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This paper is devoted to the identification of the unknown smooth coefficient c entering the
hyperbolic equation c(x)∂2t u − Δu = 0 in a bounded smooth domain in R

d from partial (on part
of the boundary) dynamic boundary measurements. In this paper, we prove that the knowledge
of the partial Cauchy data for this class of hyperbolic PDE on any open subset Γ of the boundary
determines explicitly the coefficient c provided that c is known outside a bounded domain. Then,
through construction of appropriate test functions by a geometrical control method, we derive a
formula for calculating the coefficient c from the knowledge of the difference between the local
Dirichlet-to-Neumann maps.

1. Introduction

In this paper, we present a new method for multidimensional Coefficient Inverse
Problems (CIPs) for a class of hyperbolic Partial Differential Equations (PDEs). In the
literature, the reader can find many key investigations of this kind of inverse problems;
see, for example, [1–11] and references cited there. Beilina and Klibanov have deeply
studied this important problem in various recent works [2, 12]. In [2], the authors
have introduced a new globally convergent numerical method to solve a coefficient
inverse problem associated to a hyperbolic PDE. The development of globally convergent
numerical methods for multidimensional CIPs has started, as a first generation, from
the developments found in [13–15]. Else, Ramm and Rakesh have developed a general
method for proving uniqueness theorems for multidimensional inverse problems. For
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the two dimensional case, Nachman [7] proved a uniqueness result for CIPs for some
elliptic equation. Moreover, we find the works of Päivärinta and Serov [16, 17] about the
same issue, but for elliptic equations. In other manner, the author Chen has treated in
[18] the Fourier transform of the hyperbolic equation similar to ours with the unknown
coefficient c(x). Unlike this, we derive, using as weights particular background solutions
constructed by a geometrical control method, asymptotic formulas in terms of the partial
dynamic boundary measurements (Dirichlet-to-Neumann map) that are caused by the small
perturbations. These asymptotic formulae yield the inverse Fourier transform of unknown
coefficient.

The ultimate objective of the work described in this paper is to determine,
effectively, the unknown smooth coefficient c entering a class of hyperbolic equations
in a bounded smooth domain in R

d from partial (on part of the boundary) dynamic
boundary measurements. The main difficulty which appears in boundary measurements is
that the formulation of our boundary value problem involves unknown boundary values.
This problem is well known in the study of the classical elliptic equations, where the
characterization of the unknown Neumann boundary value in terms of the given Dirichlet
datum is known as the Dirichlet-to-Neumann map. But, the problem of determining the
unknown boundary values also occurs in the study of hyperbolic equations formulated in
a bounded domain.

As our main result, we develop, using as weights particular background solutions
constructed by a geometrical control method, asymptotic formulas for appropriate averaging
of the partial dynamic boundary measurements that are caused by the small perturbations of
coefficient according to a parameter α.

The final formula (3.44) represents a promising approach to the dynamical identifica-
tion and reconstruction of the coefficient c(x). Moreover, it improves the given asymptotic
formula (2.3) of the coefficient c(x). Assume that the coefficient is known outside a bounded
domain Ω, and suppose that we know explicitly the value of limα→ 0+c(x) for x ∈ Ω. Then,
the developed asymptotic formulae yield the inverse Fourier transform of the unknown part
of this coefficient.

In the subject of small volume perturbations from a known background material
associated to the full time-dependent Maxwell’s equations, we have derived asymptotic
formulas to identify their locations and certain properties of their shapes from dynamic
boundary measurements [19]. The present paper represents a different investigation of this
line of work.

As closely related stationary identification problems, we refer the reader to [7, 20–22]
and references cited there.

2. Problem Formulation

Let Ω ⊂ R
d be a bounded domain with a smooth boundary and let d = 2, 3 (our assumption

d ≤ 3 is necessary in order to obtain the appropriate regularity for the solution using
classical Sobolev embedding; see Brezis [23]). For simplicity, we take ∂Ω to be C∞, but
this condition could be considerably weakened. Let n = n(x) denote the outward unit
normal vector to Ω at a point on ∂Ω. Let T > 0, x0 ∈ R

d \ Ω, and let Ω′ be a smooth
subdomain of Ω. We denote by Γ ⊂⊂ ∂Ω a measurable smooth open part of the boundary
∂Ω.

Throughout this paper, wewill use quite standard L2-based Sobolev spaces to measure
regularity.
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As the forward problem, we consider the initial boundary value problem for a
hyperbolic PDE in the domain Ω × (0, T)

(
cα∂

2
t −Δ

)
uα = 0, in Ω × (0, T),

uα|t=0 = ϕ, ∂tuα|t=0 = ψ in Ω,

uα|∂Ω×(0,T) = f.

(2.1)

Here ϕ, ψ ∈ C∞(Ω) and f ∈ C∞(0, T ;C∞(∂Ω)) are subject to the compatibility conditions

∂2lt f |t=0 =
(
Δlϕ
)∣∣∣

∂Ω
, ∂2l+1t f

∣∣∣
t=0

=
(
Δlψ
)∣∣∣

∂Ω
, l = 1, 2, . . . (2.2)

which give that (2.6) has a unique solution in C∞([0, T] × Ω); see [24]. It is also well known
that (2.1) has a unique weak solution uα ∈ C0(0, T ;H1(Ω)) ∩ C1(0, T ;L2(Ω)); see [24, 25].
Indeed, from [25]we have that (∂uα/∂n)|∂Ω belongs to L2(0, T ;L2(∂Ω)).

Equation (2.1) governs a wide range of applications, including, for example,
propagation of acoustic and electromagnetic waves.

We assume that the coefficient c(x) of (2.1) is such that

c(x) =

⎧
⎨
⎩
cα(x) = c0(x) + αc1(x), for x ∈ Ω,

c2(x) = const. > 0, for x ∈ R
d \Ω,

(2.3)

where ci(x) ∈ C2(Ω) for i = 0, 1 with

c1 ≡ 0 in Ω \Ω′
, M := sup

{
c1(x);x ∈ Ω′}, (2.4)

where Ω′ is a smooth subdomain of Ω and M is a positive constant. We also assume that
α > 0, the order of magnitude of the small perturbations of coefficient, is sufficiently small
that

|cα(x)| ≥ c∗ > 0, x ∈ Ω, (2.5)

where c∗ is a positive constant.
Define u to be the solution of the hyperbolic equation in the homogeneous situation

(α = 0). Thus, u satisfies

(
c0∂

2
t −Δ

)
u = 0, in Ω × (0, T),

u|t=0 = ϕ, ∂tu|t=0 = ψ in Ω,

u|∂Ω×(0,T) = f.

(2.6)
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Now, we define Γc := ∂Ω \ Γ, and we introduce the trace space

H̃1/2(Γ) =
{
v ∈ H1/2(∂Ω × (0, T)), v ≡ 0 on Γc × (0, T)

}
. (2.7)

It is well known that the dual of H̃1/2(Γ) isH−1/2(Γ).
Then, one can write

Λα

(
f |Γ
)
=

∂uα
∂n

∣∣∣∣
Γ
, for f |Γ ∈ H̃1/2(Γ), (2.8)

where Λα is the Dirichlet-to-Neumann map (D-t-N) operator, and uα is the solution of (2.1).
Let Λ0 be the Dirichlet-to-Neumann map (D-t-N) operator defined as in (2.8) for the

case α = 0. Then, our problem can be stated as follows.

Inverse Problem

Suppose that the smooth coefficient c(x) satisfies (2.4), (2.5), and (2.6), where the positive
number c2 is given. Assume that the function c(x) is unknown in the domainΩ. Is it possible
to determine the coefficient cα(x) from the knowledge of the difference between the local
Dirichlet-to-Neumann maps Λα −Λ0 on Γ, if we know explicitly the value of limα→ 0+cα(x) for
x ∈ Ω ?

To give a positive answer, we will develop an asymptotic expansions of an
”appropriate averaging” of ∂uα/∂n on Γ × (0, T), using particular background solutions as
weights. These particular solutions are constructed by a control method as it has been done
in the original work [10] (see also [11, 26–29]). It has been known for some time that the full
knowledge of the (hyperbolic) Dirichlet to Neumann map (uα|∂Ω×(0,T) �→ (∂uα/∂n)|∂Ω×(0,T))
uniquely determines conductivity; see [30, 31]. Our identification procedure can be regarded
as an important attempt to generalize the results of [30, 31] in the case of partial knowledge
(i.e., on only part of the boundary) of the Dirichlet-to-Neumann map to determine the
coefficient of the hyperbolic equation considered above. The question of uniqueness of this
inverse problem can be addressed positively via the method of Carleman estimates; see, for
example, [6, 14].

3. The Identification Procedure

Before describing our identification procedure, let us introduce the following cutoff function
β(x) ∈ C∞

0 (Ω) such that β ≡ 1 on Ω′ and let η ∈ R
d.

We will take in what follows ϕ(x) = eiη·x, ψ(x) = −i|η|eiη·x, and f(x, t) = eiη·x−i|η|t and
assume that we are in possession of the boundary measurements of

∂uα
∂n

on Γ × (0, T). (3.1)

This particular choice of data ϕ, ψ, and f implies that the background solution u of the wave
equation (2.6) in the homogeneous background medium can be given explicitly.
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Suppose now that T and the part Γ of the boundary ∂Ω are such that they geometrically
control Ω which roughly means that every geometrical optic ray, starting at any point x ∈ Ω
at time t = 0, hits Γ before time T at a nondiffractive point; see [32]. It follows from [33]
(see also [34]) that there exists (a unique) gη ∈ H1

0(0, T ; TL
2(Γ)) (constructed by the Hilbert

Uniqueness Method) such that the unique weak solution wη to the wave equation

(
c0∂

2
t −Δ

)
wη = 0 in Ω × (0, T),

wη|t=0 = β(x)eiη·x ∈ H1
0(Ω),

∂twη|t=0 = 0 in Ω,

wη|Γ×(0,T) = gη,
wη|∂Ω\Γ×(0,T) = 0

(3.2)

satisfies wη(T) = ∂twη(T) = 0.
Let θη ∈ H1(0, T ;L2(Γ)) denote the unique solution of the Volterra equation of second

kind

∂tθη(x, t) +
∫T
t

e−i|η|(s−t)
(
θη(x, s) − i

∣∣η∣∣∂tθη(x, s)
)
ds = gη(x, t), for x ∈ Γ, t ∈ (0, T),

θη(x, 0) = 0, for x ∈ Γ.

(3.3)

We can refer to the work of Yamamoto in [11] who conceived the idea of using such Volterra
equation to apply the geometrical control for solving inverse source problems.

The existence and uniqueness of this θη in H1(0, T ;L2(Γ)) for any η ∈ R
d can be

established using the resolvent kernel. However, observing from differentiation of (3.3) with
respect to t that θη is the unique solution of the ODE:

∂2t θη − θη = ei|η|t∂t
(
e−i|η|tgη

)
, for x ∈ Γ, t ∈ (0, T),

θη(x, 0) = 0, ∂tθη(x, T) = 0, for x ∈ Γ,
(3.4)

the function θη may be found (in practice) explicitly with variation of parameters and it also
immediately follows from this observation that θη belongs toH2(0, T ;L2(Γ)).

We introduce vη as the unique weak solution (obtained by transposition) in
C0(0, T ;L2(Ω)) ∩ C1(0, T ;H−1(Ω)) to the wave equation

(
c0∂

2
t −Δ

)
vη = 0 in Ω × (0, T),

vη|t=0 = 0 in Ω,

∂tvα,η|t=0 = i∇ ·
(
ηc1(x)eiη·x

)
∈ L2(Ω),

vη|∂Ω×(0,T) = 0.

(3.5)

Then, the following holds.
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Proposition 3.1. Suppose that Γ and T geometrically control Ω. For any η ∈ R
d, we have

∫T
0

∫

Γ
gηΛ0

(
vη
)
dσ(x)dt =

∣∣η∣∣2
∫

Ω′
c1(x)e2iη·xdx. (3.6)

Here dσ(x) means an elementary surface for x ∈ Γ.

Proof. Let vη be the solution of (3.5). From [25, Theorem 4.1, page 44], it follows that
Λ0(vη) = (∂vη/∂n)|Γ ∈ L2(0, T ;L2(Γ)). Then, multiplying the equation (∂2t + Δ)vη = 0 by
wη and integrating by parts over (0, T) ×Ω, for any η ∈ R

d, we have

∫T
0

∫

Ω

(
∂2t −Δ

)
vηwη = i

∫

Ω
∇ ·
(
ηc1(x)eiη·x

)
β(x)eiη·xdx −

∫T
0

∫

Γ
gη
∂vη

∂n
= 0. (3.7)

Therefore,

∣∣η∣∣2
∫

Ω′
c1(x)e2iη·xdx =

∫T
0

∫

Γ
gη
∂vη

∂n
, (3.8)

since c1 ≡ 0 on Ω \Ω′.

In terms of the function vη as solution of (3.3), we introduce

ũα(x, t) = u(x, t) + αd
∫ t
0
e−i|η|svη(x, t − s)ds, x ∈ Ω, t ∈ (0, T). (3.9)

Moreover, for z(t) ∈ C∞
0 (]0, T[) and for any v ∈ L1(0, T ;L2(Ω)), we define

v̂(x) =
∫T
0
v(x, t)z(t)dt ∈ L2(Ω). (3.10)

The following lemma is useful to prove our main result.

Lemma 3.2. Consider an arbitrary function c(x) satisfying condition (2.3), and assume that
conditions (2.4) and (2.5) hold. Let u and uα be solutions of (2.6) and (2.1), respectively. Then,
using (3.9) the following estimates hold:

‖uα − u‖L∞(0,T ;L2(Ω)) ≤ Cα, (3.11)

where C is a positive constant. And

‖ũα − uα‖L∞(0,T ;L2(Ω)) ≤ C′αd+1, (3.12)

where C′ is a positive constant.
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Proof. Let yα be defined by

yα ∈ H1
0(Ω),

Δyα = cα∂t(uα − u) in Ω.
(3.13)

We have

∫

Ω
cα∂

2
t (uα − u)yα +

∫

Ω
∇(uα − u) · ∇yα = α

∫

Ω

c1
c0
∇u · ∇yα. (3.14)

Since

∫

Ω
∇(uα − u) · ∇yα = −

∫

Ω
cα∂t(uα − u)(uα − u) = −1

2
∂t

∫

Ω
cα(uα − u)2,

∫

Ω
cα∂

2
t (uα − u)yα = −1

2
∂t

∫

Ω

∣∣∇yα
∣∣2,

(3.15)

we obtain

∂t

∫

Ω

∣∣∇yα
∣∣2 + ∂t

∫

Ω
cα(uα − u)2 = −2α

∫

Ω

c1
c0
∇u · ∇yα ≤ Cα∥∥∇yα

∥∥
L∞(0,T ;L2(Ω)). (3.16)

From the Gronwall Lemma, it follows that

‖uα − u‖L∞(0,T ;L2(Ω))≤ Cα. (3.17)

As a consequence, by using (3.10), one can see that the function ûα − û solves the following
boundary value problem:

Δ(ûα − û) = O(α) in Ω,

(ûα − û)|∂Ω = 0.
(3.18)

Integration by parts immediately gives

∥∥grad(ûα − û)
∥∥
L2(Ω) = O(α). (3.19)

Taking into account that grad(uα − u) ∈ L∞(0, T ;L2(Ω)), we find by using the above estimate
that

∥∥grad(uα − u)
∥∥
L2(Ω) = O(α) a.e. t ∈ (0, T). (3.20)
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Under relation (3.9), one can define the function ỹα as a solution of

ỹα ∈ H1
0(Ω),

Δỹα = cα∂t(ũα − uα) in Ω.
(3.21)

Integrating by parts immediately yields

∫

Ω
cα∂

2
t (ũα − uα)ỹα = − 1

2∂t

∫

Ω

∣∣∇ỹα
∣∣2,

∫

Ω
∇(ũα − uα)∇ỹα = − 1

2∂t

∫

Ω
cα(ũα − uα)2.

(3.22)

To proceed with the proof of estimate (3.12), we firstly remark that the function ũα given by
(3.9) is a solution of

(
c0∂

2
t −Δ

)
ũα = iαd∇ ·

(
ηc1(x)eiη·x

)
e−i|η|t ∈ L2(Ω) in Ω × (0, T),

ũα|t=0 = ϕ(x) in Ω,

∂tũα|t=0 = ψ(x) in Ω,

ũα|∂Ω×(0,T) = eiη·x−i|η|t.

(3.23)

Then, we deduce that uα − ũα solves the following initial boundary value problem:

(
cα∂

2
t − ∇ ·Δ

)
(uα − ũα) = αd∇ ·

(
c1(x)grad

(∫ t
0
e−i|η|svη(x, t − s) ds

))
in Ω × (0, T),

(uα − ũα)|t=0 = 0 in Ω,

∂t(uα − ũα)|t=0 = 0 in Ω,

(uα − ũα)|∂Ω×(0,T) = 0.
(3.24)

Finally, we can use (3.24) to find by integrating by parts that

∂t

∫

Ω

∣∣∇ỹα
∣∣2 + ∂t

∫

Ω
cα(ũα − uα)2 = 2αd

∫

Ω
c1grad(u − uα) · grad ỹα (3.25)

which, from the Gronwall Lemma and by using (3.20), yields

‖ũα − uα‖L∞(0,T ;L2(Ω)) ≤ C′αd+1. (3.26)

This achieves the proof.
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Now, we identify the function c(x) by using the difference between local Dirichlet to
Neumannmaps and the function θη as a solution to the Volterra equation (3.3) or equivalently
the ODE (3.4), as a function of η. Then, the following main result holds.

Theorem 3.3. Let η ∈ R
d, d = 2, 3. Suppose that the smooth coefficient c(x) satisfies (2.3), (2.4),

and (2.5). Let uα be the unique solution in C0(0, T ;H1(Ω)) ∩ C1(0, T ;L2(Ω)) to the wave equation
(2.1) with ϕ(x) = eiη·x, ψ(x) = −i|η|eiη·x, and f(x, t) = eiη·x−i|η|t. Let f̃ = f |Γ ∈ H̃1/2(Γ). Suppose
that Γ and T geometrically control Ω; then we have

∫T
0

∫

Γ

(
θη + ∂tθη∂t·

)
(Λα −Λ0)

(
f̃
)
(x, t)dσ(x)dt = αd−1

∣∣η∣∣2
∫

Ω′
(cα − c0)(x)e2iη·xdx +O

(
αd+1

)

(3.27)

= αd
∣∣η∣∣2

∫

Ω′
c1(x)e2iη·xdx +O

(
αd+1

)
,

(3.28)

where θη is the unique solution to the ODE (3.4) with gη defined as the boundary control in (3.2).
The term O(αd+1) is independent of the function c1. It depends only on the boundM.

Proof. Since the extension of (Λα − Λ0)(f̃)(x, t) to ∂Ω × (0, T) is (∂uα/∂n − ∂u/∂n), then by
conditions ∂tθη(T) = 0 and (∂uα/∂n − ∂u/∂n)|t=0 = 0, we have (Λα − Λ0)(f̃)(x, t)|t=0 = 0.
Therefore, the term

∫T
0

∫

Γ
∂tθη∂t(Λα −Λ0)

(
f̃
)
(x, t)dσ(x)dt (3.29)

may be simplified as follows:

∫T
0

∫

Γ
∂tθη∂t(Λα −Λ0)

(
f̃
)
(x, t)dσ(x)dt = −

∫T
0

∫

Γ
∂2t θη(Λα −Λ0)

(
f̃
)
(x, t)dσ(x)dt. (3.30)

On the other hand, we have

∫T

0

∫

Γ

[
θη(Λα −Λ0)

(
f̃
)
+ ∂tθη∂t(Λα −Λ0)

(
f̃
)]

(x, t)dσ(x)dt

=
∫T
0

∫

Γ

[
θη
(
Λα

(
f̃
)
− Λ̃α

(
ũα|Γ×(0,T)

))
+ ∂tθη∂t

(
Λα

(
f̃
)
− Λ̃α

(
ũα|Γ×(0,T)

))]
(x, t)dσ(x)dt

+
∫T
0

∫

Γ

[
θηα

d

∫ t
0
e−i|η|s

∂vη

∂n
(x, t − s) ds + αd∂tθη∂t

∫ t
0
e−i|η|s

∂vη

∂n
(x, t − s) ds

]
dσ(x)dt,

(3.31)

where Λ̃α(ũα|Γ×(0,T)) = Λ0(f̃) + αd
∫ t
0 e

−i|η|sΛ0(vη|Γ)(x, t − s)ds.
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Given that, θη satisfies the Volterra equation (3.4) and

∂t

(∫ t
0
e−i|η|s

∂vη

∂n
(x, t − s) ds

)
= ∂t

(
−e−i|η|t

∫ t
0
ei|η|s

∂vη

∂n
(x, s)ds

)

= i
∣∣η∣∣e−i|η|t

∫ t
0
ei|η|s

∂vη

∂n
(x, s)ds +

∂vη

∂n
(x, t),

(3.32)

we obtain by integrating by parts over (0, T) that

∫T
0

∫

Γ

[
θη

∫ t
0
e−i|η|s

∂vη

∂n
(x, t − s)ds + ∂tθη∂t

∫ t
0
e−i|η|s

∂vη

∂n
(x, t − s)ds

]
dσ(x)dt

=
∫T
0

∫

Γ

(
∂vη

∂n
(x, t)

(
∂tθη +

∫T
t

θη(s)ei|η|(t−s)ds

)

−i∣∣η∣∣
(
e−i|η|t∂tθη(t)

)∫ t
0
ei|η|s

∂vη

∂n
(x, s)ds

)
dσ(x)dt

=
∫T
0

∫

Γ

∂vη

∂n
(x, t)

(
∂tθη +

∫T
t

(
θη(s) − i

∣∣η∣∣∂tθη(s)
)
ei|η|(t−s)ds

)
dσ(x)dt

=
∫T
0

∫

Γ
gη(x, t)Λ0

(
vη|Γ
)
(x, t)dσ(x)dt,

(3.33)

and so, from Proposition 3.1, we obtain

∫T
0

∫

Γ

[
θη(Λα −Λ0)

(
f̃
)
+ ∂tθη∂t(Λα −Λ0)

(
f̃
)]

(x, t)dσ(x)dt

= αd
∣∣η∣∣2

∫

Ω′
c1(x)e2iη·xdx

+
∫T
0

∫

Γ

[
θη
(
Λα

(
f̃
)
− Λ̃α

(
ũα|Γ×(0,T)

))
+ ∂tθη∂t

(
Λα

(
f̃
)
− Λ̃α

(
ũα|Γ×(0,T)

))]
dσ(x)dt

+O
(
αd+1

)
.

(3.34)

Thus, to prove Theorem 3.3, it suffices then to show that

∫T
0

∫

Γ

[
θη
(
Λα

(
f̃
)
− Λ̃α

(
ũα|Γ×(0,T)

))
+ ∂tθη∂t

(
Λα

(
f̃
)
− Λ̃α

(
ũα|Γ×(0,T)

))]
dσ(x)dt = O

(
αd+1

)
.

(3.35)
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From definition (3.10), we have

ûα − ̂̃uα =
∫T
0
(uα − ũα)z(t)dt, (3.36)

which gives by system (3.24) that

Δ
(
ûα − ̂̃uα

)

=
∫T
0
cα∂

2
t (uα − ũα)z(t) dt + αd

∫T
0
∇ ·
(
c1(x)grad

(∫ t
0
e−i|η|svη(x, t − s)ds

))
z(t)dt.

(3.37)

Thus, by (3.9) and (3.24) again, we see that the function ûα − ũα is the solution of

−Δ
(
ûα − ̂̃uα

)
= −
∫T
0
cα(uα − ũα)z′′(t)dt +∇ ·

(
c1(x)grad

(̂̃uα − û
))

in Ω,

(
ûα − ̂̃uα

)
|∂Ω = 0.

(3.38)

Taking into account estimate (3.12) given by Lemma 3.2, then by using standard elliptic
regularity (see, e.g., [24]) for the boundary value problem (3.38), we find that

∥∥∥∥
∂

∂n
(ûα − ̂̃uα)

∥∥∥∥
L2(Γ)

= O
(
αd+1

)
. (3.39)

By the fact that Λα(f̃)− Λ̃α(ũα|Γ×(0,T)) :=(∂/∂n)(uα − ũα) ∈ L∞(0, T ;L2(Γ)), we deduce, as done
in the proof of Lemma 3.2, that

∥∥∥Λα(f̃) − Λ̃α

(
ũα|Γ×(0,T)

)∥∥∥
L2(Γ)

= O
(
αd+1

)
, (3.40)

which implies that

∫T
0

∫

Γ

[
θη
(
Λα

(
f̃
)
− Λ̃α

(
ũα|Γ×(0,T)

))
+ ∂tθη∂t

(
Λα

(
f̃
)
− Λ̃α

(
ũα|Γ×(0,T)

))]
dσ(x)dt = O

(
αd+1

)
.

(3.41)

This completes the proof of our Theorem.
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We are now in position to describe our identification procedure which is based on
Theorem 3.3. Let us neglect the asymptotically small remainder in the asymptotic formula
(3.27). Then, it follows that

cα(x) − c0(x) ≈ 2
αd−1

∫

Rd

e−2iη·x∣∣η∣∣2
∫T
0

∫

Γ

(
θη + ∂tθη∂t·

)
(Λα −Λ0)

(
f̃
)
(x, t)dσ

(
y
)
dtdη, x ∈ Ω.

(3.42)

The method of reconstruction we propose here consists in sampling values of

1∣∣η∣∣2
∫T
0

∫

Γ

(
θη + ∂tθη∂t·

)
(Λα −Λ0)

(
f̃
)
(x, t)dσ(x)dt (3.43)

at some discrete set of points η and then calculating the corresponding inverse Fourier
transform.

In the following, a better approximation than (2.3) is derived. It is not hard to prove the
more convenient approximation in terms of the values of local Dirichlet-to-Neumann maps
Λα and Λ0 at f̃ .

Corollary 3.4. Let η ∈ R
d and let f̃ = f |Γ ∈ H̃1/2(Γ). Suppose that Γ and T geometrically control

Ω; then we have the following better approximation:

cα(x) ≈ c0(x)

− 2
αd−1

∫

Rd

e−2iη·x∣∣η∣∣2
∫T
0

∫

Γ

[
ei|η|t∂t

(
e−i|η|tgη

(
y, t
))

(Λα −Λ0)
(
f̃
)(
y, t
)]
dσ
(
y
)
dtdη, x ∈ Ω,

(3.44)

where the boundary control gη is defined by (3.2).

Proof. The term
∫T
0

∫
Γ ∂tθη∂t(Λα − Λ0)(f̃)(x, t)dσ(x)dt, given in Theorem 3.3, has to be

interpreted as follows:

∫T
0

∫

Γ
∂tθη · ∂t(Λα −Λ0)

(
f̃
)
(x, t)dσ(x)dt = −

∫T
0

∫

Γ
∂2t θη · (Λα −Λ0)

(
f̃
)
(x, t)dσ(x)dt, (3.45)

because θη|t=T = 0 and ∂t(∂uα/∂n − ∂u/∂n)|t=0 = 0. In fact, in view of the ODE (3.4), the term∫T
0

∫
Γ[θη(Λα − Λ0) + ∂tθη · ∂t(Λα − Λ0)]f̃(x, t)dσ(x)dt may be simplified after integration by

parts over (0, T) and using of the fact that θη is the solution to the ODE (3.4) to become

−
∫T
0

∫

Γ
ei|η|t∂t

(
e−i|η|tgη

)
· (Λα −Λ0)

(
f̃
)
(x, t)dσ(x)dt. (3.46)

Then, the desired approximation is established.
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4. Conclusion

The use of approximate formula (3.27), including the difference between the local Dirichlet
to Neumann maps, represents a promising approach to the dynamical identification and
reconstruction of a coefficient which is unknown in a bounded domain (but it is known
outside of this domain) for a class of hyperbolic PDE. We believe that this method will yield a
suitable approximation to the dynamical identification of small conductivity ball (of the form
z + αD) in a homogeneous medium in R

d from the boundary measurements. We will present
convenable numerical implementations for this investigation. This issue will be considered
in a forthcoming work.
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