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This paper proposes a simple surface interpolation attaining tangent-plane continuity. It is a
natural extension of the local quadratic C0 interpolator developed by the author (2005) in one
of his works, which has already been applied successfully to diverse engineering problems. The
methodology presented in this paper inherits most of the advantages possessed by the C0 scheme.
That is, (i) The algorithm is efficient and completely local requiring only the position vectors
and normals given at the nodes of a patch, and hence it is suitable for parallel processing. (ii)
It converges rapidly to the given surface with the increase in the number of nodes. (iii) Singular
points (apexes, sharp edges, etc.) and nonmanifolds can be treated quite easily. (iv) Because of
the minimization criteria assigned to the surface coefficients, it is rather robust and amenable to
computational analyses. Validity and effectiveness of the proposed technique are demonstrated
through numerical examples.

1. Introduction

There is a significant gap between the requirements on geometric models in the CAD and
computational science communities. In the former, surface descriptions using few patches
with large degree of freedom and high level of continuity (e.g., NURBS, Bézier, Gregory)
are considered to be desirable. On the other hand, models for numerical simulation (e.g.,
the finite element method) are almost always represented by fine meshes, where the major
interests are in fast, stable, and accurate recovery of the surface information lost during the
process of discretization. With this as background, the author proposed an interpolation
scheme suitable for such analyses [1]. It has already been applied successfully to engineering
problems including

(A) high-precision machining [2],
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(B) simulation of elastoplastic mechanics [3, 4],

(C) ray tracing of optical devices [5].

All those applications prohibited the usage of traditional sophisticated surface
descriptions, due to severe tolerance as well as geometrical and physical complexity of the
systems. In (A) the method readily yielded positional accuracy of around 10−13 m, which
could not be attained by other interpolators showing poor or no convergence. Less than 10%
of the linear surface patches turned out to be necessary to obtain the sufficient precision in
(B). The technique reduced the number of the patches required for the ray tracing in (C) by
a factor of 109. The interpolator is now referred to as C0 Nagata patch by its users, and hence
this paper follows this convention, though the name of the author is frequently dropped for
simplicity. The characteristics of the C0 patch listed below have enabled the aforementioned
significant performance improvements.

(i) The algorithm is completely local, requiring only the position vectors and normals
given at the vertices of each patch. Therefore, it is suitable for parallel processing.

(ii) The algorithm is simple, computationally inexpensive, and hence amenable to
various geometrical and physical evaluations.

(iii) Because the formulation accounts for discontinuity (multiplicity) of normals, sharp
edges and singular points as well as non-manifolds can be treated quite easily.

(iv) It has the minimum degree (two) of interpolation necessary for representation
of the curvature. This property is desirable especially for ray tracing, contact
problems, and so forth, which involve implicitization and inversion, since closed-
form solutions may be obtained.

(v) The interpolation assures the C0 continuity, and converges to the original surface
rapidly with the increase in the number of nodes, even in the presence of the
singular features. Hence error in the normals can be sufficiently small using rather
few patches. This implies asymptotic smoothness.

Other differences of the method from traditional approaches (smooth local interpola-
tors in particular) are discussed extensively in [1], and hence are not repeated here.

Another merit of the C0 patch is that it can easily be extended to establish tangent-
plane continuity, as reported in this paper. The proposed interpolation is named G1 Nagata
patch here for convenience of reference.(The term does not imply that the interpolation
always generates G1 surfaces; it can reproduce singular points (apexes, sharp edges, etc.)
or may yield cusps similar to the C0 patch.) The new algorithm involves correction using
a simple rational function retaining the boundary of the C0 patch. Hence it is no longer
quadratic, but it inherits all other desirable features from the C0 patch, such as complete
locality and capability of handling multiple normals. Similar to the C0 patch, the present
algorithm assigns minimization criteria (inherent in the generalized inverse) to the surface
coefficients, and hence is rather robust. This is notable since accuracy and stability are not
compatible with smoothness for most surface interpolators presently available.

This paper is organized as follows. The next section formulates the problem, briefly
reviews the C0 Nagata patch, identifies the conditions on its correction for the tangent-
plane continuity, and gives a simple solution satisfying the requirement, thus deriving the
interpolation scheme in Section 2.2.5. Section 3 assesses the convergence and accuracy of the
interpolation through numerical examples, followed by Section 4 summarizing the results
with a scope for future work.
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2. Formulation

Assume that position vectors and normals are given at the vertices of a triangular mesh with
general topology. The objective here is to recover the curvature and smoothness of the surface
through interpolating each patch independently. The process consists of the following three
steps:

(A) to replace each edge of a patch with a curve orthogonal to the normals given at the
endpoints of the edge,

(B) to determine a parametric quadratic polynomial patch (C0 Nagata patch)
reproducing the modified boundary to keep the C0 continuity,

(C) to correct the patch preserving the boundary in order to obtain tangent-plane
continuity.

Algorithms for (A) and (B) were already proposed by the author in [1]. However,
they are essential for the present approach and hence are summarized in the next section for
completeness. The C0 patch is then upgraded to enable local smooth interpolation.

2.1. The C0 Patch

For the time being, assume a smoothsurface. Consider a curve segment on the surface as
illustrated in Figure 1. Its endpoints P0 and P1 have the position vectors x0, x1 and the unit
normals n0, n1 (In this paper, a bold typeface is used for vectors (column matrices), and bold
symbols in square brackets denote matrices.). They are supposed to be known as input.

The step (A) mentioned at the beginning of Section 2 approximates the curve segment
using the quadratic function

x(ξ) ≡ x0 + (d − c)ξ + c ξ2 (0 ≤ ξ ≤ 1) (2.1)

to reproduce the position and normal vectors at the endpoints P0, P1. Here ξ ∈ [0, 1] denotes
the parameter for the curve, and

d ≡ x1 − x0 (2.2)

is the vector connecting the endpoints. The coefficient c in (2.1) introduces curvature to the
segment, and hence is named the curvature parameter. It is determined from the boundary
conditions at P0, P1 as

c(d,n0,n1) =

⎧
⎪⎪⎨

⎪⎪⎩

[n0,n1]
1 − c2

⎡

⎣
1 −c

−c 1

⎤

⎦

⎧
⎨

⎩

nT
0 d

−nT
1 d

⎫
⎬

⎭

(
c ≡ nT

0 n1 /= ± 1
)
,

0 (otherwise).

(2.3)

Here 0 is the zero vector. For general surfaces which may have multiple normals at P0, P1, the
curvature parameter can be extended as

c = [n]+{d}, (2.4)
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Figure 1: Interpolation of a curve segment on a surface.

where [n], {d} are constructed by (32) of [1] from the position and normal vectors at P0, P1.
The generalized inverse of the former is explicitly written as

[n]+ =

⎧
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

1
D(0)

[a](0)[n]T (
D(0) /= 0

)
,

1
D(1)

[a](1)[n]T (
D(0) = 0, D(1) /= 0

)
,

1
D(2)

[n]T (
D(0) = 0, D(1) = 0, D(2) /= 0

)
,

[O] (otherwise),

(2.5)

where [O] is the zero matrix, and [a](k), D(k) are coefficients defined by (27b) and (29) of
[1], respectively. Note that D(0), D(1), D(2) are dimensionless and should be treated as zeros
when their absolute values are below a small positive threshold ε, for avoiding numerical
instability.

The interpolator (2.1) is at most quadratic, and hence its approximation capability
is rather limited. If the magnitude of the curvature parameter c is too large, failure in
the aforementioned singularity detection or insufficient resolution of the original data is
suspected. This situation can be handled as follows. Note that the distance between P0 and P1

is |d| (Figure 1) and the curvature parameter c also has the dimension of length. If the latter
increases, the interpolated curve deviates from the line segment P0P1 . Therefore,

δ2
c

(
dTd

)
< cTc (2.6)

can be used as a criterion for inadequate interpolation. Here δc is a dimensionless parameter
and hence can be a constant regardless of the geometric scale. If the above holds, the next
expression on the right-hand side of (2.5) is chosen for evaluating the generalized inverse
irrespective of the decision based on the threshold ε, and the curvature parameter c of (2.4)
is recalculated. If it still satisfies (2.6), the same process is repeated. In the worst case, the
generalized inverse (2.4) becomes the zero matrix resulting in c = 0 making the curve segment
linear. Since the case is obviously against (2.6), this iteration always terminates and is safe.
Similar treatment should be taken also for (2.3).
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Figure 2: Interpolation of a triangular patch using the normals at its vertices.

With the above algorithm as a basic tool, the triangular patch in Figure 2(a) is
interpolated. Its geometry can be described by

{
x
(
η, ζ

)
| 0 ≤ ζ ≤ η ≤ 1

}
, (2.7)

where x denotes the position vector to a point on the patch, and η, ζ are its parameters defined
within the domain of Figure 2(b).

In Figure 2(a), the position vectors to the vertices v1, v2, v3:

x00 ≡ x(0, 0),

x10 ≡ x(1, 0),

x11 ≡ x(1, 1)

(2.8)

and the unit normals at the three points

n00 ≡ n(0, 0),

n10 ≡ n(1, 0),

n11 ≡ n(1, 1)

(2.9)

are assumed to be known. The C0 patch approximates the surface using the quadratic
polynomial

x
(
η, ζ

)
= c00 + c10η + c01ζ + c11ηζ + c20η

2 + c02ζ
2. (2.10)
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The edges of the patch are first interpolated in the form of (2.1) as

x
(
η, 0

)
= x00 + (d1 − c1)η + c1η

2,

x(1, ζ) = x10 + (d2 − c2)ζ + c2ζ
2,

x
(
η, η

)
= x00 + (d3 − c3)η + c3η

2

(2.11)

whose coefficients are given by

d1 ≡ x10 − x00, c1 ≡ c (d1, n00, n10),

d2 ≡ x11 − x10, c2 ≡ c (d2, n10, n11),

d3 ≡ x11 − x00, c3 ≡ c (d3, n00, n11).

(2.12)

Here the curvature parameter c is evaluated by (2.3) for smooth surfaces or by (2.4) for
general cases. The parametric representation (2.10) of the patch is uniquely obtained from
the boundary curves of (2.11) as

x
(
η, ζ

)
= x00

(
1 − η

)
+ x10

(
η − ζ

)
+ x11ζ − c1

(
1 − η

)(
η − ζ

)
− c2

(
η − ζ

)
ζ − c3

(
1 − η

)
ζ. (2.13)

In the subsequent discussion, symmetric expressions play an essential role. For this purpose,
barycentric coordinates are introduced to replace the surface parameters η, ζ. In the parameter
space of Figure 2(b), the vertices of the triangular patch have the following position vectors:

η0 ≡
{

0
0

}

, η1 ≡
{

1
0

}

, η2 ≡
{

1
1

}

. (2.14)

Hence the parameter vector for a point on the patch can be described as

η =
{
η
ζ

}

= β0η0 + β1η1 + β2η2 =
{
β1 + β2

β2

}

, (2.15a)

where β0, β1, β2 are the barycentric coordinates for η. They are in one-to-one correspondence
with the surface parameters provided that

β0 + β1 + β2 = 1. (2.15b)

Equations (2.15a)-(2.15b) can be solved for the barycentric coordinates as

β0 = 1 − η, β1 = η − ζ, β2 = ζ. (2.16)

Equations (2.16) and (2.7) show that the following holds on the patch:

0 ≤ β0, β1, β2. (2.17)
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Let Vi be the vertex for the parameter vector ηi and Ei its opposite edge. Equations (2.15a)-
(2.15b) give their representation in the barycentric coordinates as

Vi : βi = 1, βj = βk = 0, (2.18a)

Ei : βi = 0, βj + βk = 1
({
i, j, k

}
∈ ic

)
. (2.18b)

Here ic denotes the set of all cyclic permutations of the indices 0, 1, and 2; that is,

ic ≡ {{0, 1, 2}, {1, 2, 0}, {2, 0, 1}}. (2.19)

Introducing the barycentric coordinate vector

β ≡
{
β0, β1, β2

}T
, (2.20)

equations (2.18a)-(2.18b) can be rewritten as

Vi : β = 1i, (2.21a)

Ei : β = 1jβj + 1k
(
1 − βj

)
= eiβj + 1k

({
i, j, k

}
∈ ic

)
, (2.21b)

where 1i (i = 0, 1, 2) are unit vectors defined by

10 ≡

⎧
⎨

⎩

1
0
0

⎫
⎬

⎭
, 11 ≡

⎧
⎨

⎩

0
1
0

⎫
⎬

⎭
, 12 ≡

⎧
⎨

⎩

0
0
1

⎫
⎬

⎭
. (2.22)

As (2.21b) implies, the direction along the edge Ei in the space of barycentric coordinates is
given by

ei ≡ 1j − 1k
({
i, j, k

}
∈ ic

)
. (2.23)

Application of (2.15b) and (2.16) to (2.13) yields the position vector in the physical space as
the following homogeneous polynomial:

x(β) =
(
x00β0 + x10β1 + x11β2

)(
β0 + β1 + β2

)
− c1β0β1 − c2β1β2 − c3β2β0

=
2∑

i = 0

Piβ
2
i +

∑

{i,j,k}∈ic

Qiβjβk.
(2.24)
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Here

P0 ≡ x00, P1 ≡ x10, P2 ≡ x11, (2.25a)

Q0 ≡ x10 + x11 − c2 = P1 + P2 − C0,

Q1 ≡ x11 + x00 − c3 = P2 + P0 − C1,

Q2 ≡ x00 + x10 − c1 = P0 + P1 − C2,

(2.25b)

C0 ≡ c2, C1 ≡ c3, C2 ≡ c1 (2.25c)

are constant vectors. Equation (2.24) is equivalent to the quadratic Bernstein form

x(β) =
∑

i∈I2,2

Pi0 i1 i2B2,i(β), (2.26)

where i = {i0, i1, i2}T is a multi-index, whose valid values form the set I2,2, and

B2,i(β) =

⎧
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

β2
0

(
i = {2, 0, 0}T

)
,

β2
1

(
i = {0, 2, 0}T

)
,

β2
2

(
i = {0, 0, 2}T

)
,

2 β0β1

(
i = {1, 1, 0}T

)
,

2 β1β2

(
i = {0, 1, 1}T

)
,

2 β2β0

(
i = {1, 0, 1}T

)

(2.27)

denote the Bernstein basis functions. Substituting the above into (2.26) and comparing the
result with (2.24) yield the coefficients

P2 0 0 ≡ P0,

P0 2 0 ≡ P1,

P0 0 2 ≡ P2,

P0 1 1 ≡
Q0

2
,

P1 0 1 ≡
Q1

2
,

P1 1 0 ≡
Q2

2
,

(2.28)

which are the quadratic Bézier control points for the C0 patch.
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Symmetry of (2.24) greatly simplifies the formulation. For instance, a position vector
on any edge Ei can be expressed through (2.18b) as

Ei : x = Pjβ
2
j + Pkβ

2
k + Qiβjβk

({
i, j, k

}
∈ ic

)
. (2.29)

2.2. The G1 Patch

Despite its extreme simplicity, the aforementioned interpolation has high geometric accuracy.
Hence it has already found many engineering applications as mentioned in Section 1.
However, it generally gives discontinuous normals across patches, even if the original surface
is smooth. (In this study, parallel normals are considered to be identical.) This may not
be desirable when visual quality needs to be respected or the tangent-plane continuity is
essential for the analysis. To overcome the drawback, the G1 patch has been designed. It is
obtained through modifying the C0 patch to conform with the following conditions, which
are necessary for the complete locality of the algorithm.

(A) The C0 and G1 patches have the same boundary.

(B) The normals of the G1 patch on its edge depend only on the position and normal
vectors at the endpoints of the edge.

After mathematical preliminaries, the normal of (B) is defined in Section 2.2.2. The G1

patch is then determined from the boundary conditions.

2.2.1. Tangent Vector and Cross-Boundary Derivative along the Edges

For the subsequent formulation, directional derivative (see, e.g., [6, page 86])

Def(β) ≡ lim
h→ 0

f(β + he) − f(β)
h

=
∂f

∂β
e (2.30)

becomes handy. Here e is an arbitrary nonzero vector along the direction of the
differentiation. Recalling (2.16) and (2.20), the partial derivatives with respect to the surface
parameters η and ζ are represented by the above operator as

∂f

∂η
=
∂f

∂β

∂β

∂η
=
∂f

∂β
eη = Deηf, eη ≡ {−1, 1, 0}T,

∂f

∂ζ
=
∂f

∂β

∂β

∂ζ
=
∂f

∂β
eζ = Deζf, eζ ≡ {0,−1, 1}T.

(2.31)

Consider a triangular patch described by x(β). Selecting the vector ei of (2.23) as e in (2.30),
the tangent vector along the edge Ei can be written as

ti[x] ≡ Dei x(β)|Ei =
(
∂x
∂β

ei
)∣
∣
∣
∣
βi = 0

=

(
∂x
∂βj
− ∂x
∂βk

)∣
∣
∣
∣
∣
βi = 0

({
i, j, k

}
∈ ic

)
. (2.32a)
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Replacing the above ei with the vector ej for the next edge leads to the cross-boundary
derivative

si[x] ≡ Dej x(β)
∣
∣
∣

Ei
=
(
∂x
∂β

ej
)∣
∣
∣
∣
βi = 0

=
(
∂x
∂βk
− ∂x
∂βi

)∣
∣
∣
∣
βi = 0

({
i, j, k

}
∈ ic

)
. (2.32b)

Note that ti[·] and si[·] defined above are linear operators generating functions from their
arguments. Vector product of (2.32a) and (2.32b) gives the normal of the patch along the
edge Ei.

For the C0 patch of (2.24), its partial derivative with respect to the barycentric
coordinate βi is

∂x
∂βi

= 2Piβi + Qjβk + Qkβj
({
i, j, k

}
∈ ic

)
. (2.33)

Substituting this into (2.32a)-(2.32b) yields the tangent vector and the cross-boundary
derivative as

ti[x] =
((

2Pjβj + Qkβi + Qiβk
)
−
(
2Pkβk + Qiβj + Qjβi

))∣
∣
βi = 0

= −Tijβj + Tikβk
({
i, j, k

}
∈ ic

)
,

(2.34a)

si[x] =
(
2Pkβk + Qiβj + Qjβi

)
−
(
2Piβi + Qjβk + Qkβj

)∣
∣
βi = 0

= Sijβj + Sikβk
({
i, j, k

}
∈ ic

)
,

(2.34b)

where the following constant vectors are introduced:

Tij ≡ Qi − 2Pj = Pk − Pj − Ci, Tik ≡ Qi − 2Pk = Pj − Pk − Ci

({
i, j, k

}
∈ ic

)
, (2.35a)

Sij ≡ Qi −Qk = Tij − Tkj , Sik ≡ 2Pk −Qj = −Tjk

({
i, j, k

}
∈ ic

)
. (2.35b)

The right-hand sides of (2.35a) are obtained through (2.25b). Equations (2.34a)-(2.34b) and
(2.18a)-(2.18b) reveal that −Tij , Sij represent the tangent vector and the cross-boundary
derivative, respectively, at the vertex Vj on the edge Ei. Similarly, the tangent vectors of the
edges Ej and Ek ({i, j, k} ∈ ic) meeting at the vertex Vi are Tji and −Tki, respectively. Their
normalized vector product

n̂i ≡
Tki × Tji
∣
∣Tki × Tji

∣
∣

({
i, j, k

}
∈ ic

)
(2.36)
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gives the unit normal of the C0 patch (2.24) at the vertex Vi. By definition, it is perpendicular
to the tangent vector (2.35a) and the cross-boundary derivative (2.35b) at the same location,
that is,

n̂T
i Tji = n̂T

i Tki = 0, (2.37a)

n̂T
i Sji = n̂T

i Ski = 0
({
i, j, k

}
∈ ic

)
. (2.37b)

For ordinary cases where the C0 patch reproduces the normals of the original surface at the
vertices, Figure 2(a) indicates

n00 = n̂0,

n10 = n̂1,

n11 = n̂2,

(2.38)

and hence it is unnecessary to evaluate (2.36) in practice. Moreover, if the surface has the
unique normal n̂i at the vertex Vi, it naturally becomes parallel to the one for the adjacent
patch. In the subsequent discussion, such smooth surfaces are assumed to focus on the
tangent-plane continuity.

2.2.2. Normals on the Edges

The most important feature of the C0 patch summarized in Section 1 is complete locality;
that is, positional continuity across shared edges is automatically assured without requiring
the coefficients of the adjacent patches. This is an outcome of the fact that each edge curve
is constructed only from the position and normal vectors at its endpoints. If the same
information can also determine the tangent plane on the patch boundary, smoothness can
be achieved retaining the locality.

According to the definition of (2.36), the unit normals at the endpoints Vj and Vk of
the edge Ei are n̂j and n̂k, respectively. These normals tend to be parallel when the edge
becomes shorter, if the original surface is smooth. Therefore, the convergence is not lost by
an assumption that the normal of the G1 patch at an arbitrary point on the edge Ei is a linear
combination of n̂j and n̂k as

N̂i ≡ f n̂j + gn̂k

({
i, j, k

}
∈ ic

)
, (2.39)

where f and g are unknown functions. The above normal must be orthogonal to the tangent
vector of (2.34a), and hence the following needs to be satisfied everywhere on the edge Ei:

0 = N̂T
i ti[x] =

(
f n̂j + gn̂k

)T(−Tijβj + Tikβk
)
= f

(
diβk

)
− g

(
ciβj

)
. (2.40)

Here (2.37a) is employed, and the constants

ci ≡ n̂T
kTij , di ≡ n̂T

j Tik

({
i, j, k

}
∈ ic

)
(2.41)
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are defined. Equation (2.40) can always be established if the unknown functions are selected
as

f = aiciβj , g = aidiβk
({
i, j, k

}
∈ ic

)
. (2.42a)

Here ai is an arbitrary constant, but the choice

ai =

⎧
⎪⎨

⎪⎩

1 (ci = di = 0),

1
|ci| + |di|

(otherwise)
(2.42b)

normalizes (2.42a) and hence is recommended. Based on (2.42a)-(2.42b) and (2.39),

N̂i ≡ ĉin̂jβj + d̂in̂kβk
({
i, j, k

}
∈ ic

)
(2.43)

is adopted for the normal vector of theG1 patch on the edge Ei with the following coefficients:

⎧
⎨

⎩

ĉi = d̂i = 1 (ci = di = 0),

ĉi = aici, d̂i = aidi (otherwise).
(2.44)

The special treatment of the case ci = di = 0 prevents the normal from vanishing. The
corresponding coefficients ĉi = d̂i = 1 make the normal of (2.43) equivalent to (2.39) with
f = βj , g = βk. This satisfies the orthogonality condition of (2.40) and hence causes no
problem.

If only one of ci and di is zero, the normal of (2.43) may vanish at an endpoint of
the edge. However, this does not imply difficulty because the normals at the vertices are
predefined and hence unchanged after the interpolation; that is, the orthogonality is not
necessary to be specified at the endpoints. Thus it is concluded that the proposed normal
vector is adequate as long as the C0 patch matches the boundary conditions.

2.2.3. Conditions on the Correction

The next step is to find a patch whose normal on its boundary is (2.43). Note that the
equation depends only on the edge curve and the normals at its endpoints. Hence the normals
automatically coincide on an edge shared by adjacent patches, and tangent-plane continuity
is attained for ordinary cases where the original surface is smooth and its normals at the
vertices are reproduced by the C0 patch.

The patch in question is represented by the following function of the barycentric
coordinate vector β:

xg(β) = x(β) + g(β). (2.45)

On the right-hand side, x is given by (2.24) describing the C0 patch. Since the patch
is generally not orthogonal to the normal of (2.43), the correction term g is added. As
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mentioned in Section 2.2, this modification is carried out without changing the boundary
curves. Therefore, the correction g needs to vanish on the edges:

g = 0 on E0,E1,E2. (2.46)

This preserves the tangent vector ti[x] of (2.34a), which is already perpendicular to N̂i

because of (2.40). If the cross-boundary derivative

si
[
xg
]
= si[x] + si[g] (2.47)

is also normal to N̂i, that is,

0 = N̂T
i si

[
xg
]
= N̂T

i si[x] + N̂T
i si[g], (2.48a)

the tangent-plane continuity is achieved. The first term on the right-hand side can be
simplified through (2.34b), (2.37b), and (2.43) as

N̂T
i si[x] =

(
ĉin̂jβj + d̂in̂kβk

)T(
Sijβj + Sikβk

)
= Ĉiβjβk

({
i, j, k

}
∈ ic

)
, (2.48b)

where the following constants are defined:

Ĉi ≡ ĉin̂T
j Sik + d̂in̂T

kSij

({
i, j, k

}
∈ ic

)
. (2.49)

The correction g should be chosen to fulfill (2.46) and (2.48a)-(2.48b). For sufficient generality,
an arbitrary rational function

g(β) =
γ(β)
ω(β)

(2.50)

is assumed. Here γ , ω are polynomials, and the former is a vector function vanishing on the
edges due to (2.46); that is,

γ = 0 on E0,E1,E2. (2.51)

A directional derivative of (2.50) can be evaluated as

De

(
γ(β)
ω(β)

)

=
Deγ(β)

ω
−

Deω(β)
ω2

γ , (2.52)

and hence the cross-boundary derivative (2.32b) for the correction g becomes

si[g] = Dej g(β)
∣
∣
∣
βi=0

=

(
Dejγ(β)

ω
−

Dejω(β)

ω2
γ

)∣
∣
∣
∣
∣
βi=0

=

(
Dejγ(β)

ω

)∣
∣
∣
∣
∣
βi=0

, (2.53)



14 Journal of Applied Mathematics

where (2.18b) and (2.51) are employed. The above can be simplified further through applying
(2.32b) as

si[g] =
si[γ]
ω|βi=0

({
i, j, k

}
∈ ic

)
. (2.54)

The above derivative is subject to the condition of (2.48a); that is,

0 = N̂T
i

(

si[x] +
si[γ]
ω|βi=0

)

. (2.55)

Multiplying the above by its denominator and substituting (2.48b) into the result yields

0 = Ĉiβjβk ω|βi=0 + N̂T
i si[γ], (2.56a)

which is necessary for the tangent-plane continuity, together with (2.51) demanding that γ
vanish on the edges. Due to the boundary condition and (2.18b), γ = 0 must hold when at
least one of the barycentric coordinates β0, β1, β2 becomes zero. Therefore, γ can be written in
the following form where G is a polynomial:

γ = β0β1β2 G(β). (2.56b)

Once the polynomials γ and ω satisfying (2.56a)-(2.56b) are determined, the parametric
representation xg of the G1 patch is obtained through (2.50) and (2.45). Among an infinite
number of such candidates, a simple function is designed in the subsequent consideration.

A monomial involved in the polynomial γ of (2.56b) has the partial derivative

∂

∂βi
βα0

0 β
α1
1 β

α2
2 = αiβ

αi−1
i β

αj
j β

αk
k

({
i, j, k

}
∈ ic, 0 < α0, α1, α2

)
, (2.57)

which gives the cross-boundary derivative through (2.32b) as

si
[
βα0

0 β
α1
1 β

α2
2

]
=
(
αkβ

αk−1
k βαii β

αj
j − αiβ

αi−1
i β

αj
j β

αk
k

)∣
∣
∣
βi=0

=

⎧
⎨

⎩

0 (1 < αi),

−βαjj β
αk
k (αi = 1)

({
i, j, k

}
∈ ic, 0 < α0, α1, α2

)
.

(2.58)

Assuming that (2.56b) is at most quartic, the degree of G on its right-hand side is one or zero.
This gives

γ = β0β1β2
(
γ0β0 + γ1β1 + γ2β2

)
= γ iβ

2
i βjβk + γ jβiβ

2
j βk + γkβiβjβ

2
k

({
i, j, k

}
∈ ic

)
, (2.59)
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where γ0, γ1, and γ2 are unknown coefficients. The cross-boundary derivative of the above
polynomial is obtained through (2.58) as

si[γ] = −γ jβ
2
j βk − γkβjβ

2
k

({
i, j, k

}
∈ ic

)
. (2.60)

Substituting this and (2.43) into the condition (2.56a)-(2.56b) results in

Ĉiβjβk ω|βi=0 =
(
ĉin̂jβj + d̂in̂kβk

)T(
γ jβ

2
j βk + γkβjβ

2
k

)

=
(
ĉin̂T

j γ j

)
β3
j βk +

(
ĉin̂T

j γk + d̂in̂
T
kγ j

)
β2
j β

2
k +

(
d̂in̂T

kγk

)
βjβ

3
k

({
i, j, k

}
∈ ic

)

(2.61)

whose right-hand side is quartic or lower. Hence ω on the left-hand side is at most quadratic
and can be described similarly to (2.24)as

ω =
2∑

i=0

Wiβ
2
i +

∑

{i,j,k}∈ic

wiβjβk, (2.62)

where Wi and wi are constants. This leads to

ω|βi=0 =Wjβ
2
j +Wkβ

2
k +wiβjβk

({
i, j, k

}
∈ ic

)
. (2.63)

Substituting the above into (2.61) and comparing the coefficients arrives at the condition

ĈiWj = ĉin̂T
j γ j , (2.64a)

ĈiWk = d̂in̂T
kγk, (2.64b)

Ĉiwi = ĉin̂T
j γk + d̂in̂

T
kγ j

({
i, j, k

}
∈ ic

)
, (2.64c)

which is required to reproduce the normal of (2.43). Advancing the suffixes of (2.64a) by one
gives ĈjWk = ĉj n̂T

k
γk, whose ratio to (2.64b) is

Ĉj

Ĉi

=
ĉj

d̂i

({
i, j, k

}
∈ ic

)
. (2.65)

Unfortunately, the above equation cannot hold in general since the values of both sides are
predefined by (2.44) and (2.49). This fact makes it difficult to realize (2.59) based on the
hypothesis that γ is quartic or lower. Hence, a simple quintic polynomial is considered for γ
in the next section.
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2.2.4. Example of the Correction

Because of (2.58), a term in γ needs to be linear with respect to the barycentric coordinate βi to
have nonzero cross-boundary derivatives on the edge Ei. If the term is quadratic or higher in
βj and βk ({i, j, k} ∈ ic), it does not affect the cross-boundary derivatives on the other edges.
This observation motivates the choice of the quintic polynomial

γ = γ iβiβ
2
j β

2
k + γ jβ

2
i βjβ

2
k + γkβ

2
i β

2
j βk

({
i, j, k

}
∈ ic

)

= β0β1β2
(
γ0β1β2 + γ1β2β0 + γ2β0β1

)
,

(2.66)

where γ0, γ1, and γ2 are constant unknown vectors. It is obvious that the above conforms
with (2.56b). Equation (2.58) provides the cross-boundary derivative of (2.66) as

si[γ] = −γ iβ
2
j β

2
k

({
i, j, k

}
∈ ic

)
. (2.67)

Note that the above result has the coefficient γ i only. Hence the corresponding term can
exclusively adjust the normal on the edge Ei. Substitution of (2.67) and (2.43) reduces the
condition (2.56a) to

Ĉiβjβk ω|βi=0 =
(
ĉin̂jβj + d̂in̂kβk

)T
γ iβ

2
j β

2
k

({
i, j, k

}
∈ ic

)
. (2.68)

Here the right-hand side consists of two scalar terms, and the unknown vector γ i already has
three components. Therefore, the polynomial ω on the left-hand side is arbitrary, provided
that its structure is consistent with the other side. If (2.62) is assumed again, (2.63) and (2.18b)
yield

ω|βi=0 =
(
Wjβ

2
j +Wkβ

2
k +wiβjβk

)(
βj + βk

)

=Wjβ
3
j +

(
Wj +wi

)
β2
j βk + (Wk +wi)βjβ2

k +Wkβ
3
k

({
i, j, k

}
∈ ic

)
.

(2.69)

Substituting the above into (2.68) and comparing the coefficients lead to the following
conditions:

ĈiWj = ĈiWk = 0, (2.70)

Ĉi

(
Wj +wi

)
= ĉin̂T

j γ i,

Ĉi(Wk +wi) = d̂in̂T
kγ i

({
i, j, k

}
∈ ic

)
.

(2.71)

The value of Ĉi in (2.70) is predefined by (2.49) and hence has no degree of freedom.
Therefore, the following is generally required:

Wi = 0 (i = 0, 1, 2). (2.72a)
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Consequently, only the terms with the coefficient wi remain on the left-hand sides of (2.71).
The coefficient is in proportion to the magnitude of γ i on the right-hand side, and hence can
have any nonzero value without loss of generality. The simplest choice is

wi = 1 (i = 0, 1, 2). (2.72b)

Substitution of (2.72a)-(2.72b) into (2.62) determines the denominator polynomial as

ω = β0β1 + β1β2 + β2β0, (2.73)

and reduces (2.71) to the simple linear problem

{
Ĉi

Ĉi

}

=

[
ĉin̂T

j

d̂in̂T
k

]

γ i
({
i, j, k

}
∈ ic

)
. (2.74)

Since the above equation is underdetermined (two conditions for three unknowns), it is
generally satisfied by an infinite number of candidates. Among them, there is always a unique
minimum-error minimum-norm solution

γ i =

[
ĉin̂T

j

d̂in̂T
k

]+{
Ĉi

Ĉi

}
({
i, j, k

}
∈ ic

)
. (2.75)

In general, minimization criteria assigned to redundant degrees of freedom have positive
effects improving robustness and convergence; for example, (2.4) used to determine the
curvature parameter is the key to the robustness of the C0 patch [1]. Hence the above solution
is adopted to complete the correction term g through (2.73), (2.66), and (2.50). Formula (8) in
[1] explicitly gives the generalized inverse on the right-hand side of (2.75) as

[
ĉi n̂T

j

d̂i n̂T
k

]+

=
([
ĉin̂j , d̂in̂k

]+)T
=

⎧
⎪⎪⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎪⎪⎩

1
D(0)

[
ĉin̂j , d̂in̂k

]
⎡

⎣
a22 −a12

−a12 a11

⎤

⎦
(
D(0) /= 0

)
,

1
D(1)

[
ĉin̂j , d̂in̂k

] (
D(0) = 0, D(1) /= 0

)
,

[O] (otherwise),
(2.76a)

a11 ≡ ĉ2
i , a22 ≡ d̂2

i , a12 ≡ ĉid̂in̂T
j n̂k

({
i, j, k

}
∈ ic

)
, (2.76b)

D(0) = a11a22 − a2
12, D(1) = a11 + a22. (2.76c)

Here (2.76b) relies on the fact that (2.36) is a unit vector. Note that D(0), D(1) of (2.76c) are
dimensionless due to the fact that n̂j , n̂k in (2.76b) are unit vectors, and that the coefficients
ĉi, d̂i are normalized by (2.44) and (2.42b), and should be treated as zeros when their absolute
values are below a small positive threshold ε, for avoiding numerical instability.
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The proposed surface correction does not modify the boundary of the C0 patch,
and hence its geometric representation capability is rather limited. Therefore, too large
magnitudes of the coefficient vectors γ0, γ1, γ2 imply failure in the aforementioned singularity
detection or insufficient resolution of the original data. Since the coefficients have the
dimension of length, such difficulties can be detected similarly to (2.6) by the condition

δ2
g

(
dT
i di

)
< γT

i γ i (i = 0, 1, 2), (2.77)

where δg is a dimensionless constant. If the above holds, the next expression on the right-
hand side of (2.76a) is used for evaluating the generalized inverse.

It is important to verify the consistency of the solution (2.75) with (2.74) for tangent-
plane continuity. If the vectors ĉin̂j , d̂in̂k are linearly independent, the condition is fulfilled
irrespective of the values on its left-hand side: this yields D(0) /= 0 due to (2.76b), (2.76c) and
hence corresponds to the first case in (2.76a). The solution always gives γ i by (2.75) satisfying
(2.74). The vectors ĉin̂j , d̂in̂k can be linearly dependent in the following two situations.

(A) n̂j‖n̂k.

The tangent vector −Tij and the cross-boundary derivative Sij at the vertex Vj (see
(2.34a)-(2.34b)) become perpendicular also to the normal n̂k at the vertex Vk. The
same is true if the vertices Vj and Vk are interchanged. Therefore,

0 = n̂T
kTij = n̂T

kSij = n̂T
j Tik = n̂T

j Sik. (2.78)

This reduces (2.75) to γ i = 0, which satisfies the condition (2.74).

(B) n̂j ∦ n̂k and at least one of ĉi, d̂i is 0.

Assume that ĉi = 0. Then (2.49) yields Ĉi = d̂in̂T
kSij and the first row of (2.74) gives

Ĉi = 0. Since d̂i is nonzero, (2.74) can hold only if n̂T
kSij = 0. Similarly, n̂T

j Sik = 0 is

required when d̂i = 0.

The above discussion concludes that tangent-plane continuity can be attained except for the
following two pathological cases (As mentioned at the end of Section 2.2.1, it is assumed that
the C0 patch reproduces the normals at its vertices.):

ĉi = 0, n̂T
kSij /= 0, (2.79a)

d̂i = 0, n̂T
kSij /= 0. (2.79b)

These do not occur in meshes discretized properly. Assume (2.79a), for instance. Then (2.43)
makes N̂i and n̂k parallel and hence the whole edge Ei is on the tangent plane at the vertex Vk.
The plane, however, does not contain the cross-boundary derivative Sij at the other vertex Vj ,
due to (2.79a). This implies that the original curve of the edge Ei has displacement away from
the tangent plane near the vertex Vj and cannot be approximated by the simple quadratic
function (2.29). Interchanging Vj and Vk leads to the case of (2.79b). Hence the edge Ei should
be subdivided if (2.79a) or (2.79b) is encountered.
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Due to (2.73), (2.17), and (2.15b), the denominator polynomial ω is positive on the
patch excluding its vertices. Although it vanishes at the vertices (see (2.18a)), smoothness
of the correction term g can be maintained, as will be clarified in the following. Consider an
arbitrary path approaching the vertex Vi of (2.21a) in the space of barycentric coordinates.
The position vector to a point on the path can be described as

β = 1i + he, e ≡ {e0, e1, e2}T, (2.80)

where h is the distance from the vertex Vi (β = 1i) in the space. The unit vector e is variable
and arbitrary as long as the above β satisfies (2.15b); that is,

|e| = 1, e0 + e1 + e2 = 0. (2.81)

Substituting (2.80) into (2.73) yields

ω = (1 + hei)
(
hej

)
+
(
hej

)
(hek) + (hek)(1 + hei)

=
(
ej + ek

)
h +O

(
h2
) ({

i, j, k
}
∈ ic

)
,

(2.82)

which reveals that the denominator polynomial is first order with respect to h. Similarly by
(2.80),

β
p

j β
q

k
= epj e

q

k
hp+q (2.83)

holds. If the ratio

β
p

j β
q

k

ωhr
=

e
p

j e
q

k
hp+q−r−1

(
ej + ek

)
+O(h)

(2.84a)

has a positive exponent of h in the numerator, it vanishes as it approaches the vertex β = 1i
for h → 0 irrespective of the path; that is (note that ej +ek never vanishes in the denominator
of (2.84a) due to (2.81)),

lim
β→ 1i

β
p

j β
q

k

ωhr
= 0

(
1 + r < p + q,

{
i, j, k

}
∈ ic

)
. (2.84b)

The above with r = 0 as well as (2.66) and (2.50) gives the limit of the correction term

lim
β→ 1i

g = lim
β→ 1i

γ iβiβ
2
j β

2
k
+ γ jβ

2
i βjβ

2
k
+ γkβ

2
i β

2
j βk

ω
= 0, (2.85)



20 Journal of Applied Mathematics

which does not depend on the path. Therefore, adopting it as the value of g at the vertex Vi

to redefine (2.50) as

g(β) =

⎧
⎪⎨

⎪⎩

0
(
β0 = 1 or β1 = 1 or β2 = 1

)
,

γ(β)
ω(β)

(otherwise)
(2.86)

preserves the continuity. This function is also smooth: substitution of e = 1i into (2.52) yields
the partial derivative

∂

∂βi

( γ

ω

)
=

1
ω

∂γ

∂βi
− 1
ω2

∂ω

∂βi
γ

=
1
ω2

((
βiβj + βjβk + βkβi

)(
γ iβ

2
j β

2
k + 2γ jβiβjβ

2
k + 2γkβiβ

2
j βk

)

−
(
βj + βk

)(
γ iβiβ

2
j β

2
k + γ jβ

2
i βjβ

2
k + γkβ

2
i β

2
j βk

))
(∵ (2.66) and (2.73))

=
γ i
ω2

β2
j β

2
k

(
βiβj + βjβk + βkβi − βi

(
βj + βk

))

+
γ j

ω2
βiβjβ

2
k

(
2βiβj + 2βjβk + 2βkβi − βi

(
βj + βk

))

+
γk
ω2

βiβ
2
j βk

(
2βiβj + 2βjβk + 2βkβi − βi

(
βj + βk

))

=
γ i
ω2

β3
j β

3
k +

γ j

ω2
βiβjβ

2
k

(
ω + βjβk

)
+

γk
ω2

βiβ
2
j βk

(
ω + βjβk

)
(∵ (2.73))

=
1
ω2

(
β3
j β

3
kγ i + βiβjβk

(
ω + βjβk

)(
βkγ j + βjγk

)) ({
i, j, k

}
∈ ic

)
,

(2.87)

whose limit vanishes at every vertex because of (2.84a)-(2.84b) with r = 0 and the
boundedness of (2.81); that is,

lim
β→ 1i

∂

∂βi

( γ

ω

)
= 0 (i = 0, 1, 2). (2.88)

This and (2.30) tell that every directional derivative also has the limit 0 at the vertices.
Furthermore, the limit coincides with the value obtained directly from the definition (2.30):

Deg(1i) = lim
h→ 0

g(1i + he) − g(1i)
h

= lim
h→ 0

g(1i + he)
h

(∵ (2.86))

= lim
h→ 0

γ iβiβ
2
j β

2
k
+ γ jβ

2
i βjβ

2
k
+ γkβ

2
i β

2
j βk

ωh
(∵ (2.66) and (2.50))

= 0 (∵ (2.84b) with r = 1),

(2.89)
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where e is an arbitrary vector. This clearly indicates that the correction g never changes the
normals at the vertices. Equation (2.89) concludes that the following extended definition of
the directional derivative becomes continuous at every vertex:

Deg(β) =

⎧
⎪⎨

⎪⎩

0
(
β0 = 1 or β1 = 1 or β2 = 1

)
,

De

(
γ(β)
ω(β)

)

(otherwise).
(2.90)

This assures the smoothness of the correction term g of (2.86). The directional derivative on
the right-hand side of (2.90) can be evaluated through substituting (2.87) into (2.30). The
partial derivatives with respect to the surface parameters η, ζ can also be obtained similarly
through (2.31).

2.2.5. Algorithm

Finally, the procedure for determining the G1 patch is summarized below.

(A) Give the position and normal vectors at the three vertices of the patch.

(B) Apply the algorithm described in Section 2.1 to determine the coefficients of (2.13)
for the C0 patch and obtain the vectors Pi, Qi (i = 0, 1, 2) through (2.25a)–(2.25c).

(C) Compute the constants Tij , Tik, Sij , Sik ({i, j, k} ∈ ic) of (2.35a)-(2.35b) and the
unit normals n̂i (i = 0, 1, 2) of (2.36).

(D) After calculating ĉi, d̂i through (2.44), (2.42b), and (2.41), evaluate (2.49) to get
Ĉi(i = 0, 1, 2). If one of ĉi, d̂i is zero and Ĉi /= 0, the tangent-plane continuity on
the edge Ei is not achieved. Then the edge Ei should be subdivided since the case
implies lack of mesh resolution (see the comment on (2.79a)-(2.79b)).

(E) Determine the unknown vectors γ i (i = 0, 1, 2) through (2.75) and (2.76a)–(2.76c).
Note that D(k) should be treated as zero if |D(k)| < ε or (2.77) holds for positive
dimensionless thresholds ε and δg.

(F) Equations (2.73), (2.66), and (2.50) then give the correction g. Adding it to the
function x of (2.24) for the C0 patch yields the parametric representation xg of (2.45)
for the G1 patch.

3. Numerical Examples

Figure 3 shows a typical example of the proposed interpolation. Figure 3(a) is a triangular
mesh of an ellipsoid with semiaxes of lengths 1, 2, and 3. It has only six vertices and hence
is essentially an octahedron. Application of the C0 patch to the mesh with the normals to the
original surface at the vertices gives Figure 3(b). It is closer to the ellipsoid, but its tangent
plane is not continuous. This problem is then solved by theG1 patch algorithm of Section 2.2.5
yielding a completely smooth surface in Figure 3(c).

Next, a more general mesh of Figure 4(a) is tried. It is obtained through discretization
of a solid model and has the position and normal vectors of the original surface at its vertices.
The mesh, however, lacks all the other geometric information. The G1 patch interpolates it
as Figure 4(b). Note that the sharp features as well as smoothness of the original model are
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(a) (b) (c)

Figure 3: Application of the interpolation to a mesh of a smooth surface.

reproduced properly. This is due to the capability of the proposed approach inherited from
the C0 patch which enables handling an arbitrary number of normals at a vertex.

As already mentioned in Section 1, the present methodology has been developed
mainly for computational science and engineering. Hence quantitative accuracy has the
primary significance rather than visual effect. It is assessed in the following steps. First,
meshes for a unit sphere, a right circular cone, and a cylinder with both unit base radius and
height, and a torus whose major and minor radii are 2 and 1, respectively, are generated with
diverse resolutions. They are processed by the proposed scheme, and geometric errors of the
interpolation are evaluated. The result is shown in Figure 5. Both axes are in logarithmic scale.
In the figure, the error δmax is the maximum distance of the interpolated surface from the
exact geometry, computed using a sufficient number of sample points (regardless of the mesh
resolution: more than 44 × 104 points for the cone; more than 88 × 104 points for the cylinder
and the sphere; more than 13 × 104 for the torus, uniformly distributed on the parameter
planes of the patches with all their boundaries involving the singular points, i.e., the apex of
the cone and the sharp edges of the discal bases). The mesh scale Δ is defined as the square
root of the average patch area. The solid and hollow symbols represent the results by the G1

and C0 patches, respectively, both showing decrease in the error δmax with the mesh scale Δ,
that is, convergence to the exact surface. The order of convergence for the G1 patch varies
between 2.2 and 4, depending on the types of the surfaces. Its decrease may be caused by the
existence of isolated singular points (apexes) or saddle points. It is notable that the proposed
algorithm maintains its stability even for extremely coarse meshes. This robustness may be
attributed to the minimization criteria introduced in (2.4) and (2.75).

For most of the cases in Figure 5, the G1 and C0 patches attain the same accuracy. This
implies that the maximum errors tend to occur on the patch boundaries shared by both. The
discrepancies between the two methods observed for the cone are considered to be due to the
existence of the apex. Since normals at singular points have arbitrariness, their definition can
change the convergence rate. The performance of the interpolator can naturally be affected
also by the mesh subdivision scheme to control the resolution.

Regular points on a surface can be classified into elliptic, parabolic, and hyperbolic
points. Since the four models used in the error analysis cover all these types as well as typical
singular features, the present technique is expected to have similar effectiveness for general
geometries.
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(a) (b)

Figure 4: Application of the interpolation to a mesh of a surface with sharp features.
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Figure 5: Interpolation error of the Nagata patches as a function of the mesh scale.

4. Concluding Remarks

The C0 Nagata patch has been extended to establish tangent-plane continuity, retaining
its complete locality and other merits. The proposed interpolation is able to stably obtain
the same level of accuracy as that of the C0 patch, which is already sufficient even
for high-precision engineering, as illustrated in Section 1. Nevertheless, there still exist
problems demanding smoothness preserved in discretized models. The G1 patch will find
applications in such areas. They include optical and contact analyses, where artificial normal
discontinuities may give rise to unwanted jumps in refraction angles and friction forces,
respectively.
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As can be imagined from the varying nonintegral order of convergence observed in
Figure 5, its theoretical estimation is difficult. Since the algorithm involves the generalized
inverse, whose definition changes according to the rank of the matrix, the discussion would
be fairly complex and hence deserves future study.

Similar to other interpolators, the performance of the present technique can be affected
by the mesh density distribution. In this context, further research efforts will be directed also
to adaptive mesh refinement with assured upper bound of the geometric errors due to the
approximation by the proposed algorithm.
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