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1. Introduction

The present paper is the first in a series of three works devoted to a systematic study of a
specific singular integral equation that plays a key role in aeroelasticity. This is the Possio
integral equation that relates the pressure distribution over a typical section of a slender wing
in subsonic compressible air flow to the normal velocity of the points on a wing surface
(downwash). First derived by Possio [1], it is an essential tool in stability (wing flutter)
analysis. In spite of the fact that there exists an extensive literature on numerical analysis of the
Possio (or modified Possio) equation, its solvability has never been proved rigorously. In our
study, we focus on subsonic compressible flow. The problem of a pressure distribution around
a flying wing can be reduced to a problem of velocity potential dynamics. Having a pressure
distribution over a flying wing, one can calculate forces and moments exerted on a wing due to
the air flow, which is an extremely important component of a wing modeling. Mathematically,
the problem can be formulated in the time domain in the form of a system of nonlinear
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Figure 1: Wing structure beam model.

integrodifferential equations in a state space of a system (evolution-convolution equations).
(As illustrating example for the case of an incompressible air flow, see [2–4].) So, the problem of
stability involves as an essential part a nonlinear equation governing the air flow. Assuming
that the flow is subsonic, compressible, and inviscid, we will work with the linearized version
together with the Neumann-type boundary condition on a part of the boundary. It can be cast
equivalently as an integral equation, which is exactly the Possio integral equation. Our main goal
is to prove the solvability of this equation using only analytical tools. We should mention here
that most of the research is currently done by different numerical methods, for example, [5, 6],
and very few papers on analytical treatment of the Possio equation are available [7, 8]. In
essence, the partial differential equations are approximated by ordinary differential equations
for both the structural dynamics and aerodynamics. However, it is important to retain full
continuous models. It is the Possio integral equation that is the bridge between Lagrangian
structural dynamics and Eulerian aerodynamics. In particular, using the solution of the Possio
equation, one can calculate the aerodynamic loading for the structural equations. As the
simplest structural model (Goland model [9, 10]), let us consider a uniform rectangular beam
(see Figure 1) endowed with two degrees of freedom, plunge and pitch. Let the flow velocity
be along the positive x-axis with x denoting the cord variable, −b � x � b; let y be the span or
length variable along the y-axis, 0 � y � l. Let h be the plunge, or bending, along z-axis; let
θ be the pitch, or torsion angle, about the elastic axis located at x = ab, where 0 < a < 1 and
ab is the distance between the center-line and the pitch axis; let X(y, t) = (h(y, t), θ(y, t))T (the
superscript “T” means the transposition). Then the structural dynamics equation is

MXtt(y, t) + KX(y, t) =
(
L(y, t),M(y, t)

)T
, (1.1)

where M is the mass–inertia matrix and K is the stiffness differential operator, K =
diag{EI (∂4/∂y4), − GJ(∂2/∂y2)}, with EI and GJ being the bending and torsion stiffness,
respectively. L(y, t) and M(y, t) are the aerodynamic lift and moment about the elastic axis.
System (1.1) is considered with the boundary conditions h(0, t) = h′(0, t) = θ(0, t) = 0; h′′(l, t) =
h′′′(l, t) = θ′(l, t) = 0. Certainly the structure model can be and has been extended to several
degrees of freedom (but still linear) or to nonlinear models [11, 12]. For example, in [12]
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complete and general nonlinear theory with particular emphasis given to the fundamentals
of the nonlinear behavior has been developed. The theory is intended for applications to long,
straight, slender, homogeneous isotropic beams with moderate displacements, and is accurate
up to the second order provided that the bending slopes and twist are small with respect to
unity. Radial nonuniformities (mass, stiffness, twist), cordwise offsets of the mass centroid
and tension axis from the elastic axis, and wrap of the cross-section are included into the
structural equations. The nonlinearities can be important in determining the dynamic response
of cantilever blades, and they are especially important in determining the aeroelastic stability
of torsionally flexible blades. One can also add to (1.1) a control term as in [13, 14]. However,
the emphasis in the present paper is on aerodynamics—by far the most complicated part—and
the structure interaction, specifically, on force and moment terms in (1.1).

Now we mention that the distinguishing feature of the aerodynamic model is that the air
flow is assumed to be nonviscous. The flutter instability phenomena are captured already in
nonviscous flow. Hence, the governing field equation is no longer the Navier-Stokes equation
but the Euler full potential equation, and the main assumption is that the entropy is constant.
As a result, the flow is curl-free and can be described in terms of a velocity potential. The
unknown variable in the Possio equation is the velocity potential. Let us show that the velocity
potential yields explicit expressions for the lift and moment from (1.1) (see, e.g., [9]).

The aerodynamic lift and moment (per unit length) are given by the formulas

L(y, t) =
∫b

−b
δp dx, M(y, t) =

∫b

−b
(x − a) δp dx, (1.2)

where p is pressure and δp = p(x, y, 0+, t) − p(x, y, 0−, t), 0 � y � l, |x| < b. As already
mentioned, the velocity potential ϕ(x, y, z, t) satisfies the Euler full potential equation [8]. If
one can derive a representation for the potential ϕ, then the following formula can be used for
pressure calculation:

p(x, y, z, t) = p∞
(

1 +
γ − 1
a2
∞

(
U2

2
−
∂ϕ

∂t
−
∇ϕ·∇ϕ

2

))γ/(γ−1)

, (1.3)

where p∞ = ρ2 a2
∞ γ−1, a∞ is the far-field speed of sound, ρ is the air density, and γ > 1 is the

adiabatic constant; U is a speed of a moving wing. So knowing the velocity potential ϕ, we
immediately obtain δp and thus lift L and moment M.

Any aeroelastic problem breaks into two parts. First, it is a field equation (for a linearized
version of the field equation for a velocity potential ϕ, see (2.2)) with the boundary conditions,
that is, (a) flow tangency condition (see (2.3)), (b) Kutta-Joukowski condition (see (2.5)),
and (c) far-field conditions (see (2.6)). It is the flow tangency condition that establishes the
connection between the structural and aerodynamical parts since the downwash function wa

of (2.3) is expressed explicitly in terms of the plunge h and pitch θ. We mention here that
the unique feature of the aerodynamic boundary conditions is that we have the Neumann
condition only on a part of the boundary z = 0, that is, only on the structure, and a related but
different condition on the rest of the boundary, which is purely aerodynamic (not involving the
structure dynamics). The second part involves the structure state variables via flow tangency
condition (2.3) and more importantly the lift and moment.

Summarizing all of the above, one can see that the entire aeroelastic problem (structure
and aerodynamics) becomes in general a nonlinear convolution (due to the expressions for the
lift and moment) and/or evolution equation in terms of the structure state variables, whose
stability with respect to the parameter U is then the “flutter problem” one has to resolve.
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Dealing with the “flutter problem,” one cannot proceed without mentioning that it was
an important topic of famous Th.Theodorsen research (see, e.g., [15]). The determination
of pressure distribution and aerodynamic loads on an airfoil exposed to a two-dimensional
stream of incompressible fluid flow was a central problem in aeronautics of the early 1930’s.
Flutter was first encountered on tail-planes and wings during World War I, but rigorous
theory for its prediction took many years to develop. The greatest challenge was to supply
aerodynamic terms for the governing equations. This was the strongest motivation for research
on air-loads experienced by wings and airfoils performing time-dependent motions. It was
recognized that the first step would be to adapt the methods of the “thin-airfoil theory”
so as to account for phenomena such as small oscillations normal to the directions of
flight and impulsive changes of angle of attack. The main feature of the analytical scheme
in Theodorsen’s technical report [15] (which is now a classical paper) was related to the
Joukowski transformation between parallel-stream flows past a circle and a zero-thickness flat
plate. Even though this looks as oversimplification, the author of TR−496 (see [15]) knew that
within the framework of thin-airfoil theory, the steady-flow problems of thickness and camber
could be rigorously separated from the unsteady case, on which he focused. He correctly
enforced the Kutta condition in the presence of infinite wake of trailing vortices. The main
discovery of this report is a set of complex frequency-response functions connecting vertical
translation (or bending) and angle of attack (or torsion) as “inputs” with unsteady lift and
pitching moment as “outputs.” The most important result of the entire investigation was that
regardless of the nature of the small oscillation or of the “output” quantity to be found, only a
single transcendental function appears in their relationship. It is the well-known “Theodorsen
function”

C(k) = F(k) + iG(k) =
H

(2)
1 (k)

H
(2)
1 (k) + iH(2)

0 (k)
, (1.4)

with H
(2)
0,1 (k) being the Hankel functions of the zero or first order, respectively, and of the

second kind. This exact flutter solution including results for control surfaces has had a keystone
role in the flutter analysis. It is interesting to note that Theodorsen function C(k) occurs in the
theory of propulsion of birds and fish as well. With the aerodynamic terms constructed by
adapting the formulas and ideas in TR−496 [15], it becomes possible to predict critical “flutter
boundaries” quite accurately.

One of the most complete and important sources related to contemporary status of
aeroelasticity is found in [16], where theoretical methods are combined with experimental
and numerical results providing better understanding of the theory and its limitations. As
demonstrated in [16], much of the theoretical and experimental developments can be applied
to different engineering areas, and a common language can be used for explanation of
different phenomena. Even though historically the entire field of aeroelasticity has centered in
aeronautical applications, now the applications are found in civil engineering (on flows about
bridges and tall buildings, see [16, Chapter 6] and [17]); in mechanical engineering (on flows
about turbomachinery blades and fluid flows in flexible pipes, see [16, Chapters 3, 7, 8, and
12] and [18]); in nuclear engineering (on flows about fuel elements and heat exchanger vanes).
Moreover, aeroelasticity plays a crucial role in the development of new aerospace systems such
as unmanned air vehicles (UAVs) [19, 20].

Before we turn to the description of the results of the present paper, we would like to
mention earlier efforts to use integral transformations in order to calculate lift and pitching
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moment on a wing of given shape. Venters [21] presents a lifting surface theory for steady
incompressible flows based on a shear flow rather than a potential flow model. The theory
developed in [21] is intended to account for the boundary layer. The method of Fourier
transforms is used to evaluate the pressure on a surface of infinite extent and arbitrary
contour. The research initiated in [21] is continued in [22, 23], where a general theory of
planar disturbances of inviscid parallel shear flows has been developed. This theory has
been successfully applied to such problems as the generation of waves at a free surface, the
interaction of a boundary layer with a flexible wall, the flow about a wing in or near a jet or
wake, and the influence of the main boundary layer of a wing on control surface effectiveness.

Now we briefly describe the content of the present paper. In Section 2, we give a rigorous
formulation of an initial boundary value problem for a partial differential equation for a
disturbance potential (see (2.2)). We discuss the Lp-space, 1 < p < 2, setting for the equation
and the boundary conditions. In Section 3, we present a new form for the initial boundary
value problem by applying two integral transformations, which yields Laplace transform in
time variable and Fourier transform in x-variable of the unknown function. Such a double
transform allows us to give the first version of the Possio equation (see (3.22)). Evidently, (3.22)
is only the convenient initial point for the next move, that is, eliminating the Fourier transform
representation. Section 4, being just a technical result, is very important. In this section, we
prepare the main equation from (3.22) for Mikhlin multiplier theory application. In Section 5,
we transform (3.22) to a singular integral equation, which is singular in more than one sense.
Brief discussion and conclusions are given in Section 6.

In the conclusion of the introduction, we briefly outline the original version of the Possio
equation [1], and provide some justification that a different version of it, derived and studied
in the aforementioned series of our papers, is more convenient for analytical investigation.

The derivation of the original Possio integral equation [1], that can be found in [9],
is based on representing the airfoil with a sheet of acceleration potential doublets along the
projection of the airfoil. The doublet is obtained from a simple solution of (6.80) in [9] (which
coincides with (2.8) of the present paper) known as a source pulse. Following the steps
presented in [9], one obtains a sinusoidally pulsating doublet of some frequency ω. After
nontrivial calculations, one arrives at the Possio integral equation of the form

wa(x) = − ω

ρ∞u2
P.V.

∫b

−b
Δpa R

(
M,

k(x − ξ)
b

)
dξ, |x| < b. (1.5)

The problem is to find an operator, which is inverse to the above integral operator understood
as a Cauchy principal value integral. The kernel function R is extremely complicated and is
given explicitly by the following formula:

R =
1

4
√

1 −M2

{

exp
(
i
kM2(x − ξ)
b
(
1 −M2

)2

)[
iM

|x − ξ|
x − ξ H

(2)
1

(
kM|x − ξ|
b
(
1 −M2

)
)
−H(2)

0

(
kM|x − ξ|
b
(
1 −M2

)
)]

+ i
(
1 −M2) exp

(
i
k(x − ξ)

b

)[
2

π
√

1 −M2
ln
(

1 +
√

1 −M2

M

)

+
∫k(x−ξ)/b(1−M2)

0
eivH

(2)
0

(
M|v|

)
]}

,

(1.6)
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where M is the Mach number, k = ωb/U is the reduced frequency, H(2)
j , j = 0, 1, is the Hankel

function of the second kind and of the zero or first order, respectively. By examination, one can
see that (1.5) is very complicated not only because its kernel (1.6) contains special functions
with nonstandard arguments, but also because it is really difficult to describe explicitly the
nature of singularities. Contrary to (1.5), in the equation that we study in our series of papers,
we can precisely formulate the nature of singularities. Namely, in our version, the Possio
integral equation is singular by two reasons: (a) it contains singular integral operations, that is,
the finite Hilbert transformation and its specific “inverse;” (b) one integral equation contains
integral operators being different by their nature, that is, the finite Hilbert transformation,
Volterra integral operator, and an integral operator with the degenerate kernel. Each type
of integral operation requires its own approach, which makes the problem such a challenge.
Regarding the Possio integral equation in its original form, C. Possio himself attempted to solve
the equation using numerical integration technique. He presented an unknown function in the
form of a series: Δpa = A0 cot(θ/2) + Σn�1An sin(nθ), ξ/β = cosθ. However, this substitution
does not permit a straightforward inversion, and also convergence of the series is not always
rapid. Many attempts have been made to develop a good numerical scheme for inversion of
the integral in the Possio equation, but rigorous proof of the solvability of the equation has
never been produced. In our series of papers, we are addressing the problem of the unique
solvability using rigorous analytical tools.

2. Aerodynamic field equation

In this section, we start with the initial boundary value problem for a partial differential
equation, which is known in the literature as the “small disturbance potential field equation”
for subsonic inviscid compressible flow [8]. We assume that the air flow is around a large
aspect-ratio planar wing, which means that the dependence on the span variable along the
wing is neglected. The wing is then reduced to a “typical section” or a “chord.”

We will use the following notations: U is the free-stream velocity; a∞ is the sound speed;
M = U/a∞ is the Mach number 0 < M � 1.

The velocity potential of the airflow is given by the expression

Ux + ϕ(x, z, t), −∞ < x <∞, 0 � z <∞, t > 0, (2.1)

where Ux is the free-stream velocity potential, and ϕ is a small perturbation of the velocity
potential. The disturbance potential ϕ satisfies the following linearized field equation [7]:

ϕtt(x, z, t) + 2Ma∞ϕtx(x, z, t) = a2
∞
(
1 −M2)ϕxx(x, z, t) + a2

∞ϕzx(x, z, t),

−∞ < x <∞, 0 � z <∞, t > 0.
(2.2)

Together with this equation, we introduce the following boundary conditions.
(1) The flow tangency (or nonseparable flow) condition is

∂

∂z
ϕ(x, z, t)|z=0 = wa(x, t), |x| < b, (2.3)

where wa(x, t) is the given normal velocity of the wing (the downwash); b is a size of a “half
chord.” We note that condition (2.3) is a nonhomogeneous Neumann condition prescribed only
on a part of the boundary, z = 0.
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(2) The Kutta-Joukowski conditions. To formulate these conditions, we need one more
function, that is, the acceleration potential defined by

ψ(x, z, t) = ϕt(x, z, t) +Uϕx(x, z, t). (2.4)

The conditions below reflect the following physical situation: pressure off the wing and at the
trailing edge must be equal to zero. These conditions are

ψ(x, 0, t) = 0 for |x| > b, lim
x→b−0

ψ(x, 0, t) = 0. (2.5)

(3) Far-field conditions. The disturbance potential and velocity tend to zero at a large
distance from the wing:

ϕ(x, z, t) −→ 0, ∇ϕ(x, z, t) −→ 0, as |x| −→ ∞ or z −→ ∞. (2.6)

Now we present a functional-analytic reformulation of problem (2.2)–(2.6) that will be
used in the rest of the paper. We will consider the boundary value problem (2.2)–(2.6) in
Lp(−∞,∞), 1 < p < 2, assuming that the initial conditions are trivial, that is, ϕ(x, z, 0) =
ϕt(x, z, 0) = 0. It will be clear from the analysis below that it is essential to use p /= 2.

Now we describe the function space for our future solution. We assume that the function
ϕ(x, z, t) is absolutely continuous with absolutely continuous first derivatives with respect to
the variables z and t. Regarding the properties of ϕ as a function of x, we make the following
assumption. Let Dx be a closed linear operator in Lp(−∞, ∞) corresponding to the partial
derivative ∂/∂x. Then, we require that

ϕ(·, z, t) ∈ D(D2
x), (2.7)

with D being the domain of D2
x, and Dxϕ(·, z, t) being absolutely continuous with respect to t.

We require that (2.2) be satisfied in the sense that

∂2

∂t2
ϕ(·, z, t) + 2Ma∞

∂

∂t
Dxϕ(·, z, t) =

(
a2
∞
(
1 −M2)D2

x + a
2
∞
∂2

∂z2

)
ϕ(·, z, t). (2.8)

The flow tangency condition (2.3) will be understood in the sense that
∫b

−b

∣∣∣∣
∂

∂z
ϕ(x, z, t) −wa(x, t)

∣∣∣∣

p

dx −→ 0 as z −→ 0. (2.9)

The Kutta-Joukowski conditions (2.5) will be written in integral form as well. We note that due
to our assumptions on ϕ, the acceleration potential is well defined. Conditions (2.5) will be
replaced with the following requirements:

∫∞

−∞

∣∣ψ(x, z, t) − ψ(x, 0, t)
∣∣pdx −→ 0 as z −→ 0,

∫−b

−∞

∣∣ψ(x, 0, t)
∣∣pdx +

∫∞

b

∣∣ψ(x, 0, t)
∣∣pdx = 0.

(2.10)

Regarding the initial conditions, we require

∥∥ϕ(·, z, t)
∥∥
Lp(−∞,∞) −→ 0,

∥∥∥∥
∂

∂t
ϕ(·, z, t)

∥∥∥∥
Lp(−∞,∞)

−→ 0 as t −→ 0, 0 < z <∞. (2.11)

In the next sections, we reduce the initial boundary value problem (2.8)–(2.11) to a specific
singular integral equation, the Possio integral equation. This derivation is quite nontrivial.
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3. Modification of (2.8) using Fourier and Laplace transformations

Let f(·, z, t) ∈ Lp(−∞, ∞), z > 0, t > 0, be a function that has the following property:

∫∞

0

∥
∥f(·, z, t)

∥
∥
Lp(−∞,∞)e

−σtdt <∞ forσ � σa > 0. (3.1)

In the future, we will omit the subindex Lp(−∞,∞) using the notation ‖ · ‖ for the Lp norm. Due
to (3.1), we can define the Laplace transform of f with respect to the time variable. We denote
the Laplace transform of a function f by the same letter capitalized (F). So, if ϕ(·, z, t) belongs
to the class of functions satisfying (3.1), then the Laplace transform of ϕ(·, z, t) is

Φ(·, z, λ) =
∫∞

0
ϕ(·, z, t)e−λtdt, Rλ � σa > 0, 0 < z <∞. (3.2)

It is clear that from (2.8) for ϕ(·, z, t) we obtain a new equation for Φ(·, z, λ):

λ2Φ(·, z, λ) + 2Ma∞λDxΦ(·, z, λ) = a2
∞
(
1 −M2)D2

xΦ(·, z, λ) + a2
∞Φzz(·, z, λ). (3.3)

In the next step, we apply the Fourier transformation with respect to the variable x to (3.3),
and have (“overhat” means the result of the Fourier transformation)

Φ̂(ω, z, λ) =
∫∞

−∞
Φ(x, z, λ)e−iωxdx, −∞ < ω <∞. (3.4)

As it is well known, the Fourier transformation is a bounded linear operator from Lp(−∞,∞)
into Lq(−∞,∞) (p−1 + q−1 = 1), 1 < p < 2. Applying the spatial Fourier transformation to (3.3),
we obtain a new equation for Φ̂:

(
λ2 + 2iωλMa∞

)
Φ̂(ω, z, λ) = −a2

∞
(
1 −M2)ω2Φ̂(ω, z, λ) + a2

∞Φ̂zz(ω, z, λ). (3.5)

Rearranging terms in this equation, we obtain

Φ̂zz(ω, z, λ) =
(
1 −M2)ω2Φ̂(ω, z, λ) +

(
λ2

a2
∞

+
2iωλM
a∞

)
Φ̂(ω, z, λ). (3.6)

Recalling that U/a∞ =M and denoting λ̃ = λ/U, we rewrite (3.6) as

Φ̂zz(ω, z, λ) =
(
λ̃2M2 + 2iωλ̃M2 +ω2(1 −M2))Φ̂(ω, z, λ). (3.7)

The quadratic polynomial (λ̃2M2 + 2iωλ̃M2 + ω2(1 −M2)) will play an important role in the
sequel. We make the following agreement: let us keep the notation λ for λ̃ and use the notation
λ′ for the original λ; that is, with this agreement, (3.7) obtains the following form:

Φ̂zz

(
ω, z, λ′

)
=
(
λ2M2 + 2iωλM2 +ω2(1 −M2))Φ̂

(
ω, z, λ′

)
, λ′ = λU. (3.8)

Let

D(ω, λ) = λ2M2 + 2iωλM2 +ω2(1 −M2). (3.9)
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Let us show that |D(ω, λ)| is bounded below when Rλ � σa > 0. Indeed,

∣∣D(ω, λ)
∣∣ =

∣∣M2(iω + λ)2 +ω2∣∣ � M2∣∣λ + iω
∣∣2 � M2∣∣Rλ

∣∣2 � M2σ2
a

U2
> 0. (3.10)

From this estimate, it follows that we can define the “positive” square root that we denote by√
D(ω, λ) such that

R
√
D(ω, λ) > 0. (3.11)

Thus, from (3.11) it follows that the differential equation (3.8) has a unique solution satisfying
the Far-field conditions, and this solution is

Φ̂
(
ω, z, λ′

)
= Φ̂

(
ω, 0, λ′

)
exp

(
− z

√
D(ω, λ)

)
. (3.12)

Now we have to satisfy the Kutta-Joukowski conditions and the flow tangency condition.
To write the flow tangency condition, we need a derivative with respect to z. Let

ν̂
(
ω, z, λ′

)
=

d

dz
Φ̂
(
ω, z, λ′

)
= −

√
D(ω, λ) Φ̂

(
ω, z, λ′

)
. (3.13)

In terms of ν̂, (3.12) can be written as

Φ̂
(
ω, z, λ′

)
= −

ν̂
(
ω, 0, λ′

)

√
D(ω, λ)

exp
(
− z

√
D(ω, λ)

)
. (3.14)

We notice that the Laplace transform of the acceleration potential is

Ψ
(
ω, z, λ′

)
= λ′Φ

(
x, z, λ′

)
+UΦ

(
x, z, λ′

)
(3.15)

and, therefore, using (3.14), we obtain

Ψ̂
(
ω, z, λ′

)
=
(
λ′ + iωU

)
Φ̂
(
ω, z, λ′

)
= −

(
λ′ + iωU

)
ν̂
(
ω, 0, λ′

)

√
D(ω, λ)

exp
(
− z

√
D(ω, λ)

)
. (3.16)

From (3.16), we obtain that

Ψ̂
(
ω, 0, λ′

)
= −

(
λ′ + iωU

)
ν̂
(
ω, 0, λ′

)

√
D(ω, λ)

. (3.17)

At this point, we introduce the standard notation, that is,

A(x, t) = − 2
U
ψ(x, 0, t). (3.18)

We will denote the Laplace transform of A with respect to the time variable by A. Multiplying
(3.17) by 2/U, we have

Â
(
ω, λ′

)
=

2(λ + iω)
√
D(ω, λ)

ν̂
(
ω, 0, λ′

)
, (3.19)
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or in another form

ν̂
(
ω, 0, λ′

)
=

√
D(ω, λ)

2(λ + iω)
Â
(
ω, λ′

)
, (3.20)

with ν̂ being defined in (3.13).
We notice that if we know Â(ω, λ′), then we know the velocity potential, that is,

Φ̂
(
ω, z, λ′

)
= − 1

2(λ + iω)
exp

(
− z

√
D(ω, λ)

)
Â
(
ω, λ′

)
. (3.21)

Finally, we obtain the following problem for Â :

ν̂
(
ω, 0, λ′

)
=

√
D(ω, λ)

2(λ + iω)
Â
(
ω, λ′

)
,

ν
(
x, 0, λ′

)
=Wa

(
x, λ′

)
, |x| < b,

A
(
x, λ′

)
= 0, |x| > b.

(3.22)

System (3.22) is a nonstandard boundary value problem. Indeed, the right-hand side of the first
equation in (3.22) has a product of the two functions and, therefore, this product corresponds
to a convolution of the function of x corresponding to

√
D(ω, λ)/2(λ + iω) and A(x, λ′).

On the other hand, if we restrict x to the interval [−b, b], we know the left-hand side in x-
representation (it is Wa(x, λ′)). Therefore, the first equation from (3.22) is indeed an integral
equation for A(x, λ′) provided that we can restore a function corresponding to the multiple√
D(ω, λ′)/2(λ + iω). In the next section, we obtain the first main result of the paper. We

present a careful derivation of the function of x whose Fourier transformation is given by the
aforementioned multiple. This result yields the Possio integral equation (see Theorem 5.13),
which will be derived in Section 5.

4. Main technical result for reconstruction of the inverse Fourier transform of (3.20)

The main purpose of this section is representing the right-hand side of (3.20) in the form of
a function of x depending parametrically on λ. As a consequence, incorporating second and
third conditions from (3.22) we immediately obtain the desired integral equation. Let

D(ω, λ) =

√
D(ω, λ)
λ + iω

. (4.1)

By direct calculations we obtain

D(ω, λ) =
|ω|

√
1 −M2

λ + iω

√

1 +
λM2

1 −M2

λ + 2iω
ω2

≡ |ω|
iω

√
1 −M2

(
1 +Q(ω, λ)

)
, (4.2)

where

Q(ω, λ) =
iω

λ + iω

√

1 +
λM2

1 −M2

λ + 2iω
ω2

− 1. (4.3)

The following result is valid for the function Q(ω, λ).
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Theorem 4.1. Q(·, λ) is a Fourier transform of a function q ∈ Lp(−∞,∞), p > 1, given explicitly by
the following formulas:

q(x, λ) =

⎧
⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎩

−λ e−λx√
1 −M2

− λ

π

∫α1

0
e−λsxa(x)ds, x > 0,

λ

π

∫α2

0
e−λ|x|sa(−s)ds, x < 0,

(4.4)

where

α1 =
M

1 +M
, α2 =

M

1 −M, a(s) =

√
(α1 − s)(α2 + s)

1 − s , −α2 < s < α2. (4.5)

Proof. To prove (4.4), we calculate Fourier transform of q directly and show that it is equal to
Q(·, λ) given in (4.3). So, for the Fourier transform, denoted by F[q], we have

F[q] ≡
∫∞

−∞
e−iωxq(x, λ)dx

=
λ

π

∫0

−∞
e−iωxdx

∫α2

0
e−λ|x|sa(−s)ds − λ

1 −M2

∫∞

0
e−λxe−iωxdx

− λ

π

∫∞

0
e−iωxdx

∫α1

0
e−λsxa(s)ds = I1 + I2 + I3.

(4.6)

Taking into account that Rλ � σa 
 1, we evaluate I2 and have

I2 = − λ√
1 −M2

∫∞

0
e−(λ+iω)xdx = − λ√

1 −M2 (λ + iω)
. (4.7)

Using (4.5), we evaluate I3 and have

I3 = − λ
π

∫α1

0
a(s)ds

∫∞

0
e−(λs+iω)xdx = − λ

π

∫α1

0

√
(α1 − s)(α2 + s)

(1 − s)(iω + λx)
ds. (4.8)

Evaluating I1, we obtain

I1 =
λ

π

∫α2

0
a(−s)ds

∫∞

0
e(iω−λs)xdx = − λ

π

∫α2

0
a(−s) ds

iω − λs. (4.9)

Combining together I1 and I3, we obtain

I1 + I3 = − λ
π

∫α1

−α2

a(s)ds
iω + λs

. (4.10)

To modify (4.10), let us introduce a new variable of integration:

ξ = s + α1α2 = s +M
(

M
(
1 −M2

)
)

= s +Mβ, β =
M

(1 −M2)
. (4.11)
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The following relations can be easily verified:

α1 − s = β − ξ, α2 + s =
M

1 −M + ξ − M2

1 −M2
= β + ξ;

1 − s = ξ + 1
1 −M2

,
iω

λ
+ s =

iω

λ
+ ξ −Mβ.

(4.12)

Using (4.12) and setting z = (iω/λ), we rewrite (4.10) as

I1 + I3 = − 1
π

∫β

−β

√
(β − ξ)(β + ξ)dξ

(1 − ξ +Mβ)
(
(iω/λ) + ξ −Mβ

) = − 1
π

∫β

−β

√
β2 − ξ2dξ

(1 − ξ +Mβ)(z + ξ −Mβ)
. (4.13)

Making transformation ξ¯ →− ξ in (4.13) and taking into account that (1/β) +M = 1/M, we get

I1 + I3 = − 1
π

∫β

−β

√
β2 − ξ2 dξ

(1 + ξ +Mβ)(z − ξ −Mβ)

=
1
π

∫β

−β

√
1 − (ξ/β)2 dξ

(
(1/β) +M + (ξ/β)

)(
(ξ/β) +M − (z/β)

)
β

=
1
π

∫β

−β

√
1 − (ξ/β)2 dξ

β
(
(1/M) + (ξ/β)

)(
(ξ/β) +M − (z/β)

) .

(4.14)

Let η = ξ/β, then

I1 + I3 =
1
π

∫1

−1

√
1 − η2 dη

(
η + (1/M)

)(
η +M − (z/β)

) =
β

π(1 + z)
(
i1 − i2

)
, (4.15)

where

i1 =
∫1

−1

√
1 − η2 dη

(
η +M − (z/β)

) , i2 =
∫1

−1

√
1 − η2 dη

η + (1/M)
. (4.16)

To evaluate the second integral of (4.16), we need the statement below, which will be proved
after the proof of Theorem 4.1.

Lemma 4.2. The following formula holds for |a| > 1:

∫1

−1

√
1 − x2

x + a
dx = π

(
a − sign(Ra)

√
a2 − 1

)
. (4.17)

To evaluate i1 from (4.16), we can derive a formula similar to (4.17). However, we notice
that the integrand of i1 is of the form

√
1 − η2/(η + κ), where κ is a complex number with
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a nonvanishing imaginary part (except for the one point where κ = M < 1). For such κ, one
can reconstruct the proof of the formula similar to (4.17) and have

i1 = π

(

M − z

β
+

√(
M − z

β

)2

− 1

)

. (4.18)

Substituting 1/M for a in (4.17), we obtain

i1 − i2
π

=M − z

β

=

√(
M − z

β

)2

− 1 − 1
M

−

√
1
M2

− 1

= −1 + z
β

+

√
1 −M2

M
+

1
β

√
z2 − β2

(
1 −M2

)
− 2zMβ

=
1 + z
β

⎡

⎢
⎣−1 +

1
1 + z

1√
1 −M2

+

√
z2 − 2zγ − γ

1 + z

⎤

⎥
⎦ ,

(4.19)

where γ = βM and β is defined in (4.11).
Returning to (4.15), we obtain

I1 + I3 = −1 +
1

(1 + z)
√

1 −M2
+

1
1 + z

√
z2 − 2zγ − γ. (4.20)

Now we can finalize the expression for Q combining (4.7) with (4.20) to have

Q(x, λ) = − λ√
1 −M2(λ + iω)

+
1

(1 + z)
√

1 −M2
+

z

1 + z

√

1 −
2γ
z

−
γ

z2
− 1. (4.21)

Recalling that z = iω/λ and noticing that (2γ/z) + (γ/z2) = (2Mβλ/iω) − (Mβλ2/ω2), we
obtain from (4.21) that

Q(x, λ) =
iω

λ + iω

√

1 −
2Mβλ

iω
+
Mβλ2

ω2
− 1

=
iω

λ + iω

√

1 +
2Mβλiω +Mβλ2

ω2
− 1

=
iω

λ + iω

√

1 +
λMβ

ω2
(λ + 2iω) − 1.

(4.22)

This formula coincides with (4.3). To complete the proof of the theorem, it remains to show
that q ∈ Lp(−∞,∞). As the first observation, we notice that it suffices to prove the result for
the case λ = 1. Indeed, from (4.4) we obtain

∣∣q(x, λ)
∣∣ � |λ|

∣∣q(x, σ)
∣∣, σ = Rλ � σa > 0. (4.23)



14 Journal of Applied Mathematics

Thus,
∫∞

−∞

∣∣q(x, λ)
∣∣p dx � |λ|p

∫∞

−∞

∣∣q(x, σ)
∣∣p dx = |λ|p

∫∞

−∞

∣∣q(σx, 1)
∣∣p dx =

|λ|p
σ

∫∞

−∞

∣∣q(ξ, 1)
∣∣p dξ.

(4.24)

Taking into account |a(s)| � C <∞ for −α2 < s < α1, we get the following estimates:

∣∣∣∣

∫α1

0
e−xsa(s)ds

∣∣∣∣ � C
1 − e−α1x

1 + x
, x > 0,

∣∣∣∣

∫α2

0
e−|x|sa(−s)ds

∣∣∣∣ � C
1 − e−α|x|

1 + |x| , x < 0.

(4.25)

From estimates (4.25) we obtain

∫∞

−∞

∣∣q(x, 1)
∣∣p dx � C

[∫0

−∞

(
1 − e−α2|x|

1 + |x|

)p

dx +
∫∞

0

(
1 − e−α1x

1 + |x|

)p

dx

]
<∞ for p > 1. (4.26)

This estimate means that q ∈ Lp(−∞,∞).
The theorem is completely shown.

Now we complete the proof of the lemma.

Proof of Lemma 4.2. We consider the following integral:

I =
∫1

−1

√
1 − x2

x + a
dx, |a| > 1. (4.27)

Let x = cos θ, then

I =
∫π

0

sin2 θ

cos θ + a
dθ =

1
2

[∫π

0

dθ

cos θ + a
−
∫π

0

cos 2θ
cos θ + a

dθ

]
≡ 1

2
(
j1 − j2

)
. (4.28)

Evaluating j1, we have

j1 =
∫π

−π

dθ

eiθ + e−iθ + 2a
. (4.29)

Integrating in the complex plane, we assume that z = eiθ, and thus linear integral can be
represented as a contour integral along a unit circle centered at the origin:

j1 =
1
i

∮

C1(0)

dz

z
(
z + z−1 + 2a

) =
1
i

∮

C1(0)

dz

z2 + 2za + 1
. (4.30)

The roots of the denominator are z1 = −a +
√
a2 − 1, z2 = z−1

1 = −a −
√
a2 − 1. First, we show

that for |a| > 1, neither of the roots lie on the circumference. Indeed, assume that |z1| = 1, then
|z2| = 1. Therefore,

z1 = −a +
√
a2 − 1 = eiψ, z2 = −a −

√
a2 − 1 = e−iψ . (4.31)
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From (4.31), it follows that a = −cosψ which contradicts our assumption, |a| > 1. Thus, one
of the roots is inside the circle C1(0) = {z : |z| = 1} and the second one is outside. Let |z1| =
| − a +

√
a2 − 1| < 1, then by the residue theorem we have

j1 =
1
i

∮
dz

(
z − z1

)(
z − z2

) =
π√
a2 − 1

. (4.32)

Finally, we evaluate j2 from (4.28):

j2 =
1
2

∫π

−π

cos 2θ
cos θ + a

dθ =
1
2

∫π

−π

e2iθ + e−2iθ

eiθ + e−iθ + a
dθ

=
1
2i

∮

C1(0)

(
z2 + z−2

)
dz

z2 + 2az + 1
=

1
2i

∮

C1(0)

dz
(
z4 + 1

)

z2
(
z − z1

)(
z − z2

) .

(4.33)

We have to evaluate the residues at the points z = 0 and z ≡ z1 = −a +
√
a2 − 1. We have

(a)Res[f ; 0] = π
(

z4 + 1
z2 + 2az + 1

)′∣∣∣∣
z=0

= −2πa,

(b)Res[f ; z1] = π
z2 + z−2

2
√
z2 − 1

∣∣∣∣
z=−a+

√
a2−1

= π

(
a −

√
a2 − 1

)2
+
(
a +

√
a2 − 1

)2

2
√
a2 − 1

= π
2a2 − 1√
a2 − 1

.

(4.34)

Using (4.34), we get

j2 = Res[f ; 0] + Res[f ; z1] =
π√
a2 − 1

(
2a2 − 1 − 2a

√
a2 − 1

)
=

π√
a2 − 1

(
a −

(√
a2 − 1

))2
,

(4.35)

which together with (4.32) yields

j1 − j2 =
π√
a2 − 1

(
1 −

(
a −

√
a2 − 1

)2)
=

π√
a2 − 1

(
1 − a2 + a

√
a2 − 1

)
= 2π

(
a −

√
a2 − 1

)
.

(4.36)

Inserting (4.36) into (4.28), we obtain (4.17).
The lemma is completely shown.

Remark 4.3. Now we outline how the results obtained in this section will be used for rewriting
the first equation of (3.22) in the form of an integral equation with respect to the unknown
function A(·, λ′). If we consider that integral equation for |x| < b, then the left-hand side will
be given explicitly as the Laplace transform of the given downwash function Wa(·, λ′). The
right-hand side will be the convolution of the inverse Fourier transforms of the functions from
the right-hand side of (3.22). In other words, the right-hand side will be given as an integral
convolution operation over unknown function A(·, λ′).
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To achieve our goal, we will use (4.4), which gives an explicit function q whose Fourier
transform is (4.3). It turns out that (4.3) is not a convenient formula to work with. Namely,
using (4.4), we obtain the following Fourier representation for Q:

Q(ω, λ) = − λ√
1 −M2

1
λ + iω

− λ
∫α1

0

a(s)
λs + iω

ds + λ
∫α2

0

a(−s)
λ − iωds, Rλ � δa > 0. (4.37)

In terms of (4.37), we obtain that our main multiplier D(ω, λ) (from (4.2)) can be represented
in the form

1√
1 −M2

D(ω, λ) =
|ω|
iω

(
1 +Q(ω, λ)

)

=
|ω|
iω

− |ω|
iω

1√
1 −M2

λ

λ + iω
− |ω|
iω

λ

∫α1

0

a(s)ds
λs + iω

+
|ω|
iω

λ

∫α2

0

a(−s)ds
λs − iω , Rλ � δa > 0.

(4.38)

In the next section, we prove that each function at the right-hand side of (4.38) is the so-
called Mikhlin multiplier. Evidently each individual multiplier looks simpler than D(·, λ), which
allows us to construct an operator in Lp(−∞,∞) which corresponds to the entire multiplier D.
In particular, we derive the formulas for the operators corresponding to all the multipliers of
(4.38) and then sum them up.

5. Mikhlin multipliers

In this section, we derive the desired form of the Possio equation as an integral equation, and
show that the integral operator in this equation is bounded in Lp(−∞, ∞), 1 < p < 2. The main
tool in this derivation is the notion of Mikhlin multipliers [24].

Definition 5.1. Let g and f be two functions from Lp(−∞,∞), p > 1, and let G and F be their
Fourier transforms. Let there exist a function μ that relates G and F by the rule

G(ω) = μ(ω)F(ω). (5.1)

If μ is a continuously differentiable function (with one possible exception at ω = 0) such that

|μ(ω)| + |ω||μ′(ω)| � C <∞, (5.2)

then μ is called a Mikhlin multiplier.

Proposition 5.2 (see [24] for the proof). Let f and g be the functions from Definition 5.1, and let μ
be a Mikhlin multiplier. Then, there exists a bounded linear operator Q in Lp(−∞,∞) that relates f and
g by the rule

g = Q[f]. (5.3)

The norm of the operator Q can be estimated as follows:

‖Q‖Lp(−∞,∞) � CMp, (5.4)

where C is a constant from (5.2), andMp is a constant depending only on p.
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Our first result is related to the function from (3.20), that is,
√
D(ω, λ)/2(λ + iω). As

pointed out, if we can identify a function from Lp(−∞,∞) whose Fourier transform coincides
with the right-hand side of (3.20), then we will be able to rewrite (3.20) in a standard form,
that is, as an integral convolution equation. Our first statement is the following lemma.

Lemma 5.3. The function

D(ω, λ) =

√
D(ω, λ)
λ + iω

(5.5)

is a Mikhlin multiplier.

Proof. Since D(ω, λ) =M2λ2 + 2iωλM2 + (1 −M2)ω2, we have

D
′(ω, λ) =

iλM2 +ω
(
1 −M2)

(λ + iω)
√
D(ω, λ)

− i
√
D(ω, λ)

(
λ + iω

)2
. (5.6)

From (5.6), it can be readily seen that

|ωD
′(ω, λ)| � C <∞. (5.7)

We note that estimate (5.7) is valid for all λ including zero (though it is not our case). Indeed,
we have D

′(ω, 0) = (
√

1 −M2/iω) + (i
√

1 −M2/ω) = 0. Therefore, the function D(ω, λ) is a
Mikhlin multiplier.

The lemma is shown.

The next statement is related to the function (λ + iω)−1 which is a part of the main
multiplier (5.5) (see (4.38)).

Lemma 5.4. (1) The function (λ + iω)−1 is a Mikhlin multiplier.
(2) Let f ∈ Lp(−∞,∞), p > 1, and let g be related to f through the operatorQ1 by the following

formula:

g(x, λ) = (Q1f)(x) =
∫x

−∞
e−λ(x−η)f(η)dη. (5.8)

Then, the Fourier transforms are related through the multiplier

G(ω, λ) =
1

λ + iω
F(ω). (5.9)

(3) Q1 is a bounded operator in Lp(−∞,∞) for each λ such that Rλ � σa.

Proof. (1) To check that (λ + iω)−1 is a Mikhlin multiplier, it suffices to verify that for Rλ � σa >
0, the following estimate holds:

∣∣(λ + iω)−1∣∣ +
∣∣ω(λ + iω)−2∣∣ � C <∞, |ω| <∞, (5.10)

which is clearly the case.
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(2) Let us evaluate the Fourier transform of both parts of representation (5.8) and have

G(ω, λ) =
∫∞

−∞
eiωxdx

∫∞

−∞
e−λ(x−η)f(η)dη =

∫∞

−∞
f(η)eληdη

∫∞

η

e(λ+iω)xdx

=
1

λ + iω

∫∞

−∞
f(η)eiωηdη =

1
λ + iω

F(ω).

(5.11)

Equation (5.11) means that if Q1 is defined by (5.8), then the corresponding multiplier is
(λ + iω)−1.

(3) It remains to prove that Q1 is a bounded operator in Lp(−∞,∞). We have

∥∥Q1[f]
∥∥
Lp(−∞,∞) =

(∫∞

−∞
dx

∣∣∣∣

∫x

−∞
f(η)e−λ(x−η)dη

∣∣∣∣

p)1/p

�
(∫∞

−∞
dx

∣
∣∣∣

∫x

−∞

∣
∣∣∣f(η)

∣∣e−σ(x−η)dη
∣∣p
)1/p

,

(5.12)

where σ = Rλ � σa > 0. Let us use y instead of η in (5.12), that is, y = x − η, and have

∥∥Q1[f]
∥∥
Lp(−∞,∞) �

(∫∞

−∞
dx

∣∣∣∣

∫∞

0
f(x − y)e−σydy

∣∣∣∣

p)1/p

�
∫∞

0
e−σydy

(∫∞

−∞

∣∣f(x − y)
∣∣p dx

)1/p

� 1
σa

‖f‖Lp(−∞,∞).

(5.13)

In the last step, we have used the Minkowski inequality.
The lemma is shown.

In our next statement, we give only the formulation of the result since the proof can be
easily reconstructed from the proof of Lemma 5.4.

Lemma 5.5. (1) The function (λ − iω)−1 is a Mikhlin multiplier.
(2) Let f ∈ Lp(−∞,∞), p > 1, and let g be related to f through the operatorQ3 by the following

formula:

g(x, λ) =
(
Q3f

)
(x) =

∫∞

x

e−λ(ξ−x)f(ξ)dξ. (5.14)

Then, the Fourier transforms are related through the multiplier

G(ω, λ) =
1

λ − iωF(ω). (5.15)

(3) Q3 is a bounded operator in Lp(−∞,∞) for each λ such that Rλ � σa.
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To present our next result, we have to introduce the following notations.
(i) E1(z) is “the exponential integral” [25] defined by the formula

E1(z) =
1
π

∫∞

z

e−τ

τ
dτ, Rz > 0. (5.16)

The following properties of E1 will be needed in the sequel. From (5.16), we get

E′
1(z) = − e

−z

π z
= − 1

πz
+

1 + e−z

πz
, (5.17)

which yields another representation for E1(z) :

E1(z) = − 1
π

ln z +
∫z

1

1 − e−τ
τ

dτ. (5.18)

Equation (5.18) means that E1 is an analytic function correctly defined on the complex plane
with the branch cut along the negative real semiaxis including zero. From (5.18), it also follows
that E1 belongs to Lp(−b, b) for any p � 1.

(ii) Let us introduce a new function by the formula

g−(λ, x) = e−iλxE1
(
λ(b − x)

)
, |x| < b. (5.19)

For each x, g− is an analytic function of λ on the complex plane with the branch cut along the
negative real semiaxis and

∫b

−b

∣∣g−(λ, x)
∣∣pdx <∞, p � 1. (5.20)

Below we define several linear operators that we need in the future.
(iii) Let P be a projection, that is,

(Pf)(x) = f(x) for |x| < b, (Pf)(x) = 0 for |x| > b. (5.21)

(iv) Let H be the Hilbert transformation defined by [26, 27]

(Hf)(x) =
1
π

∫∞∗

−∞

f(ξ)
x − ξ dξ, (5.22)

where “∗” (star) means that the integral is understood as a Cauchy principal value integral.
Regarding the operator H, we need the following result.

For any f ∈ Lp(−∞,∞), (5.22) defines a function F̃ = H[f] ∈ Lp(−∞,∞). In addition,

H[H[f]] = −f. (5.23)

The Mikhlin multiplier, corresponding to the Hilbert transformation, is given explicitly by [26]

Γ(ω) =
|ω|
iω

, −∞ < ω <∞. (5.24)
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(v) Let Hb be a “finite Hilbert transformation” defined by

(
Hbf

)
(x) =

1
π

∫b∗

−b

f(ξ)
x − ξ dξ. (5.25)

(vi) Let Q1 be a Volterra integral operator defined in (5.8):

(
Q1f

)
(x) =

∫x

−∞
e−λ(x−ξ)f(ξ)dξ, f ∈ Lp(−∞,∞). (5.26)

(vii) Let L(λ) be the following operator:

L(λ)f =
∫x

−b
e−λ(x−ξ)f(ξ)dξ =

(
Q1P

)
f, f ∈ Lp(−∞,∞), |x| < b. (5.27)

(viii) Let L(λ, f) be the following linear functional:

L(λ, f) =
∫b

−b
eληf(η)dη. (5.28)

We notice that L defines a bounded linear functional in Lp(−b, b), p � 1.
Now we are in a position to present the next result.

Lemma 5.6. The following formula is valid for the linear mapping PHQ1P in Lp(−∞,∞) :

(
PHQ1P

)
[f] =

(
HbL(λ)

)
[f] − g−(λ, x)L(λ, f) for |x| < b,

(
PHQ1P

)
[f] = 0 for |x| > b.

(5.29)

Proof. Using (5.21), (5.22), and (5.26), we get for f ∈ Lp(−∞,∞) and |x| < b,

(
HQ1P

)
[f] = H

[∫x

−∞
e−λ(x−ξ)(Pf)(ξ)dξ

]

=
1
π

∫∞∗

−∞

dξ

x − ξ

∫ ξ

−b
e−λ(ξ−η)(Pf)(η)dη

=
1
π

[∫−b∗

−∞
+
∫b∗

−b
+
∫∞∗

b

]
dξ

x − ξ

∫ ξ

−b
e−λ(ξ−η)(Pf)(η)dη

≡ i1 + i2 + i3.

(5.30)

For the integral i1, we obtain the following result: if ξ < −b, then η < ξ < −b, and thus for such
η, P[f](η) = 0, which yields i1 = 0.

Using definitions (5.25) and (5.27), we obtain that i2 can be given as

i2 =
1
π

∫b∗

−b

dξ

x − ξ

∫ ξ

−b
e−λ(ξ−η)f(η)dη =

(
HbL(λ)P

)
[f], |x| < b. (5.31)
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Finally, we consider i3 and have

i3 =
1
π

∫∞∗

−b

e−λξ

x − ξdξ
∫b

−b
eληf(η)dη =

1
π

∫∞∗

−b

e−λξ

x − ξdξ L(λ, f), |x| < b, (5.32)

with L(λ, f) being defined as (5.28).
Consider an integral from (5.32) (we are interested only in the case |x| < b):

1
π

∫∞

b

e−λξ

x − ξdξ=−
1
π

∫∞

b−x

e−λ(τ+x)

τ
dτ =−e

−λx

π

∫∞

b−x

e−λτ

τ
dτ =−e

−λx

π

∫∞

λ(b−x)

e−τ

τ
dτ =−e−λxE1

(
λ(b − x)

)
.

(5.33)

In (5.33), we have used definition (5.16). Based on (5.19), we obtain (5.29).
The lemma is completely shown.

Corollary 5.7. The following formula holds for any f ∈ Lp(−∞, ∞) :

(
PHQ2P

)
[f] =

∫α1

0
a(s)

[(
HbL(λs)

)
[f] + g−(λs, x)L(λs, f)

]
ds, |x| < b, (5.34)

where Q2 is an operator corresponding to a Mikhlin multiplier
∫α1

0 a(s)ds/(λs + iω) with
g−, L(λ), and L being defined in (5.19), (5.27), and (5.28), respectively.

Proof. First, we notice that both functions (λs + iω)−1 and (λs − iω)−1 for −α2 � s � α1, Rλ �
σa > 0 are the Mikhlin multipliers. We want to identify the operator that corresponds to the
multiplier

κ1(ω) =
∫α1

0

a(s)ds
λs + iω

(
or κ2(ω) =

∫α2

0

a(−s)ds
λs − iω

)
, (5.35)

with α1 being defined in (4.5). By Lemma 5.4, the operator corresponding to the multiplier
(λs + iω)−1 can be defined as follows:

if G(λ, s) =
1

λs + iω
F(λ), then g(x, s) =

∫x

−∞
e−λs(x−ξ)f(ξ)dξ. (5.36)

Applying (5.36) to f ∈ Lp(−b, b), multiplying by a, and integrating, we obtain
∫α1

0
g(x, s)a(s)ds =

∫α1

0
a(s)ds

∫x

−b
e−λs(x−ξ)f(ξ)dξ. (5.37)

Taking into account that the factor |ω|(iω)−1 corresponds to the application of the Hilbert
transformation, we get

H
[∫α1

0
g(x, s)a(s)ds

]
=
∫α1

0
a(s)H

[∫x

−b
e−λs(x−ξ)f(ξ)dξ

]
ds. (5.38)

In (5.38), we have changed the order of the two integrals; one is a standard integral and
another one is “the star” integral. This step is justified in our case since f ∈ Lp(−b, b) and a
is a continuous function [27]. Therefore, if we denote by Q2 the operator corresponding to the
multiplier

∫α1

0 a(s)(ds/(λs + iω)), the following formula holds:

(
PHQ2P

)
[f] =

∫α1

0
a(s)

[(
HbL(λs)

)
[f] + g−(λs, x)L(λs, f)

]
ds, |x| < b, (5.39)

with g−, L(λ), and L being defined in (5.19), (5.27), and (5.28), respectively.
The proof of the corollary is complete.
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Lemma 5.8. The following formula is valid for the mapping PHQ3P in Lp(−∞,∞):

(
PHQ3P

)
[f] =

(
HbL∗(λ)

)
[f] + g+(λ, x)L(−λ, f) for |x| < b,

(
PHQ3P

)
[f] = 0 for |x| > b.

(5.40)

HereQ3 is an operator corresponding to the multiplier (λ − iω)−1 (see Lemma 5.5); a linear operatorL∗

is defined by

ifL∗f = g, then g(x) =
∫b

x

e−λ(ξ−x)f(ξ)dξ, |x| < b. (5.41)

The function g+(λ, ·) is defined by the formula

g+(λ, x) = eλxE1
(
λ(b + x)

)
, |x| < b, (5.42)

where E1 is an “exponential integral” from (5.16).

Proof. We discuss only the case |x| < b since the opposite case for |x| > b is obvious. For f ∈
Lp(−∞,∞), we have

(
HQ3P

)
[f] = H

[∫∞

x

e−λ(ξ−x)(Pf)(ξ)dξ
]

= H
[∫b

x

e−λ(ξ−x)f(ξ)dξ
]
=

1
π

∫∞∗

−∞

dξ

x − ξ

∫b

ξ

e−λ(η−ξ)(Pf)(η)dη

=
1
π

[∫−b∗

−∞
+
∫b∗

−b
+
∫∞∗

b

]
dξ

x − ξ

∫b

ξ

e−λ(η−ξ)(Pf)(η)dη ≡ i′1 + i
′
2 + i

′
3.

(5.43)

The integral i′3 = 0 since (Pf)(η) = 0 for η > b. Consider the second integral, then we have

i′2 =
1
π

∫b∗

−b

dξ

x − ξ

∫b

ξ

eλ(η−ξ)f(η)dη =
(
HbL∗(λ)

)
[f], |x| < b, (5.44)

where L∗ is given in (5.41). Finally, for i′1 we have when |x| < b that

i′1 =
1
π

∫−b∗

−∞

eλξ dξ

x − ξ

∫b

ξ

e−ληf(η)dη =
1
π

∫−b

−∞

eλξ dξ

x − ξ

∫b

−b
e−ληf(η)dη =

1
π

∫−b

−∞

eλξ dξ

x − ξ L(−λ, f). (5.45)

In (5.45), we have taken into account that |x| < b and definition (5.28). Finally, we consider an
integral term from (5.45) and transform it as

1
π

∫−b

−∞

eλξ

x − ξ dξ =
1
π

∫∞

−b

e−λη

x + ξ
dξ = eλx

1
π

∫∞

x+b

e−λ(τ)

τ
dτ = eλxE1

(
λ(x + b)

)
= g+(λ, x), (5.46)

with E1 and g+ being defined in (5.16) and (5.42), respectively. Collecting together (5.43) and
(5.45), we get (5.39).

The lemma is shown.
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Corollary 5.9. The operator corresponding to the multiplier κ2 from (5.35) can be given in the
following form:

∫α2

0
a(−s)

[(
HbL∗(λs)

)
[f] + g+(λs, x)L(−λs, f)

]
ds, |x| < b. (5.47)

Collecting together the results of Lemmas 5.4–5.8 and Corollaries 5.7 and 5.9, we arrive
at an important result that we formulate as a theorem below.

Theorem 5.10. The Possio equation for 0 < M < 1 can be expressed in the form

Wa

(
x, λ̃

)
=

√
1 −M2

2

×
{

Hb

[
F
(
·, λ̃

)]
− 1√

1 −M2

[(
λHbL(λ)

)[
F
(
·, λ̃

)]
− λg−(x, λ)L

(
λ, F

(
·, λ̃

))]

−
∫α1

0
a(s)

[(
λHbL(λs)

)[
F
(
·, λ̃

)]
− λg−(x, λs)L

(
λs, F

(
·, λ̃

))]
ds

+
∫α2

0
a(−s)

[(
λHbL∗(λs)

)[
F
(
·, λ̃

)]
− λg+(x, λs)L

(
− λs, F

(
·, λ̃

))]
ds

}

, |x| < b.

(5.48)

We will modify (5.48) to a more conventional form using Tricomi-Söhngen result [26, 27].

Proposition 5.11. Let ρ(x) =
√
(b − x)/(b + x), |x| < b , and let L2,ρ(−b, b) and L2,ρ−1(−b, b) be

the two weighted Hilbert spaces with the weights ρ and ρ−1, respectively. Then, the “airfoil equation”
can be given in the form

f(x) =
1
π

∫b∗

−b

w(ξ)
x − ξ dξ =

1
π

∫b∗

−b

v(ξ)
x − ξ ρ(ξ)dξ ≡ H[v]. (5.49)

The operator H defined in (5.49) is a Hilbert space isomorphism of L2,ρ(−b, b) onto L2,ρ−1(−b, b) . The
inverse operator H

−1 is given by

v(x) = H
−1[f](x) =

1
π

∫b∗

−b

f(ξ)
x − ξ ρ

−1(ξ)dξ, f ∈ L2,ρ−1(−b, b). (5.50)

Equation (5.50) represents the classical Söhngen inversion formula for the airfoil equation in the
presence of the Kutta condition. Multiplying both sides of (5.50) by ρ, one obtains

w(x) = v(x)ρ(x) =
1
π

√
b − x
b + x

∫b∗

−b

√
b + ξ
b − ξ

f(ξ)
x − ξ dξ ≡ T[f], f ∈ L2,ρ−1(−b, b). (5.51)

Our goal is to apply the operator T to both sides of (5.48) in order to reduce it to a form
convenient to deal with.

Lemma 5.12. The operator T can be applied to each term of the right-hand side of (5.48).
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Proof. To prove this lemma, it suffices to show that (5.48) can be represented in the form

2√
1 −M2

Wa(x, λ) = Hb

[
G1
]
+G(x, λ), (5.52)

with G ∈ Lp(−b, b), p > 4/3, and G1 ∈ Lp(−b, b), 1 < p < 2. Let us consider the sum of the first,
second, fourth, and sixth terms from the right-hand side of (5.48) and have

F1 = Hb[F] +
1√

1 −M2
Hb

[
λL(λ)F

]
−
∫α1

0
a(s)Hb

[
L(λs)F

]
ds +

∫α2

0
a(−s)Hb

[
λL∗(λs)F

]
ds.

(5.53)

Let us show that we can change the order of integration and the Hilbert transformation in the
last two terms of (5.53). We discuss only the first integral; the second can be treated in a similar
way. In the expression

∫α1

0 a(s)Hb[L(λs)F]ds there are two integrals with the inner integral
being integral with “the star” and the outer integral being standard. Since a is a continuous
function and F ∈ Lp(−b, b), that is, both integrals go over finite intervals, one can change the
order of integration [27]. Thus,

∫α1

0
a(s)Hb

[
L(λs)F

]
ds = Hb

[∫α1

0
a(s)L(λs)F

]
ds. (5.54)

Therefore,

F1 = Hb

[
F − 1√

1 −M2
λL(λ)F −

∫α1

0
a(s)L(λs)Fds +

∫α2

0
a(−s)L∗(λs)Fds

]
. (5.55)

It can be easily shown that the Hilbert transform Hb in (5.55) is applied to a function from
Lp(−∞,∞) as long as F ∈ Lp(−b, b).

Now we consider the third, fifth, and seventh terms in the right-hand side of (5.48). Since
L(·, F) is a functional over F, to verify that the sum of those three terms belongs to Lp(−b, b),
it suffices to check that the two functions g−(·, λ) and g+(·, λ) belong to Lp(−b, b). The latter
fact follows immediately from the definitions (5.19) and (5.42), and from the properties of
“exponential integral” E1 of (5.16).

The lemma is completely shown.

In what follows, we will apply the operator T to both sides of (5.48). In particular, we
will need the expressions and the properties for the functions h− and h+ defined below as

h−(x, λ) = T
[
ebλg−(·, λ)

]
, h+(x, λ) = T

[
ebλg+(·, λ)

]
. (5.56)

Evaluating h−, we have

h−(x, λ) =
1
π

√
b − x
b + x

∫b∗

−b

√
b + ξ
b − ξ

g−(ξ, λ)ebλ

ξ − x dξ

=
1
π

√
b − x
b + x

∫b∗

−b

√
b + ξ
b − ξ

dξ

ξ − xe
(b−ξ)λ

∫∞

1

e−(b−ξ)λt

t
dt

=
1
π

√
b − x
b + x

∫b∗

−b

√
b + ξ
b − ξ

dξ

ξ − x

∫∞

1

e−(b−ξ)λ(t−1)

t
dt.

(5.57)
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Change of the variable of integration in (5.57), σ = (b − ξ)(t − 1), yields

h−(x, λ) =
1
π

√
b − x
b + x

∫b∗

−b

√
b + ξ
b − ξ

dξ

ξ − x

∫∞

0

e−λσ

b − ξ + σ dσ

=
1
π

√
b − x
b + x

∫∞

0

1
b − x + δ

√
2b + σ
σ

eλσ dσ, |x| < b.

(5.58)

Similarly, it can be shown that

h+(x, λ) =
1
π

√
b − x
b + x

∫∞

0

1
b + x + σ

√
σ

2b + σ
eλσdσ. (5.59)

The following properties for h− and h+ hold:

lim
x→b−0

h−(x, λ) = 1, lim
x→b−0

h+(x, λ) = 0. (5.60)

Finally, we present the desired modification of the integral equation (5.48).

Theorem 5.13. The Possio integral equation can be written in the following form:

2√
1 −M2

T
[
Wa

(
·, λ′

)]
=
[

1 − 1√
1 −M2

λL(λ)
]
F
(
·, λ′

)
+

λ√
1 −M2

h−(x, λ)e−bλL
(
λ, F

(
·, λ′

))

−
∫α1

0
a(s)

(
λL(λs)

)
[F]ds +

∫α1

0
a(s)λh−(·, λs)e−bλsL

(
λs, F

(
·, λ′

))
ds

+
∫α2

0
a(−s)

(
λL∗(λs)

)
[F]ds+

∫α2

0
a(−s)λh+(·, λs)e−bλsL

(
−λs, F

(
·, λ′

))
ds.

(5.61)

6. Concluding remarks

We would like to emphasize that (5.61) is a complicated singular integral equation. In our
forthcoming work, we will prove a unique solvability of (5.61) using a two-step procedure.
In the first step, we prove that as |λ|→∞, the right-hand side of the integral operator of (5.61)
splits into two distinct parts: one does not get smaller and another one asymptotically goes to
zero in a Banach space equipped with a specific norm. Having such a behavior in mind, we
consider the equation obtained from (5.61) if one keeps only the leading asymptotical parts
of all terms as |λ|→∞, Rλ � δa 
 1. It turns out that the new equation (that we will call the
asymptotical version of the Possio equation) is a singular integral equation as well. This asymptotic
version of the Possio equation is a singular equation in more than one sense. First, it is singular
due to the fact that it contains a specific “inverse operator” to a finite Hilbert transformation
Hb (Hb is a singular integral operator in Lp(−b, b), 1 < p < 2). Secondly, the aforementioned
equation contains integral operators being different by their nature: Hilbert transformation,
Volterra integral operator, and an integral operator with the degenerate kernel [28]. It is exactly
the second reason that makes the problem difficult and nonstandard.



26 Journal of Applied Mathematics

Acknowledgment

The authors highly appreciate the partial support of the National Science Foundation (Grants
nos. ESC-0400730 and DMS-0604842).

References

[1] C. Possio, “Aerodynamic action on oscillating profile in compressible fluid at subsonic velocities,”
L’Aerotechnica, vol. 18, no. 4, pp. 441–458, 1938.

[2] A. V. Balakrishnan and M. A. Shubov, “Asymptotic behaviour of the aeroelastic modes for an aircraft
wing model in a subsonic air flow,” Proceedings of The Royal Society of London Series A, vol. 460, no.
2044, pp. 1057–1091, 2004.

[3] M. A. Shubov, “Riesz basis property of mode shapes for aircraft wing model (subsonic case),”
Proceedings of The Royal Society of London Series A, vol. 462, no. 2066, pp. 607–646, 2006.

[4] M. A. Shubov, “Flutter phenomenon in aeroelasticity and its mathematical analysis,” Journal of
Aerospace Engineering, vol. 19, no. 1, pp. 1–13, 2006.

[5] E. Reissner, “On the theory of oscillating airfoils of finite span in subsonic compressible flow,” NACA
Technical Note NACA-TN-1953, NACA-TR-1002, NASA Center, Cambridge, Mass, USA, 1953.

[6] C. E. Watkins, H. L. Runyan, and D. S. Woolston, “The kernel function of the integral equation relating
the lift and downwash distributions of oscillating finite wings in subsonic flow,” Tech. Rep. NACA-
TN-3131, NASA Langley Research Center, Hampton, Va, USA, 1954.

[7] A. V. Balakrishnan, “The Possio integral equation of aeroelasticity theory,” Journal of Aerospace
Engineering, vol. 16, no. 4, pp. 139–154, 2003.

[8] A. V. Balakrishnan, “The Possio integral equation of aeroelasticity: a modern view,” in SystemModeling
and Optimization, F. Ceragioli, A. Dontchev, H. Furuta, K. Marti, and L. Pandolfi, Eds., vol. 199 of IFIP
International Federation for Information Processing, pp. 15–22, Springer, New York, NY, USA, 2006.

[9] R. L. Bisplinghoff, H. Ashley, and R. L. Halfman, Aeroelasticity, Dover, New York, NY, USA, 1996.
[10] M. Goland, “The flutter of a uniform cantilever wing,” Journal of Applied Mechanics, vol. 12, no. 4, pp.

197–208, 1945.
[11] P. S. Beran, T. W. Strganac, K. Kim, and C. Nichkawde, “Studies of store-induced limit cycle oscillations

using a model with full system nonlinearities,” Nonlinear Dynamics, vol. 37, no. 4, pp. 323–339, 2004.
[12] D. Hodges and E. H. Dowell, “Nonlinear equations of motion for the elastic bending and torsion

of twisted nonuniform rotor blades,” Tech. Rep. NASA-TN-D-7818, NASA Ames Research Center,
Moffett Field, Calif, USA, 1974.

[13] A. V. Balakrishnan, “Subsonic flutter suppression using self-straining actuators,” Journal of the Franklin
Institute, vol. 338, no. 2-3, pp. 149–170, 2001.

[14] M. A. Shubov and C. A. Peterson, “Asymptotic distribution of eigenfrequencies for a coupled Euler-
Bernoulli and Timoshenko beam model,” NASA Technical Publication NASA-CR-2003-212022, NASA
Dryden Flight Research Center, Edwards, Calif, USA, 2003.

[15] I. E. Garrick, H. Ashley, D. B. Hanson, A. E. Perry, and R. H. Scanlan, “Critical essays,” in A Modern
View of Theodore Theodorsen, E. H. Dowell, Ed., AIAA, Washington, DC, USA, 1992.

[16] R. Clark, D. Cox, H. C. Curtiss Jr., et al., Eds., A Modern Course in Aeroelasticity, vol. 116 of Solid
Mechanics and Its Applications, Kluwer Academic Publishers, Dordrecht, The Netherlands, 4th edition,
2004.

[17] M. A. Shubov, “Mathematical modeling and analysis of flutter in long span suspension bridges and
in blood vessel walls,” Journal of Aerospace Engineering, vol. 17, no. 2, pp. 70–82, 2004.

[18] M. A. Shubov, “Mathematical modeling and analysis of flutter in bending-torsion coupled beams,
rotating blades, and hard disk drives,” Journal of Aerospace Engineering, vol. 17, no. 2, pp. 56–69, 2004.

[19] M. J. Patil, D. H. Hodges, and C. E. S. Cesnik, “Nonlinear aeroelastic analysis of complete aircraft in
subsonic flow,” Journal of Aircraft, vol. 37, no. 5, pp. 753–760, 2000.

[20] M. J. Patil and D. H. Hodges, “On the importance of aerodynamic and structural geometrical
nonlinearities in aeroelastic behavior of high-aspect-ratio wings,” Journal of Fluids and Structures, vol.
19, no. 7, pp. 905–915, 2004.

[21] C. S. Ventres, “Shear flow aerodynamics: lifting surface theory,” AIAA Journal, vol. 13, no. 9, pp. 1183–
1189, 1975.



A. V. Balakrishnan and M. A. Shubov 27

[22] E. H. Dowell and M. R. Chi, “Variable thickness shear layer aerodynamics revisited,” AIAA Journal,
vol. 15, no. 5, pp. 745–747, 1977.

[23] M. H. Williams, M. R. Chi, C. S. Ventres, and E. H. Dowell, “Aerodynamic effects of inviscid parallel
shear flows,” AIAA Journal, vol. 15, no. 8, pp. 1159–1166, 1977.

[24] S. G. Mikhlin, Multidimensional Singular Integrals and Integral Equations, Pergamon Press, New York,
NY, USA, 1965.

[25] N. N. Lebedev, Special Functions and Their Applications, Dover, New York, NY, USA, 1972.
[26] D. Porter and D. S. G. Stirling, Integral Equations: A Practical Treatment, from Spectral Theory to

Application, Cambridge Texts in Applied Mathematics, Cambridge University Press, Cambridge, UK,
1990.

[27] F. G. Tricomi, Integral Equations, Dover, New York, NY, USA, 1985.
[28] R. Estrada and R. P. Kanwal, Singular Integral Equations, Birkhäuser, Boston, Mass, USA, 2000.
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