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As a diffusion distance, we propose to use a metric (closely related to cosine similarity) which
is defined as the L2 distance between two L2-normalized vectors. We provide a mathematical
explanation as towhy the normalizationmakes diffusion distancesmoremeaningful. Our proposal
is in contrast to that made some years ago by R. Coifman which finds the L2 distance between
certain L1 unit vectors. In the second part of the paper, we give two proofs that an extension
of mean first passage time to mean first passage cost satisfies the triangle inequality; we do
not assume that the underlying Markov matrix is diagonalizable. We conclude by exhibiting
an interesting connection between the (normalized) mean first passage time and the discretized
solution of a certain Dirichlet-Poisson problem and verify our result numerically for the simple
case of the unit circle.

1. Introduction

Several years ago, motivated by considering heat flow on a manifold, R. Coifman proposed
a diffusion distance—both for the case of a manifold and a discrete analog for a set of
data points in R

n. In the continuous case, his distance can be written as the L2 norm of
the difference of two specified vectors, each of which has unit L1 norm. (An analogous
situation holds in the discrete case.) Coifman’s distance can be successfully used in various
applications, including data organization, approximately isometric embedding of data in
low-dimensional Euclidean space, and so forth. See, for example, [1–3]. For a unified
discussion of diffusion maps and their usefulness in spectral clustering and dimensionality
reduction, see [4].

We see a drawback in Coifman’s diffusion distance in that it finds the L2 norm of the
distance between two L1 unit vectors, rather than L2 unit vectors. As shown by a simple
example later in this paper, two vectors (representing two diffusions), which we may want to
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consider to be far apart, are actually close to each other in L2, even though the angle between
them is large, because they have small L2 norm, while still having unit L1 norm. Additionally,
applying Coifman’s distance to heat flow in R

n, a factor of a power of time t remains, with
the exponent depending on the dimension n. It would be desirable not to have such a factor.

Our main motivation for this paper is to propose an alternate diffusion metric, which
finds the L2 distance between two L2 unit vectors (with analogous statements for the discrete
case). Our distance is thus the length of the chord joining the tips, on the unit hypersphere,
of two L2 normalized diffusion vectors, and is therefore based on cosine similarity (see (4.4)
below). Cosine similarity (affinity) is popular in kernel methods in machine learning; see for
example, [5, 6] (in particular, Section 3.5.1—Document Clustering Basics) and for a review of
kernel methods in machine learning, [7].

In the case of heat flow on R
n, our proposed distance has the property that no

dimensionally dependent factor is left. Furthermore, for a general manifold, our diffusion
distance gives, approximately, a scaled geodesic distance between two points x and y, when
x and y are closer than

√
t, and maximum separation when the geodesic distance between x

and y, scaled by
√
t, goes to infinity.

We next give two proofs that the mean first passage cost—defined later in this paper
as the cost to visit a particular point for the first time after leaving a specified point—satisfies
the triangle inequality. (See Theorem 4.2 in [8] in which the author states that the triangle
inequality holds for the mean first passage time.)We give two proofs that do not assume that
the underlying Markov matrix is diagonalizable; our proofs do not rely on spectral theory.

We calculate explicitly the normalized limit of the mean first passage time for the unit
circle S1 by identifying the limit as the solution of a specific Dirichlet-Poisson problem on S1.
We also provide numerical verification of our calculation.

The paper is organized as follows. After a section on notation, we discuss R. Coifman’s
diffusion distance for both the continuous and discrete cases in Section 3. In Section 4, we
define and discuss our alternate diffusion distance. In Section 5, we give two proofs of the
triangle inequality for mean first passage cost. We conclude the section by exhibiting an
interesting connection between the (normalized)mean first passage time and the discretized
solution of a certain Dirichlet-Poisson problem and verify our result numerically for the
simple case of S1.

2. Notation and Setup

In this paper, we will present derivations for both the continuous and discrete cases.
In the continuous situation, we assume there is an underlying Riemannian manifold

M with measure d x;x, y, u, z, . . . will denote points in M. For t ≥ 0, ρt(x, y) will denote a
kernel onM ×M, with ρt(x, y) ≥ 0 for all x, y ∈ M, and satisfying the following semigroup
property:

∫
M

ρt(x, u)ρs
(
u, y

)
du = ρt+s

(
x, y

)
, (2.1)

for all x, y ∈M, and s, t ≥ 0. In addition, we assume the following property:

∫
M

ρt
(
x, y

)
dx = 1, (2.2)
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for all y ∈M and all t ≥ 0. The latter convention gives the mass preservation property

∫
M

Ttf(x)dx =
∫
M

f
(
y
)
dy, (2.3)

where

Ttf(x) ≡
∫
M

ρt
(
x, y

)
f
(
y
)
dy. (2.4)

We will often specialize to the case when ρt(x, y) = ρt(y, x) for all x, y ∈ M and t ≥ 0,
as in the case of heat flow. Note that when ρt(x, y) is the fundamental solution for heat flow,
we have ρ0(x, u) = δx(u), where δx(u) denotes the Dirac delta function centered at x. We
will sometimes assume (as in the case of heat flow on a compact manifold) that there exist
0 ≤ λ1 ≤ λ2 ≤ · · · , with each λj corresponding to a finite dimensional eigenspace, and a
complete orthonormal family of L2 functions φ1, φ2, . . ., such that

ρt
(
x, y

)
=

∞∑
j=1

e−λj tφj(x)φj
(
y
)
, (2.5)

for t > 0. We will also frequently use the following fact: if ρt is symmetric in the space
variables, then for any x, y ∈M,

∫
M

ρt(u, x)ρt
(
u, y

)
du =

∫
M

ρt(x, u)ρt
(
u, y

)
du = ρ2t

(
x, y

)
, (2.6)

where we have used the symmetry of ρt and its semigroup property.
For the discrete situation, the analog of ρt(x, y) is anN×NmatrixA, withA = 〈aij〉Ni,j=1,

every aij ≥ 0. In keeping with the usual convention that A is Markov if each row sum equals
1, that is,

∑
j aij = 1 for all i, the analog of Ttf(x) =

∫
M ρt(x, y)f(y)dy is ATv, where AT is the

transpose ofA, and v is anN×1 column vector. So the index i corresponds to the second space
variable in ρt, the index j corresponds to the first space variable in ρt, and t = n, n = 1, 2, . . .,
corresponds to the nth power of A. The obvious analog of ρt symmetric in its space variables
is a symmetric Markov matrix A, that is, A = AT .

For A as above, not necessarily symmetric, we think of aij as the probability of
transitioning from state si to state sj in t = 1 tick of the clock; S = {s1, s2, . . . , sN} is the
underlying set of states. For X a subset of the set of states S, theN ×N matrix PX will denote
the following projection: all entries of PX are 0 except for diagonal entries (k, k), when sk ∈ X;
the latter entries are equal to 1.

Finally, 1will denote theN × 1 column vector where each entry is 1; ei will denote the
N × 1 column vector with the ith component 1, and all others 0, and, for a set of states X, X
will denote the complement of X with respect to S.
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3. A Diffusion Distance Proposed by R. Coifman

Several years ago, R. Coifman proposed a novel diffusion distance based on the ideas of heat
flow on amanifold or a discrete analog of heat flow on a set of data points (see, e.g, [1, 2] for a
thorough discussion). In this section, we will describe Coifman’s distance using our notation,
and consider some of its good points, and what we see as some of its drawbacks.

Referring to Section 2, for the continuous case, the unweighted version of Coifman’s
distance between x, y ∈M, which we will denote by dC,t(x, y), can be defined as follows:

[
dC,t(x, y)

]2 ≡ 〈
Tt
(
δx − δy

)
, Tt

(
δx − δy

)〉
= 〈Ttδx, Ttδx〉 +

〈
Ttδy, Ttδy

〉 − 2
〈
Ttδx, Ttδy

〉
.

(3.1)

Here,

Ttδz(v) =
∫
M

ρt(v, u)δz(u)du = ρt(v, z), (3.2)

for z ∈ M. The 〈 · · · , · · · 〉 is the usual inner product on L2(M). (In [1], the authors consider
a weighted version of (3.1) which naturally arises when the underlying kernel does not
integrate to 1 (in each variable). In terms of data analysis, this corresponds to cases where
the data are sampled nonuniformly over the region of interest. For simplicity, we are just
using Coifman’s unweighted distance.)

Note that we thus have

[
dC,t(x, y)

]2 =
∫
M

ρt(v, x)ρt(v, x)dv +
∫
M

ρt
(
v, y

)
ρt
(
v, y

)
dv − 2

∫
M

ρt(v, x)ρt
(
v, y

)
dv

=
∥∥ρt(·, x)∥∥2

2 +
∥∥ρt(·, y)∥∥2

2 − 2
〈
ρt(·, x), ρt

(·, y)〉.
(3.3)

Although Coifman’s original definition used a kernel symmetric with respect to the
space variable, dC,t(x, y) as given above need not be based on a symmetric ρt. Note that,
by the defining (3.1), dC,t(x, y) is symmetric in x and y (even if ρt is not), and satisfies the
triangle inequality. If ρt is symmetric in the space variables, from (2.6) we see that:

[
dC,t

(
x, y

)]2 = ρ2t(x, x) + ρ2t(y, y) − 2ρ2t
(
x, y

)
, (3.4)

a form matching one of Coifman’s formulations for the continuous case.
If, in addition to ρt being symmetric in the space variables, we have that (2.5) holds,

as in the case of heat flow, we easily see that:

[
dC,t

(
x, y

)]2 = ∞∑
j=1

e−2λj t
(
φj(x) − φj

(
y
))2

, (3.5)

the original form proposed by Coifman. Note that the latter expression again explicitly shows
that dC,t(x, y) is symmetric in x and y and satisfies the triangle inequality (by considering,
for example, the right-hand side as the square of a weighted distance in l2).
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Referring again to Section 2, for the discrete situation, where we start with a set of data
points S = {s1, s2, . . . , sN}, and A is a Markov matrix specifying the transition probabilities
between the “states” of S, the distance between two data points si and sj is given by

[
dC,1

(
si, sj

)]2 ≡ 〈
AT(ei − ej), AT(ei − ej)

〉

=
〈
ATei,A

Tei
〉
+
〈
ATej ,A

Tej
〉
− 2

〈
ATei,A

Tej
〉

=
〈
AATei, ei

〉
+
〈
AATej , ej

〉
− 2

〈
AATei, ej

〉

=
(
AAT

)
ii
+
(
AAT

)
jj
− 2

(
AAT

)
ij
,

(3.6)

where 〈 · · · , · · · 〉 is the usual inner product in R
N , and for a matrix B, (B)ij denotes the i, j

entry of B. Again, symmetry and the triangle inequality are easily verified. IfA is symmetric,

[
dC,1

(
si, sj

)]2 = (
A2

)
ii
+
(
A2

)
jj
− 2

(
A2

)
ij
. (3.7)

The “1” appearing in the subscript of dC,1(si, sj) refers to the fact that A1 = A is used,
corresponding to t = 1 in the continuous case. As the diffusion along data points flows, after
n ticks of the clock, we can successively consider

[
dC,n

(
si, sj

)]2 = (
An

(
AT

)n)
ii
+
(
An

(
AT

)n)
jj
− 2

(
An

(
AT

)n)
ij
, (3.8)

which, for a symmetric A, equals

(
A2n

)
ii
+
(
A2n

)
jj
− 2

(
A2n

)
ij
. (3.9)

An important benefit of introducing a diffusion distance as above can be illustrated
by considering (3.5). If ρt is such that (3.5) holds for a complete orthonormal family {φj}, we
see that as t increases, we are achieving an (approximate) isometric embedding of M into
successively lower-dimensional vector spaces (with a weighted norm). More specifically, for
λj > 0, if t is large, the terms e−2λj t(φj(x) − φj(y))2 are nearly 0. So, as t increases, we see that
the “heat smeared” manifoldM is parametrized by only a few leading φj ’s. Thus, “stepping”
through higher and higher times, we are obtaining a natural near-parametrization of more
and more smeared versions ofM, giving rise to a natural ladder of approximations toM.

Analogous considerations hold in the discrete situation for A symmetric, when we
easily see that the eigenvalues of A2 are between 0 and 1 and decrease exponentially for
A2n, as n increases (the “heat smeared” data points are now parametrized by a few leading
eigenvectors of A, associated to the largest eigenvalues).

See [1–3] for more discussion and examples of the natural embedding discussed
above, along with illustrations of its power to organize unordered data, as well as its
insensitivity to noise.
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We would now like to point out what we see some drawbacks of Coifman’s distance,
which led us to propose an alternative distance in Section 4.

Let us consider (3.4) for the case where

ρt
(
x, y

)
= (4πt)−n/2e−|x−y|

2/4t, (3.10)

the fundamental solution to the heat equation in R
n. Then,

[
dC,t

(
x, y

)]2 = 2 − 2e−|x−y|
2/8t

(8πt)n/2
. (3.11)

If |x − y|2/8t is small, then to the leading order in |x − y|2/4t,

[
dC,t

(
x, y

)]2 = 1

(8πt)n/2

⎛
⎝

∣∣x − y∣∣2
4t

+O
⎛
⎝

(∣∣x − y∣∣2
4t

)2⎞
⎠

⎞
⎠. (3.12)

Thus, if |x − y| 
 √
t, we do recover the geodesic distance between x and y but, due to

the 1/tn/2 term in front, normalized by a power of t which depends on the dimension n.
As pointed out by the reviewer, for R

n itself, the normalization does depend on n, but is
simply a global change of scale, for each t, and thus basically immaterial. Suppose, however,
that the data we are considering come in two “clumps”, one of dimension n and the other
of dimension m, with n/=m. Let us also suppose these clumps are somehow joined together
and, far away from the joining region, each clump is basically a flat Euclidean space of the
corresponding dimension. Then, far away from the joint, heat diffusion in a particular clump
would behave as if it were in R

n, respectively R
m (until the time that the flowing heat “hits”

the joint region). Thus, in the part of each clump that is far from the joint, the diffusion
distance would be normalized differently, one normalization depending on n and the other
onm. An overall change of scale would not remove this difference, thus wewould not recover
the usual Euclidean distance in the two clumps simultaneously, as we would like.

The second point of concern is more general in nature. In the continuous case,
Coifman’s distance involves the L2 distance between Ttδz, when z = x, and Ttδz when z = y;
see (3.1). The L1 norm of Ttδz is 1, since

∫
M

Ttδz(v)dv =
∫
M

(∫
M

ρt(v, u)δz(u)du
)
dv = 1, (3.13)

using the mass preservation assumption of (2.2). For the discrete case, 1TATei = 1, where 1T

is the 1 ×N vector of 1’s.
So the diffusion distance proposed by Coifman finds the L2 (resp., l2) distance between

L1 (resp., l1) normalized vectors. Let us illustrate by an example for the discrete situation,
withN = 10, 000, in which this may lead to undesired results. Without specifying the matrix
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A, suppose that after some time has passed, we have the following two 1 × 10, 000 vectors
giving two different results of diffusion:

v1 =
(

1
100

, . . . ,
1
100

, 0, . . . , 0
)
, (3.14)

where the first one hundred entries are each 1/100, and the rest 9, 900 entries are 0, and

v2 =
(

1
10, 000

,
1

10, 000
, . . . ,

1
10, 000

)
, (3.15)

where each entry is 1/10, 000.
Note that v1 and v2 both have l1 norm 1. Now, considering two canonical basis vectors

eTi and eTj , i /= j, each of which has l1 norm 1, we see that 〈eTi − eTj , eTi − eTj 〉 = 2. So, a distance

of
√
2 gives the (in fact, maximum) separation between two completely different (l1 unit)

diffusion vectors. Return to v1 and v2, note that v2 corresponds to total diffusion, while v1
has only diffused over 1% of the entries. We would thus hope that v1 and v2 would be nearly
as much separated as eTi and eTj , that is, have diffusion distance not much smaller than

√
2.

But a trivial calculation shows that

√
〈v1 − v2, v1 − v2〉 < .1, (3.16)

which seems much smaller than what we would like. The problem is that
√
〈v1 − v2, v1 − v2〉

is small since the l2 norm of each of v1 and v2 is small, even though the l1 norm of each is 1.
In the next section, we propose a variant of the diffusion distance discussed in this

section. Our version will find the L2 (resp., l2) distance between vectors which are normalized
to have L2 (resp., l2) norm to be 1, rather than L1 (or l1) norm 1.

4. An Alternate Diffusion Distance

In this section, we propose a new diffusion distance. Let us first define our alternate diffusion
distance for the continuous case. Refer to Section 2 for the definitions of functions and
operators used below.

For any z ∈M, let

ψz(u) ≡ δz(u)
‖Ttδz‖2

=
δz(u)√∫

M ρt(v, z)ρt(v, z)dv
. (4.1)

Then,

Ttψz(u) =
∫
M

ρt(u,w)
δz(w)
‖Ttδz‖2

dw =
ρt(u, z)
‖Ttδz‖2

. (4.2)



8 Journal of Applied Mathematics

Note that Ttψz(·) has L2 norm 1:

∫
M

[
Ttψz(u)

]2
du =

∫
M

ρ2t (u, z)∫
M ρ2t (v, z)dv

du = 1. (4.3)

For x, y ∈M, we define our diffusion distance, d2,t(x, y), as follows:

[
d2,t

(
x, y

)]2 ≡ 〈
Tt
(
ψx − ψy

)
, Tt

(
ψx − ψy

)〉

= 2 − 2

∫
M ρt(u, x)ρt

(
u, y

)
du

‖ρt(·, x)‖2
∥∥ρt(·, y)∥∥2

= 2 − 2

〈
ρt(·, x), ρt

(·, y)〉∥∥ρt(·, x)∥∥2

∥∥ρt(·, y)∥∥2

,

(4.4)

where we have used (4.3). Here again, 〈 · · · , · · · 〉 is the usual inner product on L2(M). Note
the analogy to (3.3).

As is clear from the defining equality in (4.4), d2,t(x, y) is symmetric in x and y and
satisfies the triangle inequality:

d2,t(x, z) ≤ d2,t
(
x, y

)
+ d2,t

(
y, z

)
, (4.5)

for all x, y, z ∈ M. Geometrically, d2,t(x, y) is the length of the chord joining the tips of the
unit vectors Ttψx and Ttψy. We have that

0 ≤ d2,t
(
x, y

) ≤
√
2, (4.6)

for all x, y ∈M and t ≥ 0.
If ρt is symmetric in the space variables, by (2.6), we have that

[
d2,t

(
x, y

)]2 = 2 − 2
ρ2t

(
x, y

)
√
ρ2t(x, x)

√
ρ2t

(
y, y

) . (4.7)

As an example, again consider the case where ρt(x, y) = (4πt)−n/2e−|x−y|
2/4t, the

fundamental solution to the heat equation in R
n. Then,

[
d2,t

(
x, y

)]2 = 2 − 2e−|x−y|
2/8t. (4.8)

Note that if |x − y| 
 √
t, then

[
d2,t

(
x, y

)]2 ≈ 2 − 2

(
1 −

∣∣x − y∣∣2
8t

)
=

∣∣x − y∣∣2
4t

, (4.9)
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so d2,t(x, y) gives (approximately) the geodesic distance in R
n, in the “near regime” where

|x − y| 
 √
t, and with scale

√
t. Note that unlike (3.12), no tn/2 term appears. (Also see the

discussion following (3.12).) Also note that if |x − y|2/8t is large, d2,t(x, y) ≈
√
2 (the greatest

possible distance, see (4.6)), so for such t the points x and y are (nearly)maximally separated.
Hence, d2,t(x, y), for the case of heat flow in R

n, gives a scaled geodesic distance when x is
close to y, with 2

√
t as the unit of length and near maximum separation when x is far from y

at the scale
√
t.

For any, say, compact Riemannian manifoldM, if ρt(x, y) is the fundamental solution
to the heat equation onM, we have that

ρt
(
x, y

)
= (4πt)−n/2e−d

2(x,y)/4t(1 +O(t)), as t −→ 0+, (4.10)

where d(x, y) is the geodesic distance on M (see [9]). Hence, repeating the expansion in
(4.9) for a compact manifold M, with t small, and d(x, y) 
 √

t, we have that d2,t(x, y) ≈
d(x, y)/2

√
t, again recovering (scaled) geodesic distance. (The discussion following (3.12)

gives an example for which it would be preferable not to have presented a normalization
factor which depends on the dimension.) Exponentially decaying bounds on the fundamental
solution of the heat equation for a manifoldM (see [9, Chapter XII, Section 12]), suggest that
x and y become nearly maximally separated, as given by d2,t(x, y), when d(x, y) (scaled by√
t) is large, just as in the Euclidean case.

In the discrete situation, where we start with a set of data points S = {s1, s2, . . . , sN},
and A is a Markov matrix specifying the transition probabilities between the “states” of S,
for n = 1, 2, . . . ,we let

vi,n =
ei∥∥(AT
)n
ei
∥∥ , (4.11)

where ei is the ith canonical basis vector (see Section 2), and ‖ · · · , · · · ‖ is the l2 vector norm.
For si, sj ∈ S and n = 1, 2, . . ., we define d2,n(si, sj) by

[
d2,n

(
si, sj

)]2 ≡ 〈(
AT

)n(
vi,n − vj,n

)
,
(
AT

)n(
vi,n − vj,n

)〉

= 2 − 2

〈(
AT

)n
ei,

(
AT

)n
ej
〉

∥∥(AT
)n
ei
∥∥ ∥∥(AT

)n
ej
∥∥

= 2 − 2

(
An

(
AT

)n)
ij√(

An
(
AT

)n)
ii

√(
An

(
AT

)n)
jj

,

(4.12)

where 〈 · · · , · · · 〉 and ‖ · · · , · · · ‖ are, respectively, the usual inner product and norm in R
N ,

and, for a matrix B, (B)ij denotes the i, j entry of B.
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If A is symmetric,

[
d2,n

(
si, sj

)]2 = 2 − 2

(
A2n)

ij√
(A2n)ii

√
(A2n)jj

. (4.13)

As before, n represents the nth tick of the clock.

5. The Mean First Passage Cost Satisfies the Triangle Inequality:
An Example of Its Normalized Limit

In this section, we consider a slightly different topic: the mean first passage cost (defined
below) between two states as a measure of separation in the discrete situation. We give two
explicit proofs showing that the mean first passage cost satisfies the triangle inequality (in
[8], the author states this result when all costs are equal to 1 as Theorem 4.2, but the proof is
not very explicit in our opinion).

In [10–12], as well as some of the references listed therein, it is shown that the
symmetrized mean first passage time and cost are metrics (for mean first passage cost
see, in particular, [10]; also, in the above sources the symmetrized mean first passage time
is called the commute time). “Symmetrized” refers to the sum of the first cost (time) to
reach a specified state from a starting state and to return back to the starting state. This
symmetrization is necessary to ensure a quantity symmetric in the starting and destination
states. In the sources cited above, the fundamental underlying operator is the graph Laplacian
L, which, using the notation of [12], is defined as L = D − W . Here, W = 〈wij〉 is the
adjacency matrix of a graph, and D is the diagonal degree matrix, with the ith entry on the
diagonal equaling

∑
j wij . In addition to assuming the nonnegativity of thewij ’s, the authors

in the above works assume thatW is symmetric. The resulting symmetry (and positive semi-
definiteness of L) implies the existence of a full set of nonnegative eigenvalues of L, and the
diagonalizability of L is used heavily in the proofs that the commute time/cost is a distance.
In the randomwalk interpretation, see, for example, [12], the following normalized Laplacian
is relevant: Lrw = I − D−1W . To make a connection with the notation in the present paper,
D−1W = A, a Markovmatrix giving the transition probabilities of the randomwalk. Although
D−1W is not necessarily symmetric, it is easy to see that D−1W = D−1/2{D−1/2WD−1/2}D1/2

(see the discussion in [12]). Hence D−1W , while not itself symmetric in general, is conjugate
to the symmetricmatrix D−1/2WD−1/2, and thus too has a full complement of eigenvalues.

In this section, as in the rest of the paper unless stated otherwise, we are not assuming
that the Markov matrix A is symmetric or conjugate to a symmetric matrix; hence Amay not
be diagonalizable (i.e., A may have Jordan blocks of dimension greater than 1). We thus
do not have spectral theory available to us. Furthermore, we do not wish to necessarily
symmetrize the mean first passage time/cost to obtain a symmetric quantity; we are not
actually going to get a distance, but will try to obtain the “most important” property of being
a distance, namely, the triangle inequality.

A model example we are thinking about is the following. Suppose we have a map
grid and are tracking some localized storm which is currently at some particular location on
the grid. We suppose that the storm behaves like a random walk and has a certain (constant
in time) probability to move from one grid location to another at each “tick of the clock”
(time step). We can thus model the movements of the storm by a Markov matrix A, with



Journal of Applied Mathematics 11

the nth power of A giving the transition probabilities after n ticks of the clock. If there is
no overall wind, the matrix A could reasonably be assumed to be symmetric, and we could
use spectral theory. But suppose there is an overall wind in some fixed direction, which is
making it more probable for the storm to move north, say, rather than south. Then the matrix
A is not symmetric; there is a preferred direction of the storm to move in, from one tick
of the clock to the next; spectral theory cannot, in general, be used. Furthermore, it may
not be reasonable in this situation to consider the commute time—the symmetrized mean
first passage time—since we may rather want to know the expected time to reach a certain
population center from the current location of the storm, and may not care about the storm’s
return to the original location. Thus the mean first passage time would be the quantity of
interest.

In the first part of this section, we give two proofs that the mean first passage
cost/time, associated with a not-necessarily-symmetric MarkovmatrixA, does indeed satisfy
the triangle inequality; our proofs do not rely on spectral theory. We think that satisfying the
triangle inequality, while in general failing to be symmetric, is still a very useful property for
a bilinear form to have.

We conclude the section by exhibiting a connection between the (normalized) mean
first passage time and the discretized solution of a certain Dirichlet-Poisson problem and
verify our result numerically for the simple case of the unit circle.

In this section, S = {s1, s2, . . . , sN} is a finite set of states and A is a Markov matrix
giving the transition probabilities between states in one tick of the clock (see Section 2). C
will denote an N ×N matrix with non-negative entries, C = 〈cij〉Ni,j=1. We will think of each
ci,j as the “cost” associated with the transition from state si to state sj . By a slight abuse of
notation, for 1 ≤ m,n ≤ N, Pn will be theN ×N matrix in which all entries are 0, except the
(n, n) entry which is 1 (this corresponds toX = {sn} in Section 2). Also, Pmn will be theN×N
matrix in which all entries are 0, except the (m,m) and (n, n) entries each of which is 1 (this
corresponds to X = {sm, sn} in Section 2).

Let Ymn be the random variable which gives the cost accumulated by a particle starting
at state sm until its first visit to state sn after leaving sm. In other words, if a particular path of
the particle is given by the states sm, sj1 , sj2 , . . . , sjp , sn, the value of Ymn is cmj1 + cj1j2 + · · ·+ cjpn.
We suppose A has the property that for every i, j, there exists an n such that (An)ij > 0, that
is, every state j is eventually reachable from every state i. Then, as is shown in [13] (using
slightly different notation), we have the following formula for E(Ymn), which is the expected
cost of going from state sm to state sn:

E(Ymn) = eTm
I

I −A(I − Pn)
〈
cpqapq

〉
1, (5.1)

where 〈cpqapq〉 is theN ×N matrix with p, q entry equal to cpqapq. (In particular, it is shown
in [13] that I − A(I − Pn) is invertible and ‖(A(I − Pn))k‖ → 0, as k → ∞.) See [14, 15]
for discussion of related expected values, and [8, 10–12, 16–18] for discussion of mean first
passage times and related concepts.

We will give two proofs that the expected cost of going from one state to another
satisfies the triangle inequality.
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Proposition 5.1. E(Yij) ≤ E(Yik) + E(Ykj).

We again note that this proposition, for the case all costs are 1, is stated as Theorem
4.2 in [8], but we feel the proof is not very explicit. (In our proofs below, we assume j /= k; if
j = k, the inequality in Proposition 5.1 is immediate.)

Proof. (1)Our first proof is probabilistic. Let a randomwalker start at state si and accumulate
costs given by thematrixC as hemoves from state to state. As soon as the walker reaches state
sj , we obtain a sample value of Yij . Now, at this point of the walk, there are two possibilities.
Either the walker has passed through state sk before his first visit to sj after leaving si, or he
has not. In the first instance, we have obtained sample values of Yik and Ykj along the way,
and Yij = Yik + Ykj for this simulation. In the second case, we let the walker continue until
he first reaches sk, to obtain a sample value of Yik, and walk still more until he reaches sj for
the first time since leaving sk, thus giving a sample value of Ykj (note that by the memoryless
property, this sample value of Ykj is independent of the walker’s prior history). In the second
case, we thus clearly have that Yij < Yik+Ykj . Combining the two cases, we have Yij ≤ Yik+Ykj .
Repeating the simulation, averaging, and taking the limit as the number of simulations goes
to infinity, we obtain that E(Yij) ≤ E(Yik) + E(Ykj).

(2) Our second proof is via explicit matrix computations. Let us define the following
two quantities:

Q1 ≡ eTi
I

I −A(
I − Pjk

)〈cpqapq〉1,

Q2 ≡
{
eTi

I

I −A(
I − Pjk

)APk1
}
eTk

I

I −A(
I − Pj

)〈cpqapq〉1.
(5.2)

(See Section 2 and the paragraphs before the statement of Proposition 5.1.) Now, we have

Q1 ≡ eTi
I

I −A(
I − Pjk

)〈cpqapq〉1

= eTi
∞∑
m=0

[
A
(
I − Pjk

)]m〈
cpqapq

〉
1

≤ eTi
∞∑
m=0

[A(I − Pk)]m
〈
cpqapq

〉
1

= eTi
I

I −A(I − Pk)
〈
cpqapq

〉
1

= E(Yik);

(5.3)
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see (5.1). Also,

Q2 ≡
{
eTi

I

I −A(
I − Pjk

)APk1
}
eTk

I

I −A(
I − Pj

)〈cpqapq〉1

=

{
eTi

I

I −A(
I − Pjk

)APk1
}

E
(
Ykj

)
.

(5.4)

But

eTi
I

I −A(
I − Pjk

)APk1 ≤ eTi
I

I −A(I − Pk)APk1

= eTi
I

I −A(I − Pk) (I −A(I − Pk))1

= 1,

(5.5)

where we have used a series expansion to show the first inequality (all entries are non-
negative), and the fact that APk1 = (I −A(I − Pk))1, since A1 = 1. Thus, Q2 ≤ E(Ykj).

We will finish our second proof by showing that Q1 +Q2 = E(Yij). First note that

Q2 ≡
{
eTi

I

I −A(
I − Pjk

)APk1
}
eTk

I

I −A(
I − Pj

)〈cpqapq〉1

= eTi
I

I −A(
I − Pjk

)APk I

I −A(
I − Pj

)〈cpqapq〉1,
(5.6)

using that Pk = ekeTk = Pk1eTk . Thus,

Q1 +Q2 = eTi
I

I −A(
I − Pjk

){I −A(
I − Pj

)
+APk

} I

I −A(
I − Pj

)〈cpqapq〉1

= eTi
I

I −A(
I − Pjk

){I −A(
I − Pj − Pk

)} I

I −A(
I − Pj

)〈cpqapq〉1

= eTi
I

I −A(
I − Pjk

){I −A(
I − Pjk

)} I

I −A(
I − Pj

)〈cpqapq〉1

= eTi
I

I −A(
I − Pj

)〈cpqapq〉1

= E
(
Yij

)
.

(5.7)

Here we have used the fact that Pj +Pk = Pjk (as mentioned earlier, we are assuming j /= k; the
triangle inequality we are proving holds trivially for the case j = k).
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We would like to point out that the decomposition of E(Yij) = Q1 + Q2 in the second
proof above is not a “miraculous” guess. We arrived at this decomposition by writing E(Yij)
as the derivative (evaluated at 0) of the characteristic function (Fourier transform) of Yij
(see [13]), and breaking up the expression to be differentiated into a sum of terms: one term
corresponding to the random walk going from si to sj without visiting sk first, and one term
corresponding to visiting sk before reaching sj . After differentiation, the resulting six pieces,
when suitably combined into two terms, yielded Q1 and Q2.

We conclude this section by considering certain (suitably normalized) limiting values
of the expected cost of going from state si to state sj , for the first time after leaving si, given
by (5.1). For this discussion, we will take all the costs to be identically 1, that is, cpq = 1 for all
p, q. Then, we see from (5.1) that

E
(
Yij

)
= eTi

I

I −A(
I − Pj

)1 = eTi
I

I −A(
I − Pj

)A1

= eTi
I

I −A(
I − Pj

)A(
I − Pj

)
1 + eTi

I

I −A(
I − Pj

)APj1

= eTi
I

I −A(
I − Pj

)A(
I − Pj

)
1 + eTi

I

I −A(
I − Pj

)(I −A(
I − Pj

))
1

= eTi
I

I −A(
I − Pj

)A(
I − Pj

)
1 + 1,

(5.8)

where we have used APj1 = (I −A(I − Pj))1, since A1 = 1.
Now, let us digress a little to describe a stochastic approach to solving certain

boundary value problems. The description below follows very closely parts of Chapter 9
in [19]. Some statements are excerpted verbatim from that work, with minor changes in
some labels. The background results below are well known and are often referred to as
Dynkin’s formula (see, e.g, [20]). We are presenting them for the reader’s convenience and
will use them to exhibit an interesting connection between the mean first passage time and
the discretized solution of a certain Dirichlet-Poisson problem; see (5.16).

Let D be a domain in R
n, and let L denote a partial differential operator on C2(Rn) of

the form:

L =
n∑
i=1

bi(x)
∂

∂xi
+

n∑
i,j=1

aij(x)
∂2

∂xi∂xj
, (5.9)

where aij(x) = aji(x). We assume each aij(x) ∈ C2(D) is bounded and has bounded first
and second partial derivatives; also, each bi(x) is Lipschitz. Suppose L is uniformly elliptic in
D (i.e., all the eigenvalues of the symmetric matrix 〈aij(x)〉 are positive and stay uniformly
away from 0 in D). Then, for g ∈ Cα(D), some α > 0, and g bounded, and for φ ∈ C(∂D), the
function w defined below solves the following Dirichlet-Poisson problem:

Lw = −g in D,

lim
x→y,x∈D

w(x) = φ
(
y
)
, for all regular points y ∈ ∂D. (5.10)
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(Regular points in this context are defined in [19] and turn out to be the same as the regular
points in the classical sense, i.e., the points y on ∂Dwhere the limit of the generalized Perron-
Wiener-Brelot solution coincides with φ(y), for all φ ∈ C(∂D).)

Nowwe definew. We choose a square root σ(x) ∈ R
n×n of the matrix 2〈aij(x)〉, that is,

1
2
σ(x)σT (x) =

〈
aij(x)

〉
. (5.11)

Next, for b = 〈bi(x)〉, let Xt be an Itô diffusion solving

dXt = b(Xt)dt + σ(Xt)dBt, (5.12)

where Bt is n-dimensional Brownian motion. Then,

w(x) = Ex

[
φ(Xτ)

]
+ Ex

[∫ τ

0
g(Xu)du

]
, for x ∈ D, (5.13)

is a solution of (5.10). Here, the expected values are over paths starting from x ∈ D, and τ is
the first exit time from D.

Let us transfer the above discussion to, say, a compact manifold M, rather than R
n.

We sample M and let the “states” sk be the sample points. We construct a transition matrix
A to give a discretized version of (5.12). Let ε > 0 be the approximate separation between the
sample points. Fix a sample point sj , and letD =M\Bε(sj) be the domain inM consisting of
the complement of the closure of the ball of radius ε inM, center sj . Let si be a sample point
in D. For this situation, in (5.10), let φ be the 0 function, and g be the constant 1 function.
Then (5.13) becomes:

w(x) = Esi

[∫ τ

0
du

]
, (5.14)

τ is the first exit time from D, that is, first visit time to the ε neighborhood of sj . (Compare
with Proposition 8B in [21] which discusses the case of the Dirichlet-Poisson problem (5.10)
with φ = 0 and g = 1 for a manifold.) As shown in [13] (with slightly different notation), a
discrete version of (5.14) is

(
eTi

I

I −A(
I − Pj

)〈c̃pqapq〉1
)
Δt, (5.15)

where c̃pj = 0, all p, and c̃pq = 1, for all q not equal to j, and all p. Thus, 〈c̃pqapq〉 = A(I − Pj).
Combining (5.15) and (5.8), we see that:

E
(
Yij

)
Δt −Δt =

(
eTi

I

I −A(
I − Pj

)A(
I − Pj

)
1

)
Δt ≈ w(

sj
)
, (5.16)

for Δt small.
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We thus see a connection between the (normalized) mean first passage time and the
solution to the Dirichlet-Poisson problem discussed above.

Let us illustrate the preceding discussion by a simple example: M = S1, the unit
circle. We will consider d2/dθ2, the Laplacian on S1, and sample S1 uniformly. We will let
the transition matrix A take the walker from the current state to each of the two immediate
neighbor states, with probability 1/2 for each. The variance is then (Δθ)2. Since dXt =

√
2dBt,

see (5.12), we must have (Δθ)2 = 2Δt, and we should use (Δθ)2/2 as our value ofΔt in (5.16).
Using symmetry, we can take sj = 0, the 0 angle on S1, without loss of generality. Let

wε(θ) =
1
2
(θ − ε)((2π − θ) − ε), ε ≤ θ ≤ 2π − ε. (5.17)

Note that

d2

dθ2
wε(θ) = −1, ε < θ < 2π − ε,

wε(ε) = wε(2π − ε) = 0.

(5.18)

So wε is the unique solution satisfying (5.10) for our example, on the domain S1 \ [−ε, ε].
To numerically confirm (5.16), we ran numerical experiments in which we discretized

S1 into N equispaced points, with the transition matrix A taking a state to each of its 2
immediate neighbors with probability 1/2, and used (Δθ)2/2 as the value of Δt in (5.16)
to calculate E(Yij)Δt − Δt. We took sj to be the angle 0, and si to be the closest sample point
to the angle with radian measure 1, for example. Letting ε → 0 in (5.17), we compared the
value of E(Yij)Δt − Δt with w(θ) = (1/2θ)(2π − θ). For instance, withN = 1000, sj = 0, and
si the nearest sample point to the angle with radian measure 1, the relative error is less than
0.08%. Note that w(θ) is, for θ close to 0, essentially a scaled geodesic distance on S1 (from
our base angle 0).

6. Conclusions

The authors have presented a diffusion distance which uses L2 unit vectors, and which is
based on the well-known cosine similarity. They have discussed why the normalization may
make diffusion distances more meaningful. We also gave two explicit proofs of the triangle
inequality for mean first passage cost, and exhibited a connection between the (normalized)
mean first passage time and the discretized solution of a certain Dirichlet-Poisson problem.
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