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The study sought to investigate thermosolutal convection and stability of two dimensional
disturbances imposed on a heated boundary layer flow over a semi-infinite horizontal plate
composed of a chemical species using a self-consistent asymptotic method. The chemical
species reacts as it diffuses into the nearby fluid causing density stratification and inducing
a buoyancy force. The existence of significant temperature gradients near the plate surface
results in additional buoyancy and decrease in viscosity. We derive the linear neutral results
by analyzing asymptotically the multideck structure of the perturbed flow in the limit of large
Reynolds numbers. The study shows that for small Damkohler numbers, increasing buoyancy has
a destabilizing effect on the upper branch Tollmien-Schlichting (TS) instability waves. Similarly,
increasing the Damkohler numbers (which corresponds to increasing the reaction rate) has a
destabilizing effect on the TS wave modes. However, for small Damkohler numbers, negative
buoyancy stabilizes the boundary layer flow.
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Creative Commons Attribution License, which permits unrestricted use, distribution, and
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1. Introduction

Convection in which the buoyancy forces are due to both temperature and chemical
concentration gradients are referred to as thermosolutal or double diffusive convection.
Ostrach [1] pointed out that different modes of such convection exist depending on how
the temperature and concentration gradients are oriented relative to one another. Some
natural convection flows in the atmosphere and micrometeorological phenomena are often
thermosolutal. The heating of the earth by the sun causes atmospheric thermal convection
which is usually modified by the presence of moisture evaporated from the ground.
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In lakes and oceans, thermosolutal convection is caused by stable vertical concentra-
tion distribution with heating from the side or from the top. The stability theory has been used
to explain the occurrence of layered structures observed in oceans as explained by Turner [2].

Studies on natural convection flows caused by the simultaneous diffusion of thermal
energy and chemical species were carried out by Gebhart and Pera [3]. They considered small
species concentration levels and showed that the species Boussinesq approximation led to
similarity solutions similar in form to those for single buoyancy mechanism flows.

The effect of heat transfer on the upper-branch stability of Tollmien-Schlichting
instabilities (TSIs) in accelerating boundary layer over a rigid surface in incompressible flows
was investigated by Mureithi et al. [4]. The study indicated that buoyancy has destabilizing
effect on rigid bodies. Their analysis also showed that in the presence of strong buoyancy
forces, the five-zone asymptotic structure alters but for moderate buoyancy, the five-zone
structure of Smith and Bodonyi [5] remains with very few alterations.

Shateyi et al. [6] considered the effect of fluid buoyancy and chemical reaction between
the chemical species and the fluid on the linear stability of two dimensional disturbances
wave modes. They extended the theory of boundary layer flows over horizontal surfaces
to include a chemical species and the effect of the Damkohler number. Results showed that
when the wave number and speed number are varied against the scaled Damkohler number,
the effect of increasing buoyancy was destabilizing in agreement with assertions by Motsa
et al. [7]. It was shown that increasing reaction kinematics (thus, reducing the density and
viscosity) has destabilizing effects on the TS waves.

Pons and Le Quéré [8] showed that Boussinesq equations do not exactly represent
buoyancy—induced natural convection. The study observed that thermodynamic consis-
tency is retrieved when both the work due pressure forces and the heat generated by viscous
friction are accounted for in the heat equation. The study recommended that any theoretical
study of buoyancy-induced natural convection should be done with the thermodynamic
Boussinesq model and not with the usual Boussinesq approximations. However, in spite of
this weakness, the usual Boussinesq equations are still very useful (see, e.g., Azizi et al. [9]).
To that end in this study, we will use the Boussinesq approximations.

The present work presents an asymptotic analysis of the flow induced by buoyancy
effects due to both temperature and chemical concentration gradients near the flat surface.
This paper is a direct extension of the earlier work in Shateyi et al. [6] to include the
effects of temperature differences within the boundary-layer. The flow has uniform surface
conditions with the buoyancy effects primarily away from the surface. Our analysis is limited
to processes which occur at low concentration gradients. We give an asymptotic investigation
of the interactions between the reaction kinematics and the fluid hydrodynamics with the
Damkohler number (the ratio of the hydrodynamic time scale to the reaction time scale) as
the parameter of primary interest. In the limit of large Damkohler numbers, the reaction
kinematics proceed at a much faster rate compared to the fluid hydrodynamics. If the
Damkohler number is close to zero, the chemical reactions are slow compared to the motion
of the fluid. In this case, a nonreactive fluid can be assumed. The greatest interaction between
reaction kinematics and fluid dynamics occurs when the Damkohler is of O(1).

In the study, we focus attention on the case when the Damkohler number is small
(that is, less than unity). The case for large Damkohler numbers was investigated by Shateyi
et al. [6]. The aim is to determine the influence of small Damkohler numbers on the stability
characteristics of the upper-branch TS instability waves. The major difference between the
current work and that of Mureithi et al. [4] arises from the introduction of reaction kinematics.
The absence of wall compliance and the presence of a chemical species makes the current
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work different from that of Motsa et al. [7]. The presence of wall heating or cooling and small
Damkohler numbers makes the current work different from Shateyi et al. [6]. The current
approach provides asymptotic solutions to the linearised Navier-Stokes rather the numerical
solution of the Orr-Sommerfeld equation.

2. Mathematical formulation

We consider a two-dimensional, incompressible fluid flow over a heated horizontal plate
which is composed of a chemical species maintained at a fixed concentration. The chemical
species diffuses into the nearby fluid inducing a buoyancy force. A change in the temperature
of the fluid near the plate surface due to exogenous heating effects also results in additional
buoyancy.

The governing nondimensional unsteady Navier-Stokes equations for an incompress-
ible fluid under a Boussinesq-type approximation are as follows:

∂u

∂x
+
∂v

∂y
= 0, (2.1)

∂u

∂t
+ u

∂u

∂x
+ v

∂u

∂y
= −

∂p

∂x
+

1
Re

(
∂2u

∂x2
+
∂2u

∂y2

)
, (2.2)
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∂t
+ u

∂v

∂x
+ v

∂v
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1
Re

(
∂2v

∂x2
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∂2v

∂y2

)
+Gt T +Gc C, (2.3)
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=
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Re Sc
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∂2C
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−DaC, (2.4)

∂T

∂t
+ u

∂T

∂x
+ v

∂T

∂y
=

1
Pr Re

(
∂2T

∂x2
+
∂2T

∂y2

)
. (2.5)

However, (2.1)–(2.5) have been nondimensionalised such that the space coordinates are
given by (x∗, y∗) = L(x, y), the velocity components are (u∗, v∗) = U∞(u, v), the pressure
is p∗ = ρU∞p, and the time is t∗ = (L/U∞)t, where L is the characteristic length scale (e.g., the
distance measured from the leading edge of the plate). The species chemical concentration
and the temperature are, respectively,

C =
C∗ − C∞
Cw − C∞

, T =
T ∗ − T∞
Tw − T∞

, (2.6)

where the asterisks in these relations denote dimensional quantities and the subscripts “w”
and “∞” refer to the conditions at the wall and the free stream values, respectively. For
purposes of this study, the important parameters are the Damkohler number Da that is
defined as the ratio of the flow time scale to the chemical time scale and the buoyancy terms
Gc = Grc/Re2 and Gt = Grt/Re2, where Grc = βcgL

3(Cw − C∞)/ν2 and Grt = βtgL
3(Tw − T∞)

are, respectively, the Grashof numbers for mass and thermal diffusion, βc is the coefficient
of expansion with respect to mass transfer, and βt is the volumetric coefficient of thermal
expansion

The other parameters and variables in (2.1)–(2.5) are the Prandtl number Pr, the flow
Reynolds number Re, and the Schmidt number Sc(= μ/Dρ), where D is the binary diffusion
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coefficient, μ is the coefficient of dynamic viscosity, ρ is the density of the fluid, ν is the
coefficient of kinematic viscosity, and g is the acceleration due to gravity.

The momentum boundary conditions are the no-slip conditions:

u = v = 0 at y = 0. (2.7)

We assume that the horizontal plate is maintained at a prescribed temperature TBw and
uniform concentration CBw. In the far field, we assume that the fluid temperature, species
chemical concentration, and the fluid velocity approach their free stream values.

The basic boundary-layer flow is given by

(u, v, p, T, C) =
(
UB,Re−1/2VB, pB, TB, CB

)
(x, Y ), (2.8)

where Y = Re1/2y is the boundary coordinate. For general pressure gradient boundary layers,
the following properties hold:

UB ∼λ1Y + λ2Y
2 + · · · as Y −→ 0,

TB ∼ γ1 + γ2Y + · · · as Y −→ 0,

UB ∼μ1 + μ2Y + · · · as Y −→ 0,

UB −→ 1, TB −→ 0, CB −→ 0 as Y −→ ∞.

(2.9)

The coefficients λ1 = UBy|y=0 > 0 and λ2 = UByy|y=0 < 0 are, respectively, the skin friction and
curvature of the basic flow profile. The coefficients γ1 and γ2 are the heat transfer coefficients
and μ1 and μ2 are the concentration transfer coefficients.

Disturbances to the basic flow of amplitude factor δ are introduced and these spread
through the boundary layer. The Reynolds number is large while the amplitude of the
spatially growing disturbances is assumed to be sufficiently small for linear theory to hold.
The TSI grows by extracting energy from the mean flow to the disturbance within the
boundary layer (see, e.g., Carpenter and Gajjar [10]).

The asymptotic structure of the boundary layer is now well known and described (e.g.,
Smith and Bodonyi [5] and Mureithi et al. [4]). It consists of the five regions (see Figure 1)
where R1 is the main part of the boundary layer with thickness O(Re−(1/2)), R2 is a thinner
inviscid adjustment region of thickness O(Re−(7/12)) containing the viscous critical layer R3,
the wall layer R4 of thickness O(Re−(2/3)), and the outer potential flow R5 of thickness
O(Re−(5/12)). Consistent with earlier work on linear analysis, the viscous critical layer is
ignored in the present theory except in so far as it produces a phase shift in the boundary
layer pressure and velocity.

The disturbances are taken to be in the form of a modulated wave train periodic in X
where, for the upper branch of the neutral stability curve, the scaled streamwise and temporal
variables are x = ε5X, t = ε4τ , and ε = Re−(1/12) is a small parameter. The neutral wave number
α and phase speed c of the disturbances are O(ε−5) and O(ε−4), respectively. We thus expand
α and c as

α = ε−5α0 + · · · , c = −ε−4c0 + · · · , (2.10)
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Figure 1: Schematic sketch of flow structure showing the multilayered nature of the boundary layer and
the relative positioning of the five regions.

where α0 and c0 are the scaled real wave number and real phase speed of the travelling
wave disturbances. The derivatives ∂/∂x and ∂/∂t are then replaced by ε−5α0∂/∂X and
−ε−4ω0∂/∂τ , respectively. The other important scalings (see also Shateyi et al. [6]) are
Gc/Gt = O(ε−5) and Da∼O(ε−4) when the TS eigenrelation is significantly altered for the
first time by the effects of fluid buoyancy.

3. Stability analysis

Information on the disturbance expansions relevant to the upper-branch stability of boundary
layers is now well documented in the literature (see, e.g., Gajjar and Smith [11], Motsa et al.
[7], and the references therein). Only the details necessary to obtain the linear dispersion
relations will be given. In the main part of the boundary layer, region R1, we define the
coordinate y = ε6Y , where Y = O(1), and introduce a small disturbance of size δ into the
basic flow. The expand disturbance quantities are then expanded as

u = UB + δu0 + εδu1 + · · · , (3.1)

v = εδv0 + ε2δv1 + · · · , (3.2)

p = PB + δεp0 + ε2δp1 + · · · , (3.3)

T = TB + δT0 + εδT1 + · · · , (3.4)

C = CB + δC0 + εδC1 + · · · , (3.5)

where ui, vi, and so forth are functions of the boundary layer variable Y and of the scaled
streamwise variable X, and δ is the amplitude of the disturbance which is very much
smaller than unity so that terms quadratic in δ are ignored thereby restricting the analysis
to linear stability theory. Substituting (3.1)–(3.5) into the governing equations and solving
the resulting system of leading-order equations yields the following first-order solutions:

u0 = A0UBY , v0 = −α0A0XUB, T0 = A0TBY , C0 = A0CBY ,

p0 = P0 +G0tA0
(
TB − γ1

)
+G0cA0

(
CB − μ1

)
.

(3.6)
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At the next order, O(δ2), we obtain the solutions

v1 = α0c0A0X + α0UB

∫2

Y0

P0X

U2
B

dY + α0UBG0tA0X

∫Y

Y0

(
TB − γ1

)
U2
B

dY − α1A0X

+ α0UBG0cA0X

∫Y

Y0

(
CB − μ1

)
U2
B

dY − α0A1XUB,

p1 = P1 − α2
0A0

∫Y

Y0

U2
B dY −

D0A0G0t

α0

∫Y

Y0

TBY
UB

dY − G0cA0D0

α0

∫Y

Y0

CBY

UB
dY+A1

(
G0tTB+G0cCB

)

−G0t

∫Y

Y1

TBY

(∫Y1

0

[
P0+G0tA0

(
TB−γ1

)
U2
B

]
dY1

)
dY−Gc

∫Y

Y1

CBY

(∫Y1

0

[
P0+G0cA0

(
CB−μ1

)
U2
B

]
dY1

)
dY

−A0G0tG0c

{∫Y

0
TBY

(∫Y1

Y0

(
cB − μ1

)
U2
B

dY1

)
dY +

∫Y

0
CBY

[∫Y

Y0

(
TB − γ1

)
U2
B

dY1

]
dY

}
,

(3.7)

where Ai = Ai(X) and Pi = Pi(X) (where, i = 0, 1) are unknown functions representing the
displacement and the pressure amplitudes. In the results above, we set Ai = Aie

iX + c.c, Pi =
Pie

iX + c.c (where c.c denotes the complex conjugate). The lower limit of the integrals, Y0,
is a non-zero constant introduced for convenience, whose value does not alter the eventual
results for wave numbers and frequencies.

In region R2, we define y = ε7Y with Y = O(1) and the expansions follow from R1:

u = λ1εY + ε2λ2Y
2
+ δ

(
u(0) + εu(1) + · · ·

)
,

v = δε
(
εv(0) + ε2v(1) + · · ·

)
,

p = pB + δ
(
εp(0) + ε2p(1) + · · ·

)
,

T = γ1 + εγ2Y + ε2γ3Y
2
+ δ

(
T (0) + εT (1) + · · ·

)
,

C = μ1 + εμ2Y + ε2μ3Y
2
+ δ

(
C(0) + εC(1) + · · ·

)
.

(3.8)

Substituting these equations into the governing equations and solving the resulting equations
yield the following first-order solutions:

u(0) = λ1A0,

v(0) = −
α0p

(0)
X

λ1
− α0A0Xλ1ξ,

p(0) = P (0) = c0λ1A0,

C(0) =
μ2

λ1
2

(
A0λ1

2ξ + P (0))(ξ − iD0

α0λ1

)−1

,

T (0) = γ2

(
A0 +

p(0)

λ1
2ξ

)
,

(3.9)
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where ξ = Y − (c0/λ1). At the next order, the velocity and pressure terms are

v(1) = − 1
λ1
α0P

(1)
x +

(
γ2G0t + μ2G0c

)
λ1

α0A0x
(
ξ
{

ln |ξ| + φ±
})

− λ1α0ξA1x − α0λ2A0x

(
ξ2 +

2c0

λ1
ξ
[

ln |ξ| + φ±
]
− c

2
0

λ2
1

)

−
(
γ2G0t + μ2G0c

λ1
2

)
α0c0A0x −

(γ2G0t + μ2G0c
)

2λ1
A0x

(
α0c0 + iD0

)
ln

∣∣∣∣ξ2 +
D0

2

α0
2λ1

2

∣∣∣∣
−
(
γ2G0t + μ2G0c

)
D0λ1

α0A0x
(
α0c0 + iD0

)
ξ tan−1

(
α0λ1ξ

D0

)

−
i
(
γ2G0t + μ2G0c

)
2λ1D0

α0A0x
(
α0c0 + iD0

)
ξ

(
ln

∣∣∣∣D0
2 + α0

2λ1
2ξ2

α0
2λ1

2ξ2

∣∣∣∣ + φ±
)

+ i
(
γ2G0t + μ2G0c

λ1
2

)
A0x

(
α0c0 + iD0

)[
tan−1

(
D0

α0λ1ξ

)
+ φ±

]
,

p(1) = P (1) +
(
γ2G0t + μ2G0c

)
A0Y +

(
γ2G0t + μ2G0c

)(
α0c0 + iD0

)
A0

(
ln

∣∣∣∣ξ2 +
D0

2

α0
2λ1

2

∣∣∣∣
)

−
i
(
γ2G0t + μ2Gc

)
α0λ1

(
α0c0 + iD0

)
A0

[
tan−1

(
D0

α0λ1ξ

)
+ φ±

]
.

(3.10)

The solutions in this region possess both logarithmic and algebraic singularities as ξ → 0.
These singularities are smoothed out by the introduction of the critical layer consisting of a
thin viscous region situated in the neighbourhood of the critical level ξ = 0 where φ± and
φ±p are the phase-shift terms introduced to connect the solutions in the normal velocity and
pressure, respectively, on either side of the critical layer.

Solutions in the other regions (namely, the wall layer R4 and the outer potential-flow
layer R5) follow in a straightforward manner, and the important solutions of the wall layer
are given by

ṽ0 =
iα2

0P̃0

mω0

(
1 −mZ − e−mZ

)
, p̃0 = P̃0(X,Z), (3.11)

where m = (α0c0)
1/2e−iπ/4, y = ε8Z, and Z is an O(1) coordinate.

In region R5, we set y = ε5ŷ, where ŷ∼O(1). The leading-order solutions are given by

û0 = −P̂0e
−α0ŷ , v̂0 = −iP̂0e

−γ0ŷ , p̂0 = P̂0e
−γ0ŷ , (3.12)

where P̂0 is an unknown function which describes the disturbance pressure at the outer
extreme of the boundary layer. At the next order, the important solutions are

v̂1 = −i
[
P̂1 −

ω0

α0
P̂0

]
e−α0ŷ , p̂1 = P̂1e

−α0ŷ , (3.13)
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where P̂1 is an unknown function which describes the disturbance pressure at the outer
extreme of the boundary layer.

4. Linear neutral results and eigenrelations

In this section, we asymptotically match the solutions in their respective overlap regimes. We
will be matching the normal velocities and pressures of the same orders in these respective
overlapping regions. The first eigenrelation is found by matching the first-order solutions
across the entire boundary layer flow regime to be

c0λ1 = G0tγ1 +G0cμ1 + α0. (4.1)

The matching of second-order pressure components between R1 (as Y → ∞) and R5 (as
ŷ → 0) yields

P̂1 = P1 − α0
2A0J0 −G0tA0

(
J3 +

D0

α0
J1

)
−G0cA0

(
J4 +

D0

α0
J2

)

+G0tA1T
∞
B +G0cA1C

∞
B −A0G0tG0cI1,

(4.2)

where T∞B = limY→∞TB and C∞B = limY→∞CB. The constants I ′is and J ′is for i = 1, . . . , 4 are
defined in the appendix.

Matching the pressure terms across R2 (as Y →∞) and R1 (as Y → 0) gives

P1 = P (1) − i
(
γ2G0t + μ2G0c

)
α0λ1

(
α0c0 + iD0

)
φ+ −A1G0tT

0
B −A1G0cC

0
B, (4.3)

where T0
B = limY→0TB and C0

B = limY→0CB. Matching the pressure terms across R4 (as Y →∞)
and R2 (as Y → 0) gives

p̃1 = P (1) +

(
γ2G0t + μ2G0c

)
2α0λ1

(
α0c0 + iD0

)
ln

∣∣∣∣α0
2c0

2 +D0
2

α0
2λ1

2

∣∣∣∣
− i

(
γ2G0t + μ2G0c

)
α0λ1

A0 tan−1
(
D0

α0c0

)
− i

(
γ2G0t + μ2G0c

)
α0λ1

(
α0c0 + iD0

)
φ−.

(4.4)

Matching the normal velocity components between R1 (as Y → ∞) and R5 (as ŷ → 0) at the
second order gives

P̂1 = −P̂0c0 + α0A1U
∞
B − α0c0A0 − α0U

∞
B P0I2 − α0U

∞
B G0tA0H1 − α0U

∞
B G0cA0H2 + α1A0.

(4.5)
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Matching the normal velocity across regions R2 and R1 yields

B0A0X − α0λ1A1X + L0G0tA0X + L1GcA0X

=

(
γ2G0t+μ2G0c

)
λ1

α0A0Xφ
+−λ1α0A1X−

2α0λ2c0A0X

λ1
φ+−iα0

(
γ0G0t+μ2G0c

)
2λ1D0

(
α0c0+iD0

)
A0Xφ

+,

(4.6)

where the constants B0 and L′is for i = 0, 1 are defined in the appendix. Lastly, a matching of
the normal velocity between R2 and R4 gives

iα0P 0

mc0
= −α0PX

(1)

λ1
+
(
B1 +

E0

λ1
+ω1 − α1c0

)
A0X + α0c0A1X −

2α0λ2c0
2

λ1
A0Xφ

−

−
c0α0

(
γ2G0t + μ2G0c

)
λ1

2
A0Xφ

− −
(
γ2G0t + μ2G0c

)
2λ1

2
A0X

(
α0c0 + iD0

)
ln

∣∣∣∣ c0
2

λ1
2
+

D0
2

α0
2λ1

2

∣∣∣∣
−
(
γ2G0t + μ2G0c

)
D0λ1

2
c0α0A0X

(
α0c0 + iD0

)
tan−1

(
α0c0

D0

)

×
iα0c0

(
γ2G0t + μ2G0c

)
2λ1

2D0

(
α0c0 + iD0

)
ln

∣∣∣∣D0
2 + α0

2c0
2

α2c0
2

∣∣∣∣
+
iα0c0

(
γ2G0t + μ2G0c

)
2λ1

2D0
A0X

(
α0c0 + iD0

)
φ−

−
i
(
γ2G0t+μ2G0c

)
λ1

2
A0X

(
α0c0 + iD0

)
tan−1

(
D0

α0c0

)
+
i
(
γ2G0t+μ2Gc

)
λ1

2
A0X

(
α0c0+iD0

)
φ−.

(4.7)

The relations (4.1)–(4.7) above may be used to eliminate A1, P (1), P0, P̂0 to obtain a relation
which determines the higher-harmonic components of A1. If we restrict our attention to the
eiX components, then, after some algebra, (4.1)–(4.7) lead to

(
γ2G0t + μ2G0c

)
λ1

α0c0A0X
(
φ+ − φ−

)
− 2c0

2α0λ2

λ1
A0X(φ+ − φ−

)

−
i
(
γ2G0t + μ2G0c)

2λ1D0
A0xα0c0

(
α0c0 + iD0

)(
φ+ − φ−

)

−
i
(
γ2G0t + μ2G0c)

λ1
A0X

(
α0c0 + iD0

)(
φ+ − φ−

)

−
(
γ2G0t + μ2G0c)

2λ1
A0X

(
α0c0 + iD0

)
ln

∣∣∣∣c0
2α0

2 +D0
2

α0
2λ1

2

∣∣∣∣
−
(
γ2G0t + μ2G0c)

D0λ1
A0Xα0c0

(
α0c0 + iD0

)
tan−1

(
α0c0

D0

)

+
iα0c0

(
γ2G0t + μ2G0c)
2λ1D0

(
α0c0 + iD0

)
ln

∣∣∣∣D0
2 + α0

2c2
0

α0
2c2

0

∣∣∣∣A0x

−
i
(
γ2G0t + μ2G0c)

λ1
A0X

(
α0c0 + iD0

)
tan−1(

α0c0

D0
) − B3A0X + B4A1X = 0,

(4.8)
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whereB3 andB4 are defined in the appendix. The results for linear theory are now well known
and are derived by taking the jump across the critical layer, φ to be equal to iπ . Taking the
real parts of equation (4.8) then gives

α0λ
2
1√

2m̃
− 2α0λ2c0

2

λ1
π + 2α0c0

(
γ2G0t + μ2G0c

)
π

+

(
γ2G0t + μ2G0c

)
λ1

D0π +

(
γ2G0t + μ2G0c

)
2λ1

ln
∣∣∣∣c0

2α0
2 +D0

2

α0
2λ1

2

∣∣∣∣
−
α2

0c0
2(γ2G0t + μ2G0c

)
2λ1D0

ln
∣∣∣∣c0

2α0
2 +D0

2

α0
2c0

2

∣∣∣∣ = 0,

(4.9)

where m =
√
α0c0. However, (4.1) and (4.9) are the crucial eigenvalue relations which fix the

neutral wave number to the neutral wave speed.

5. Results and discussion

To obtain a clearer understanding of the effects of fluid buoyancy and the chemical reaction
on the linear stability of the two-dimensional disturbance wave modes, we consider a
number of limiting cases when the fluid buoyancy parameters are either large and small
and the Damkohler numbers are small. This allows for a detailed examination of the linear
eigenrelations (4.1) and (4.9).

We first investigate the limiting behaviour of the neutral eigenrelations as the
buoyancy parameters (G0c, G0t) → +∞. This limiting case corresponds to the increase in
the buoyancy force due to an increase in the density difference caused by temperature and
chemical concentration differences. Solving the eigenrelations (4.1) and (4.9), we obtain, in
the limit (G0c, G0t)→ +∞with D0∼O(1),

α0 =
(
γ2λ1

λ2
− γ1

)
G0t +

(
μ2

λ2
λ1 − μ1

)
G0c + · · · ,

c0 =
γ2

λ2
G0t +

μ2

λ2
G0c + · · · .

(5.1)

These results agree with those obtained by Motsa et al. [7] for the case G0c = 0 and with
those of Shateyi et al. [6] when G0t = 0 and help to quantify the effects of the combined
buoyancy on the normal modes. The results show that, depending on whether the buoyancy
terms reinforce or cancel out (e.g., in the case of an endothermic reaction), the normal modes
may grow without limit thus hastening the transition to turbulence. A viable transition delay
mechanism would be to ensure that the buoyancy terms act contrary to each other so as to
reduce the growth of the disturbances.

Solving the eigenrelations (4.1) and (4.9) in the limit D0 → +∞with G0t, G0c∼O(1), we
get

α0 =

[(
γ2G0t + μ2G0c

)
2λ2π

D0 ln
∣∣D0

∣∣]1/3

, c0 =

[(
γ2G0t + μ2G0c

)
2λ2λ

3
1π

D0 ln
∣∣D0

∣∣]1/3

. (5.2)
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The results correspond to the case when the chemical time scale is much more pronounced
than the flow time scale. The asymptotic limit (α0, c0)∼O(D0 ln |D0|)1/3 predicts that the
disturbances would grow without limit with increasing Damkohler numbers.

Solving the eigenrelations (4.1) and (4.9) in the limit, G0c → ∞ with G0t, D0∼O(1), we
get

α0 =
(
μ2

λ2
λ1 − μ1

)
G0c, c0 =

μ2

λ2
G0c. (5.3)

The limit G0c tends to infinity and corresponds to the increase in the buoyancy force through,
for example, an increase in the density difference between the reacted fluid and the unreacted
fluid.

In Figures 2–4, we show the response of the two-dimensional disturbances to changes
in parametric values. Figure 2(a) gives a comparison between the predictions from the full
eigenrelation and the limiting case for (G0c, G0t) → ∞ when D0 = 0.1. For small buoyancy,
the flow is stabilized by the presence of a solute. However, as the buoyancy increases,
the stabilizing effects of the solute are overcome by destabilizing effects of large buoyancy
values. When G0t, G0c ≥ 2, the asymptotic results match with the response curve for the full
eigenrelation.

Figure 3(a) shows the response of the wave number α0 to increasing Damkohler num-
bers for different buoyancy parameter values. For large Damkohler numbers, these results
are in line with the predictions of (5.2) and show that both α0 and c0 increase without limit.
In this instance, the flow is highly destabilized and increasing buoyancy serves to compound
this destabilization. For small buoyancy (≤0.1), the neutral wave number and phase speeds
initially decreased before steadily increasing. However, for large buoyancy (≥0.5), the neutral
wave number rises steeply to a maximum value before it steadily grows to infinity.

The introduction of the second buoyancy parameter G0t results in a further
destabilization of the flow giving larger wave numbers and wave speeds at any fixed
Damkohler number. For fixed buoyancy values, the Damkohler number on its own has
weakly destabilizing effects on the fluid flow. Similar trends are observed in Figure 3(b) for
the buoyancy effects on the phase speed.

Figure 4 shows the response of the wave number and speed to increasing buoyancy
for small Damkohler numbers. In Figure 4(a), three distinct branches are observed, a branch
for negative buoyancy and two branches for positive buoyancy, one of these branches is a
slow traveling wave with small wave numbers. For small positive buoyancy, the instability
wave starting at the origin is stabilized by increasing buoyancy with wave numbers rapidly
reducing to zero when (G0t, G0c)∼2.5. The second instability forms an open loop whose
turning point is at progressively smaller wave numbers for increasing Damkohler numbers.
In the case of moderate negative buoyancy values, reducing the Damkohler numbers has a
stabilizing effect on the boundary layer flow.

Figure 4(b) shows the response of the wave speed to increasing buoyancy when the
chemical reaction is slow in comparison to the other fluid dynamical processes. The instability
has three branches when D0 ≤ 0.02, one branch when buoyancy is negative and two branches
when the buoyancy is positive. By raising the Damkohler number to 0.03, only two branches
associated with positive buoyancy remain. Large negative buoyancy impacts positively on
the boundary layer flow by stabilizing the flow. Increasing buoyancy values in the positive
sense leads to a convergence of the instability curves obtained when D0∼1 to a single curve
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Figure 2: Comparison of (a) the growth of the wave number, and (b) wave speed with increasing buoyancy
for the limiting case (� � �) and the full eigenrelation (—) when D0 = 0.1.
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Figure 3: Full eigenrelation prediction of (a) the linear neutral wave number, and (b) the linear neutral
wave speed (—), with (G0t, G0c) = 0.1, 0.5, and 1.
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Figure 4: Linear neutral (a) wave number and (b) wave speed against the buoyancy parameters (G0t, G0c)
when D0 = 0.01, 0.02, 0.03 and 0.04.
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Figure 5: Variation of the linear neutral (a) wave number and (b) wave speed against the Damkohler
number for increasing buoyancy parameters.

such as those shown in Figure 3(b). The value D0∼1 gives the greatest interaction between
the chemical kinematics and the fluid dynamics. The increase in buoyancy is confirmed to be
destabilizing for all Damkohler numbers. For a fixed buoyancy parameter value, the wave
speed increases with increases in the Damkohler number in the case of the branch of the
instability with larger wave numbers. However, the wave speed decreases with increasing
Damkohler numbers for the part of the graph with lower wave speed. Only one branch
of the instability remains if the Damkohler number is raised to values greater or equal to
one. The boundary layer flow is relatively stabilized by small Damkohler numbers, that is,
(D0 ≤ 0.03).

Figure 5 shows the destabilizing nature of buoyancy. Both the neutral wave number
and phase speed increase with increasing positive buoyancy.

6. Conclusion

In this paper, we have considered the hydrodynamic stability of two-dimensional flow. We
considered two factors that affect the onset of transition to turbulence. We investigated
the effects of fluid buoyancy and slow chemical reaction kinematics (as measured by
the Damkohler number) on the linear stability of disturbance wave modes in a two-
dimensional boundary layer flow using self-consistent asymptotic methods. Physically, since
the Damkohler number is the ratio of the flow time scale of the fluid to that of the chemical
reaction time scale, the limit of large Damkohler numbers means that chemical kinematics
proceed at much faster rate compared to fluid hydrodynamics. If the Damkohler number is
close to zero, as is the case in this study, the chemical reactions are slow compared to the
motion of the fluid. In such a phenomenon, the system is said to be kinematically controlled.
Examples of such processes are low-temperature reactors and bioreactors.

The effect of increasing fluid buoyancy was shown to be destabilizing confirming
the earlier findings by, for example, Motsa et al. [7] and Shateyi et al. [6]. By extending the
work of Shateyi et al. [6], we have shown that the presence of an extra heat source term
G0t further destabilizes the boundary layer flow. With this extra source term, the instability
has three branches when D0 ≤ 0.02 instead of the one branch found in Shateyi et al. [6].
However, increasing the reaction kinematics so that the Damkohler number is equal to one
collapses the branches to just one. We have further shown that the boundary layer flow can
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be stabilized by slowing down the reaction kinematics so that the Damkohler number is
small (<0.03). It is understood that if the onset of transition is delayed, then, among other
factors, drag will be reduced.

Appendix

The constants as used in the article are

B0 = α0c0λ
2
1I3 −

2α0λ2c0

λ1
, B1 =

2α0λ2c02

λ2
1

ln
∣∣∣∣ c0

λ1

∣∣∣∣,
B2 = −B0c0 − L0c0G0t − L1c0G0c + B1λ1 + E0 + λ1ω1 − α1c0λ1,

B3 = B2 + α0F1 + α2
0F2,

B4 = G0tα0
(
T∞B − T

0
B

)
+G0cα0

(
C∞B − C

0
B

)
+ α0

(
α0U

∞
B − c0λ1

)
,

E0 =
−α0c0

(
γ2G0t + μ2G0c

)
λ1

,

F1 = α2
0J0 +G0t

(
J3 +

D0

α0
J1

)
+G0c

(
J4 +

D0

α0
J2

)
, F2 = U∞B G0tH1 +U∞B c0λ1I2 + c0,

H1 =
∫∞

0

TB − γ1

U2
B

dY, H2 =
∫∞

0

CB − μ1

U2
B

dY,

I1 = J5 + J6, I2 =
∫∞

0

1
U2
B

dY, I3 =
∫0∗

Y0

1
U2
B

dY,

J0 =
∫∞
Y0

U2
B dY, J1 =

∫∞∗
Y0

TBY
UB

dY, J2 =
∫∞∗
Y0

CBY

UB
dY,

J3 =
∫∞∗
y1

TBY

∫Y

y0

G0tγ1 +G0cμ1 + α0 +G0t
(
TB − γ1

)
U2
B

dY,

J4 =
∫∞∗
y1

CBY

∫Y

y0

G0tγ1 +G0cμ1 + α0 +G0c
(
CB − μ1

)
U2
B

dY,

J5 =
∫∞∗

0
CBY

(∫Y

Y0

TB − γ1
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dY1

)
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∫∞∗
0
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(∫Y

Y0

CB − μ1

U2
B

dY1

)
dY.

L0 = α0λ1

∫0∗

Y0

TB − γ1

U2
B

dY, L1 = α0λ1

∫0∗

Y0

CB − μ1

U2
B

dY.

(A.1)
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