: social transmission rate to high consumption of unhealthy food due to social
environment pressure,

(2) μ: inflow rate population in the system or inversely proportional to average time
spent by an individual in the system,

(3) γL: rate at which a latent individual moves to the overweight subpopulation,

(4) γS: rate at which an overweight individual becomes an obese individual by
continuous consumption of unhealthy food,

(5) ε: rate at which an overweight individual on diet becomes a normal-weight
individual,

(6) α: rate at which an overweight individual stops or reduces unhealthy food
consumption, that is, the individual is on diet,

(7) ϕ: rate at which an overweight individual on diet fails, that is, the individual
resumes a high unhealthy food consumption,

(8) σ: rate at which an obese individual stops or reduces unhealthy food consumption,

(9) δ: rate at which an obese individual on diet fails,

(10) γD: rate at which an obese individual on diet becomes an overweight individual on
diet.

In this model, since the constant population is normalized to unity one gets for all time t,

N(t) + L(t) + S(t) +O(t) +DS(t) +DO(t) = 1. (2.2)

We define (2.2) as the conservation law associated with the system (2.1) and this equation
must be satisfied by the NSFD numerical scheme for any time t.
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3. Nonstandard finite difference discretization

In order to avoid dynamic inconsistencies such as oscillations and numerical instabilities
in this section, an NSFD scheme for solving numerically system (2.1) is constructed. A
numerical scheme is called NSFD if at least one of the following conditions is satisfied [8, 18]:

(1) nonlocal approximation is used [4, 5, 7];

(2) discretization of derivative is not traditional and a nonnegative function

ψ(h) = h +O
(
h2) (3.1)

called a denominator function is used [19].

The discretization is based on the approximations of the temporal derivatives by a first-order
generalized forward scheme. If f(t) ∈ C1(R), we define an equivalent derivative as

df(t)
dt

=
f(t + h) − f(t)

ψ(h)
+O

(
ψ(h)

)
as h −→ 0, (3.2)

where ψ(h) is a nonnegative real-valued function defined in (3.1). Note that the above
definition is consistent with the traditional definition of the derivative. Indeed

df(t)
dt

= lim
h→ 0

{
f(t + h) − f(t)

ψ(h)
+O

(
ϕ(h)

)}

= lim
h→ 0

f(t + h) − f(t)
h

lim
h→ 0

h

ψ(h)
+ lim
h→ 0
O
(
ψ(h)

)

= ḟ(t).

(3.3)

An example of a function ψ(h) that satisfies the above conditions is ψ(h) = 1−e−h (see [4, 19]).

3.1. Construction of the NSFD scheme

In this subsection, the main goal is to construct a dynamically consistent numerical discrete
scheme for solving system (2.1). Notice that all the model variables (subpopulations) and
parameters are positive. Therefore, in order to obtain a dynamically consistent discrete
scheme, we must ensure that the resulting discrete solutions are all positive which is
necessary to avoid scheme-dependent instabilities. Furthermore, since the population is
assumed constant, the NSFD scheme should satisfy the associated conservation law [17].
These aspects will be taken into account in the construction of the numerical scheme below.

Let us denote by Nn, Ln, Sn, On, Dn
S, and Dn

O the approximations of N(nh), L(nh),
S(nh), O(nh), DS(nh), and DO(nh), respectively, for n = 0, 1, 2, . . . , and h the time step size of
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the scheme. Using (3.2), the first-order numerical scheme to obtain solutions N, L, S, O, DS,
and DO of the model (2.1) is given by the following implicit scheme:

Dn+1
O −Dn

O

ψ(h)
= σOn −

(
δ + μ + γD

)
Dn+1
O ,

Dn+1
S −Dn

S

ψ(h)
= −(μ + ε + ϕ)Dn+1

S + αSn + γDDn+1
O ,

Nn+1 −Nn

ψ(h)
= μ − βNn+1(Sn +On + Ln

)
+ εDn+1

S − μNn+1,

Ln+1 − Ln
ψ(h)

= βNn+1(Sn +On + Ln
)
−
(
γL + μ

)
Ln+1,

Sn+1 − Sn
ψ(h)

= γLLn+1 + ϕDn+1
S − αSn −

(
γS + μ

)
Sn+1,

On+1 −On

ψ(h)
= γSSn+1 − σOn − μOn+1 + δDn+1

O ,

(3.4)

and after rearranging, we obtain the following explicit form:

Dn+1
O =

Dn
O + ψ(h)σOn

1 + ψ(h)
(
δ + μ + γD

) , (3.5)

Dn+1
S =

Dn
S + ψ(h)

(
αSn + γDDn+1

O

)

1 + ψ(h)(ε + μ + ϕ)
, (3.6)

Nn+1 =
Nn + ψ(h)

(
μ + εDn+1

S

)

1 + ψ(h)
(
μ + β

(
Sn +On + Ln

)) , (3.7)

Ln+1 =
Ln + ψ(h)βNn+1(Sn +On + Ln

)

1 + ψ(h)
(
γL + μ

) , (3.8)

Sn+1 =
Sn

(
1 − ψ(h)α

)
+ ψ(h)

(
γLL

n+1 + ϕDn+1
S

)

1 + ψ(h)
(
γS + μ

) , (3.9)

On+1 =
On

(
1 − ψ(h)σ

)
+ ψ(h)

(
γSS

n+1 + δDn+1
O

)

1 + ψ(h)μ
, (3.10)

where the denominator function is chosen as

ψ(h) =
1 − e−hM

M
, (3.11)
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with M ≥ max{α, σ} in order to guarantee the positivity condition. However, positivity can
also be guaranteed taking the traditional ψ(h) = h if hM ≤ 1. Therefore throughout this paper
when hM ≤ 1, we use ψ(h) = h.

Remark 3.1. Notice that the populations must be calculated in a particular order. This
sequential form of calculation is a generic feature of NSFD methods [4, 16, 19].

Remark 3.2. The incorporation of (2.2) to system (2.1) introduces more complexity in order to
satisfy that, if the same term occurs in more than one differential equation, then it must be
modeled discretely the same way in all equations [4, 17].

3.2. Properties and computation in the NSFD scheme

It can be seen from system (3.5)–(3.10) that we have constructed an NSFD scheme for the
model (2.1) having the following properties:

(1) positivity. If Dn
O > 0, Dn

S > 0, Nn > 0, Ln > 0, Sn > 0, On > 0, then Dn+1
O > 0, Dn+1

S > 0,
Nn+1 > 0, Ln+1 > 0, Sn+1 > 0, On+1 > 0, for all n = 0, 1, 2, . . . , since that 1−ψ(h)M > 0;

(2) satisfy conservation law, that is, constant population. From system (3.4) one gets
that

Dn+1
O +Dn+1

S +Nn+1 + Ln+1 + Sn+1 +On+1 =
Dn
O +Dn

S +N
n + Ln + Sn +On + μψ(h)
1 + μψ(h)

. (3.12)

It follows by induction that if

Dn
O +Dn

S +N
n + Ln + Sn +On = 1, then

Dn+1
O +Dn+1

S +Nn+1 + Ln+1 + Sn+1 +On+1 = 1 ∀n = 0, 1, . . . .
(3.13)

Now, observe that the subpopulations must be calculated from scheme (3.5)–(3.10) in the
following order:

(1) select values Dn
O > 0, Dn

S > 0, Nn > 0, Ln > 0, Sn > 0, On > 0, such that Dn
O +Dn

S +
Nn + Ln + Sn +On = 1;

(2) determine Dn+1
O from (3.5) using Dn

O and On;

(3) calculate Dn+1
S from (3.6) with Dn+1

O , Dn
S, and On;

(4) obtain Nn+1 from (3.7) using Dn+1
S , Nn, Sn, On, and Ln;

(5) find Ln+1 from (3.8) with Nn+1, Sn, On, and Ln;

(6) get Sn+1 from (3.9) using Sn, Ln+1, and Dn+1
S ;

(7) compute On+1 from (3.10) with the values of On, Sn+1 and Dn+1
O .

Note that the sequential form of calculation is a generic feature of NSFD schemes [17]. In
addition, it can be seen that the main part of the local truncation error associated with each
equation of system (3.2) is of order O(h2), confirming that the constructed NSFD scheme is
first-order accurate.
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Table 1: Parameters (week scale) of the model given for the nonlinear ordinary differential equation system
(3.4) for the region of Valencia, Spain.

Parameter Value
μ 0.00641025
γS 0.0030853
α 0.004068
σ 0.0044379
γD 0.0004189
γL 0.0089
ε 0.0027768
ϕ 0.12735
δ 0.15974
β 0.0222949

Table 2: The eigenvalues of the Jacobian of system (2.1) evaluated at the OFE point and at the OEE point.

Eigenvalue At OFE point At the OEE point
λ1 −0.170976 −0.170977
λ2 −0.140644 −0.140622
λ3 −0.0151898 −0.0143034 + 0.00134272i
λ4 0.0134083 −0.0143034 − 0.00134272i
λ5 −0.00921949 −0.00909934
λ6 −0.00641026 −0.00641026

4. Numerical results and dynamic consistency

In this section, some theoretical properties of the mathematical model of overweight and
obesity population dynamics proposed in [15] for a particular set of values of the parameters
are studied, in order to know a priori the correct behavior that needs to come out from the
numerical solution corresponding to the NSFD numerical scheme (3.4). Furthermore, this
section is devoted to show numerically the dynamic consistency and numerical advantages
of the developed NSFD scheme and some comparisons with other well-known numerical
methods. The chosen values for the set of parameters of model (2.1) are the ones used in [15],
and are shown in Table 1 in a week scale.

4.1. Numerical stability of the mathematical model

A linear stability analysis of system (2.1) for a particular set of values of the parameters is
developed here in order to check numerically dynamic consistency between the continuous
model and the NSFD discrete scheme. A more general stability analysis has not been
performed since general parameters gives unmanageable analytic expressions. Nevertheless,
several sets of values of the parameters are used to suggest numerically the aforementioned
dynamic consistency.

It is well known that an equilibrium point is an asymptotically stable node if and
only if the real part of the eigenvalues of the Jacobian associated system evaluated at the
equilibrium points are negative.
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Figure 1: Profiles of subpopulations N(t), L(t), S(t), O(t), DS(t), and DO(t). Solutions are obtained by
the proposed NSFD scheme with ψ(h) = h, where h = 0.2 and initial conditions are N(0) = 0.462, L(0) =
0.194, S(0) = 0.2176, O(0) = 0.09, DS(0) = 0.0249, and DO(0) = 0.0115.

System (2.1) has two steady states; OFE and OEE. For the particular set of values of
the parameters presented in Table 1 for system (2.1), the following equilibrium points are
obtained:

OFE = (1, 0, 0, 0, 0, 0), OEE = (0.2937, 0.2971, 0.2708, 0.1267, 0.0080, 0.0033). (4.1)

The eigenvalues of the Jacobian evaluated at the OFE point and at the positive OEE
point are shown in Table 2. The OFE point is unstable, since the eigenvalue λ4 is positive.
On the other hand, the OEE point is locally asymptotically stable, due to the fact that all
real parts of the eigenvalues of the Jacobian of system (2.1) evaluated at the OEE point are
negative. Therefore, a dynamic consistent numerical scheme should reproduce this numerical
behavior of the continuous model. In Section 4.2, this fact will be checked.
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Figure 2: Profiles of subpopulations N(t), L(t), S(t), O(t), DS(t), and DO(t) obtained with the NSFD
scheme with ψ(h) = h, h = 0.2 and initial conditions are N(0) = 0.999, L(0) = 0.001, S(0) = 0, O(0) =
0, DS(0) = 0, and DO(0) = 0.

Table 3: Spectral radius for different time step size h of the Euler and NSFD numerical schemes.

Time step h ρ (Euler) Euler ρ (NSFD) NSFD (ψ(h) = h)
0.01 0.996667 Convergence 0.996678 Convergence
0.1 0.9935 Convergence 0.967742 Convergence
0.2 0.933333 Convergence 0.9375 Convergence
0.25 1.22302 Divergence 0.923077 Convergence
0.5 3.44604 Divergence 0.857143 Convergence
1 7.89207 Divergence 0.75 Convergence
10 87.920 Divergence 0.230769 Convergence

4.2. Numerical simulations

This subsection is devoted to show numerically the dynamic consistency and numerical
advantages of the developed NSFD scheme. One basic property that should satisfy the NSFD
numerical scheme (3.5)–(3.10) in order to be dynamically consistent is that their fixed points
should be the same equilibrium points as the continuous model (2.1). The equilibrium points
of the NSFD numerical scheme (3.4) are obtained by setting to zero the left-hand sides of
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Figure 3: Profiles of subpopulations N(t), L(t), S(t), O(t), DS(t), and DO(t). Solutions are obtained by
Euler (dashed) and proposed NSFD scheme (line) with ψ(h) = h and h = 0.2 for system (2.1).

system (3.4). It is easy to prove that the NSFD numerical scheme (3.4) has the same two
steady states; that the continuous model for any set of parameter values.

Numerical simulation for different sets of values of the parameters was per-
formed to investigate the dynamic consistency of the developed NSFD numerical scheme
(3.4). In Figure 1, it can be seen that the NSFD scheme (3.4) converges to the same OEE point
of the continuous model using the particular set of values of the parameters shown in Table 1.

Additionally in Figure 2, it is observed that despite the initial condition is close to
the OFE point, the numerical solution moves further away from this equilibrium point,
suggesting numerically the instability of the OFE point and the consistency of the NSFD
numerical scheme with the continuous model (2.1).

4.3. Numerical comparisons of the NSFD scheme

In order to study the effect of the time step size in the NSFD numerical scheme and dynamic
consistency related to local stability, the spectral radius ρ of the Jacobian corresponding to
the linearization of NSFD scheme and Euler schemes are computed for different time steps
for system (2.1). Using general parameters values, one gets a general Jacobian. However,
the functional relationship between the spectral radius ρ and the time step size h gives an
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Figure 4: Profiles of subpopulations N(t), L(t), S(t), O(t), DS(t), and DO(t). Solutions are obtained by
Euler scheme (dashed) and developed NSFD scheme (line) with ψ(h) = h and h = 0.25 for system (2.1).

unmanageable complex analytic expression. Therefore, in order to investigate numerically
the dynamic consistency of the NSFD scheme, the particular set of values of the parameters
presented in Table 1 (but in year scale) is used for numerical results. However, other sets of
values of the parameters have been used to confirm the previous numerical results.

It is well known that a necessary and sufficient condition for the convergence of a
fixed point scheme is that the spectral radius of the Jacobian satisfies ρ < 1. In Table 3,
the spectral radius ρ of the Jacobian at the OEE point of the NSFD and Euler schemes for
different time steps h are presented. Table 3 compares the convergence properties of the Euler
scheme with that of NSFD scheme when used to integrate system (2.1) subject to the same
initial conditions and parameter values. It is clear from Table 3 that the NSFD scheme is more
competitive in terms of numerical stability. In all of these simulations, the NSFD scheme
is seen to be monotonically convergent to the correct endemic equilibrium point. However,
Euler fails to converge for a time step size of h = 0.25. The Runge-Kutta fourth-order scheme
improves the result obtained by Euler scheme, but fails to converge for time step sizes
h > 0.33 when the particular set of values of the parameters presented in Table 1 is used. As
expected in other numerical simulations with several different values of the parameters, the
Runge-Kutta fourth-order method outperform Euler scheme, since convergence is achieved
for larger time step sizes.
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Figure 5: Solutions for subpopulation DO obtained by NSFD scheme and routines ODE45, ODE23s,
ODE113, and ODE23 from MATLAB package (dashed), using σ = 0.0044379 × 10−5.

Table 3 compares the convergence properties of the Euler scheme with that of the
NSFD scheme for a specific set of values of the parameters obtained from a real-world
application. However, several different values of the parameters have been used and
numerical results suggest that the NSFD scheme developed here preserves numerical stability
in larger regions in comparison to the smaller regions of the Euler numerical scheme.
However, theoretical justification of this fact is not possible due to unmanageable analytic
expression of the eigenvalues of the Jacobian matrix corresponding to the linearization at
the equilibrium points. It is important to remark that most of the previous applications of
nonstandard methods to ODE’s have been done to one, two, and three equations, where
theoretical analysis is easier. In Figure 3, it can be seen that the NSFD scheme converges and
the Euler scheme oscillates incorrectly but converges to the OEE point for a time step size
h = 0.2. In Figure 4, it is depicted that the NSFD scheme converges to the correct OEE point for
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a time step size h = 0.25, but in this case, Euler fails to converge. Finally, Figure 5 shows that
the NSFD scheme converges to the OEE point taking only positive values. Nevertheless, it
can be observed that the several routines from MATLAB package produce incorrect negative
values.

5. Discussion and conclusions

In this paper, we applied the NSFD methodology to develop a scheme to solve numerically
a mathematical model for obesity population dynamics. This interacting population model
represented as a system of coupled nonlinear ordinary differential equations can be used to
analyze, understand, and predict the dynamics of overweight and obese populations.

The advantages of the NSFD scheme developed here are that they preserve numerical
stability in larger regions for the time step size in comparison to the smaller regions of
numerical stability of the approximations obtained by the other standard numerical methods.
Furthermore, the proposed scheme satisfies positivity condition and the conservation law
that any good scheme for mathematical models of population dynamics must fulfill. The
construction of these nonstandard schemes is not a straightforward task, in fact, many
schemes may be developed for one model and several can fail to converge. Nevertheless,
the principle of dynamic consistency can be used with great efficiency to place restrictions on
the design of NSFD schemes in order to obtain efficient schemes, as has been shown in this
work.

The NSFD scheme proposed here was analyzed and tested in several numerical
simulations. All the numerical simulations performed in this work show that the NSFD
scheme converges to the OEE point for any time step size and satisfies a condition of positivity
required for populations. Finally, it is important to remark that the developed NSFD scheme is
easy to use and convergence is achieved for larger time step sizes than the Euler or the Runge-
Kutta fourth-order schemes. The NSFD scheme also outperforms MATLAB package routines
since negative values for populations are obtained with these routines. Therefore, for real-
world applications in nature and society, where numerical values are required it is important
to be cautious about which numerical scheme is more suitable to solve the mathematical
model since unreal results can be obtained.
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