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3D solutions of the dynamical equations in the presence of external forces are derived for a
homogeneous, prestressed medium. 2D plane waves solutions are obtained from general solutions
and show that there exist two types of plane waves, namely, quasi-P waves and quasi-SV waves.
Expressions for slowness surfaces and apparent velocities for these waves are derived analytically
as well as numerically and represented graphically.

1. Introduction

In fact, the Earth is prestressed medium, due to many physical causes, that is, gravity
variation, slow process of creep and variation of temperature, and so forth. Therefore, these
problems are of much interest to seismologists due to its application in mineral prospecting
and prediction of earthquakes.

For studying the propagation of elastic waves in prestressed solids of infinite extent,
Sidhu and Singh [1, 2], Norris [3], and Day et al. [4] used a much simpler form of equation
of motion of Biot [5]. The medium considered by earlier investigators is a homogenous
prestressed with incremental elastic coefficients possessing orthotropic anisotropy due to
normal components of initial stresses.

In the present paper, 3D problem of propagation of P , SV and SH waves for a
homogeneous prestressed medium is discussed. The model of prestressed medium used here
is much more general than that used by earlier investigators.

The 2D plane waves solutions are obtained from general solutions for different
conditions of initial stresses with or without external forces. Graphs of slowness surfaces
are derived.
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2. Basic Equations

Consider a homogenous prestressed solid. The state of prestresses is, therefore, defined by six
components, that is, S11,S22,S33,S12 = S21, S31 = S13, and S23 = S32. Let all stress components
be functions of (x, y, z). The state of initial stress introduces anisotropy so that even for an
initially isotropic solid defined by two Lame’s constants λ, μ, the number of the incremental
elastic coefficients (Bij,Qi) will be always larger than 2. Let (X, Y, Z) be components of body
forces along coordinate axes, respectively, where X, Y, Z are all constant. The general form of
dynamical equation for prestressed solids in the presence of external forces is given by Biot
[5, page 52]:
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(2.1)

The two other equations are obtained by cyclic permutation of x, y, z, 1, 2, 3 and X, Y, Z.
ρ is the density and (u1, u2, u3) the displacement components along the axes. ΔXi are the
components of incremental body force, which are assumed to satisfy the equation

ΔXi = ujXi,j = 0,

e = exx + eyy + ezz.
(2.2)

The Sij are the components of prestress, which are assumed to satisfy the equilibrium
equation.

Sij,j + ρXi = 0, (2.3)

and are related to the initial strain εij by Hooke’s law

Sij = λεiiδij + 2μεij , (2.4)
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The incremental stresses sij are supposed to be linearly related to the incremental strains eij
through the incremental elastic coefficients Bij and Qi

s11 = B11exx + B12eyy + B13ezz,

s22 = B21exx + B22eyy + B23ezz,

s33 = B31exx + B32eyy + B33ezz,

s23 = 2Q1eyz,

s31 = 2Q2ezx,

s23 = 2Q3exy.

(2.5)
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Substituting (2.2), (2.5), and (2.6) in (2.1), we have
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The two other equations are obtained from (2.7) by cycle permutation of x, y, z, 1, 2, 3, X, Y, Z
and u, v,w.

Here

P1 = S11 − S22,

P2 = S22 − S33,

P3 = S33 − S11.

(2.8)

3. Propagation of Waves

For elastic waves propagating in a direction specified by direction cosines (l, m, n) along the
axes, we take

u = Ui exp(iP), v = Vi exp(iP), w = Wi exp(iP). (3.1)

(Ui, Vi,Wi) are amplitude factors along the axes and P is phase factor:

P = k
{
ct −

(
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)}
, (3.2)

where c is phase velocity and k is wave number.
Putting (3.1) and (3.2) in (2.7), we get
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where
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The explicit expressions for (Ω2,Ω3), (�2, �3), (K2,K3), (Ω′2,Ω
′
3 ), (�′2, �

′
3), and (K′2,K

′
3)

are obtained from (3.4)–(3.9), by cyclic permutation of x, y, z, 1, 2, 3, l, m, n and X, Y, Z,
respectively.

Setting the determinant of the coefficients of Ui, Vi and Wi of (3.3) equal to zero, on
simplification, we get the cubic equation in ρc2:

ρ3c6 + ρ2c4(A + B +D) + ρc2(AB + BD +DA − FJ − EI −HG)

+ (ABD + EFG +HIJ −AFJ − EID −HGB) = 0,
(3.10)

where

A = Ω1 + Ω′1, E = �1 + �
′
1, H =K1 +K′1,

B = Ω2 + Ω′2, F = �2 + �
′
2, I =K2 +K′2,

D = Ω3 + Ω′3, G = �3 + �
′
3, J =K3 +K′3.

(3.11)

4. Special Cases

Two special cases may be dealt with immediately.
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4.1. Three Dimensional Prestressed Medium

4.1.1. Propagation of Waves along the Unique Axis

Putting n = 1, l = m = 0 in (3.3)–(3.8) and in the expressions of (Ω2,Ω3),
(�2, �3),(K2,K3), (Ω′2,Ω

′
3 ), (�′2, �

′
3), and (K′2,K
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3), we get
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Equation (3.10) takes the form

ρ3c6 + ρ2c4(A1 + B1 +D1) + ρc2(A1B1 + B1D1 +D1A1 − F1J1 − E1I1 −H1G1)

+ (A1B1D1 + E1F1G1 +H1I1J1 −A1F1J1 − E1I1D1 −H1G1B1) = 0,
(4.3)

where

A1 = Ω11 + Ω′11, B1 = Ω21 + Ω′21, D1 = Ω31 + Ω′31,

E1 = �11 + �
′
11, F1 = �

′
21, G1 = �31 + �

′
31,

H1 =K′11, I1 =K21 +K′21, J1 =K31 +K′31.

(4.4)

4.1.2. In the Absence of Body Forces

When X = Y = Z = 0 and S11, S22, S33,S12 and so forth are all constant, then (4.3) becomes,
with the help of (4.2) and (4.4),

ρ3c6 + ρ2c4(Ω11 + Ω21 + Ω31) + ρc2(Ω11Ω21 + Ω21Ω31+Ω31Ω11 − �11K21)

+ (Ω11Ω21Ω31 − �11K21Ω31) = 0.
(4.5)
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4.1.3. Prestressed Is Defined by Normal Components

There are only normal components of prestress present in the medium, that is putting S12 =
S31 = S23 = 0 in (4.1), (4.5) takes the form

(
Ω11 + ρc2

)(
Ω21 + ρc2

)(
Ω31 + ρc2

)
= 0; (4.6)

on simplification, we get three values of c2:
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ρ
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B33

ρ
. (4.7)

4.2. Two Dimensional Prestressed Medium

4.2.1. Plane Waves Solution

Here, we consider the behaviour of plane waves in xy-plane perpendicular to the z-axis;
putting n = 0 in (3.4)–(3.9) and in the expressions of (Ω2,Ω3) and so forth, we get the set of
equations from (3.3):
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Equation (4.8) has nontrivial solution when

ρ2c4 +
(
Ω111 + Ω211 + Ω′111 + Ω′211

)
ρc2 −

(
�111 + �

′
111

)(
K211 +K′211

)
= 0. (4.10)

It is quadratic equation in ρc2, and it has two values of c2 corresponding to quasi-SV waves
and quasi-P waves.

In the absence of body forces and when S11, S22, and so forth are constants, then from
(4.8) and (4.9), we get

(
Ω111 + ρc2

)
Ui + �111Vi = 0,
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(
Ω211 + ρc2
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The set of homogeneous (4.12) in Ui, Vi has a nontrivial solution when

∣∣∣
∣∣

(
Ω1111 + ρc2)

�1111

K2111
(
Ω2111 + ρc2)

∣∣∣
∣∣
= 0. (4.14)
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This quadratic equation in ρc2 may be solved to obtain

2ρc2

=
{(

B11+Q3 +
P1

2

)
l2 +

(
B21+Q3 −

P1

2

)
m2

}

±

√{(
B11 −Q3 −

P1

2

)
l2 +

(
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2

)
m2

}2

+ 4
(
B21 +Q3 −

P1

2

)(
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P1

2

)
l2m2.

(4.15)

Thus, in general, in this two-dimensional model of the prestressed medium, there exist two
types of plane waves, namely, quasi-P waves and quasi-SV waves whose phase velocities
correspond to upper and lower signs of (4.15).

4.2.2. Propagation of Plane Waves in Orthotropic Medium

Consider a homogenous prestressed elastic solid. The material is either isotropic in finite
strain or anisotropic with orthotropic symmetry. The principal directions of initial stress are
chosen to coincide with the directions of elastic symmetry and the coordinate axes. Let the
state of uniform initial stresses have principal stresses S11, S22, and S33. We further assume
that S22 = S33 and S11 and S22 are constant. The principal stress S33 does not enter explicitly
into the equations of motion. Its influence is, however, included indirectly in the values of the
incremental elastic coefficients. We put l = sin θ and m = cos θ; (4.15) can be written as

2ρc2(θ) =
{(

B11+Q3 +
P1

2

)
sin2θ +

(
B21+Q3 −

P1

2

)
cos2θ

}

±

√{(
B11 −Q3 −
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2

)
sin2θ +

(
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P1

2

)
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}2

+ � ,

(4.16)

where � = 4(B12 +Q3 + P1/2)(B12 +Q3 + P1/2)sin2θcos2θ, where

B21 − P1 = B12. (4.17)

Let CP (θ) and CSV(θ) be the values of c associated with upper and lower signs in (4.16),
corresponding to the velocities for quasi-P waves and quasi-SV waves, respectively. Hence
these expressions coincide with the expressions obtained by Sidhu and Singh [1] for velocities
of quasi-P waves and quasi-SV waves.

5. Numerical Calculation and Discussions

Here we consider the model for an initially stressed medium:

B11 = λ + 2μ + P1, B12 = λ + P1, B22 = λ + 2μ, Q3 = μ. (5.1)
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Using (5.1) in (4.17), we get a nondimensional form of velocity equations as

ĈP (θ) =

√
1
2

[(
δ + 3 + p

)
+
{(
δ + 1 + p

)2 + δp
(
δ + 1 + p

)
sin2θ

}1/2
]
,

ĈSV(θ) =

√
1
2

[(
δ + 3 + p

)
−
{(
δ + 1 + p

)2 + δp
(
δ + 1 + p

)
sin2θ

}1/2
]
,

(5.2)
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where

δ =
λ

μ
, p =

P1

2μ
, β2 =

μ

ρ
. (5.3)

The apparent velocities for quasi-P waves and quasi-SV waves can be obtained from (5.2) as

CPa(θ) =
ĈP (θ)
sin θ

,

CSVa(θ) =
ĈSV(θ)
sin θ

.

(5.4)

The numerical values of the dimensionless slowness (1/ĈP (θ), 1/ĈSV(θ)) have been
calculated from (5.2) assuming that δ = 1 for different values of p vary from −0.8 to 0.8
and for different values of θ vary from 0◦ to 90◦. Figures 1 and 2 show the variation of the
dimensionless slowness for the quasi-P and quasi-SV waves with the angle of incidence −0.8,
−0.6, 0.2, 0.4, 0.6, and 0.8.

6. Conclusion

The study shows that the phase velocities of quasi-P waves and quasi-SV waves are highly
affected by the initial stresses present in the medium and also the direction of propagation.
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