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The random perturbation of generalized reduced gradient method for optimization under
nonlinear differentiable constraints is proposed. Generally speaking, a particular iteration of this
method proceeds in two phases. In the Restoration Phase, feasibility is restored by means of
the resolution of an auxiliary nonlinear problem, a generally nonlinear system of equations. In
the Optimization Phase, optimality is improved by means of the consideration of the objective
function, on the tangent subspace to the constraints. In this paper, optimal assumptions are stated
on the Restoration Phase and the Optimization Phase that establish the global convergence of the
algorithm. Some numerical examples are also given by mixture problem and octagon problem.

1. Introduction

We consider the problem

Maximize :f(X)

subject to :h(X) = 0,

X ∈ Ω,

(1.1)

where f : R
n → R and h : R

n → R
m are continuously differentiable, and Ω ⊂ R

n is closed
and convex set (e.g., Ω =

∏n
i=1[ai,bi]).

Notice that any nonlinear programming can be put into standard form (1.1), by
introduction of nonnegative slack variables, if there are inequalities (other than bounds on
the variables) among the constraints, and by allowing some of the bounds to be +∞ or −∞ if
necessary. The standard form is adopted here for ease in notations and discussion.
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Feasible methods for optimization with constraints like generalized reduced gradient
play an important role in practicing and are still widely used in technological applications.
The main techniques proposed for solving constrained optimization problems in this work
are generalized reduced gradient method via random perturbation. We are mainly interested
in the situation where, on one hand, f is not concave and, on the other hand, the constraints
are in general not linear. It is worth noting that some variant of the generalized gradient
method reduces, in the case where all the constraints are linear, to the reduced gradient
method [1], and some other variant, in the case of linear programming, to the Dantzig
simplex method.

The problem (1.1) can be numerically approached by using sequential quadratic
programming in [2], other methods for nonlinear programming in [3, 4], and generalized
reduced gradient method [5], which generates a sequence {Xk}k≥0, where X0 is an initial
feasible point and, for each k > 0, a new feasible point Xk+1 is generated from Xk by using an
operator Qk (see Section 3). Thus the iterations are given by

k ≥ 0 : Xk+1 = Qk

(
Xk
)
. (1.2)

A fundamental difficulty arises due to the lack of concavity: the convergence of
the sequence {Xk}k≥0 to a global maximum point is not ensured for the general situation
considered. In order to prevent from converging to local maximum, various modifications
of these basic methods have been introduced in the literature. For instance, we can find
in the literature modifications of the basic descent methods [6–9], stochastic methods
combined to penalty functions [10], evolutionary methods [11], and simulated annealing
[12]. We introduce in this paper a different approach, inspired from the method of
random perturbations introduced in [13] for unconstrained minimization of continuously
differentiable functions and adapted to linearly constrained problems in [14].

In such a method, the sequence {Xk}k≥0 is replaced by a random vectors sequence
{X̂k}k≥0 and the iterations are modified as follows:

k ≥ 0 : X̂k+1 = Qk

(
X̂k
)
+ Pk, (1.3)

where Pk is a suitable random variable, called the stochastic perturbation. The sequence
{Pk}k≥0 goes to zero slowly enough in order to prevent convergence to a local maximum (see
Section 4), the generalized reduced gradient method is recalled in Section 3, the notations are
introduced in Section 2, and the results of some numerical experiments are given in Section 5.

2. Notations and Assumptions

We have the following.

(i) E = R
n is the n-dimensional real Euclidean space.

(ii) X stands for (x1, . . . , xn)
T ∈ E.

(iii) h(X) is the column vector whose components are h1(X), . . . ,hm(X).
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(iv) ‖X‖ = (x21 + · · · + x2n)
1/2 is the Euclidean norm of X:

‖A‖∞ = sup{‖AX‖ : ‖X‖ = 1}, (2.1)

(v) AT is the transpose matrix associated to A.

Definition 2.1. A point X is said to be feasible if |hi(X)| ≤ ε0, for i = 1, . . . , m, where ε0 is same
preassigned small positive constant.

Assume that we know some feasible point X0. Wemake the following nonedegeneracy
assumption. The vector X can be split into two components: an m-dimensional component y
(the basic part), and x, a component of dimension n − m (the nonbasic part) such that the
following two properties hold:

(H1) y0 is strictly between bounds;

(H2) the squarem ×mmatrix ∂h/∂y, computed at X0, is nonsingular.

If the property (H2) does not hold or n < m, we add artificial variables to the constraints, so
the property (H2) holds and n ≥ m in associate problem (1.1).

Let

C = {X ∈ E | h(X) = 0,X ∈ Ω}. (2.2)

The objective function is f : E → R, and its upper bound on C is denoted by l∗:

l∗ = max
C

f. (2.3)

Let us introduce

Cα = Sα ∩ C; where Sα = {X ∈ E | f(X) ≥ α}. (2.4)

We assume that

f is twice continuously differentiable on E, (2.5)

∀α < l∗ : Cα is not empty, closed and bounded, (2.6)

∀α < l� : meas(Cα) > 0, (2.7)

where meas(Cα) is the measure of Cα.
Since E is a finite dimensional space, assumption (2.6) is verified when C is bounded

or f is coercive, that is, lim‖X‖→+∞f(X) = −∞. Assumption (2.6) is verified when C contains
a sequence of neighborhoods of a point of optimum X� having strictly positive measure, that
is, when X� can be approximated by a sequence of points of the interior of C. We observe that
the assumptions (2.5)-(2.6) yield that

C =
⋃

α<l�
Cα, that is, for allX ∈ C : ∃α < l∗ such that X ∈ Cα. (2.8)
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From (2.5)-(2.6),

γ1 = sup{‖∇f(X)‖ : X ∈ Cα} < +∞. (2.9)

Then

γ2 = sup{‖d‖ : X ∈ Cα} < +∞, (2.10)

where d is the direction determined on the basis of the gradient ∇f(X).
Thus,

β(α, ε) = sup
{∥
∥Y − (X + ηd

)∥
∥ : (X,Y) ∈ Cα × Cα, 0 ≤ η ≤ ε} < +∞, (2.11)

where ε, η are positive real numbers.

3. Generalized Reduced Gradient Method

By the implicit function theorem, there exists, in some neighborhood V of x0, a unique
continuous function (mapping), say y(x), such that f(x,y(x) is identically zero in V. In
addition, y(x) has a continuous derivative dy/dx, which can be computed by the chain rule:

∂h
∂x

+
(
∂h
∂y

)(
dy
dx

)

= 0, (3.1)

or, more conveniently,

dy
dx

= −
(
∂h
∂y

)−1(∂h
∂x

)

. (3.2)

In what follows, we call A the Jacobian of h(X) computed at X0. Similarly, we set

B =
∂h
∂y

, N =
∂h
∂x

(
computed at X0

)
. (3.3)

Substituting y(x) into the objective function f(x,y), we obtain the reduced function:

φ(x) = f(x,y(x)), (3.4)

the gradient of which at x0 is, by the chain rule again,

g =
∂f
∂x

+
(
∂f
∂y

)(
dy
dx

)

(3.5)
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(all derivatives computed at X0). Setting

v =
∂f
∂x
, w =

∂f
∂y

(
computed at X0

)
, (3.6)

we have the following formula for the reduced gradient g:

g = v −wB−1N. (3.7)

The generalized reduced gradient method tries to extend the methods of linear optimization
to the nonlinear case. Thesemethods are close to, or equivalent to, projected gradientmethods
[15]; just the presentation of the methods is frequently quite different.

Let us define the projected reduced gradient p (in the space of g) by its components:

(i) pj = 0 if x0j = aj and gj < 0;

(ii) pj = 0 if x0j = bj and gj > 0;

(iii) pj = gj , otherwise.

It is convenient to set

u = wB−1, (3.8)

and hence

w − uB = 0, v − uN = g. (3.9)

It is a simple matter to verify that Kuhn-Tucker condition for the problem in standard form
reduces to p = 0, and that u is the row-vector of multipliers corresponding to the equations
h(X) = 0. We assume from now on that p/= 0.

The following relations

xj = aj if x0j = aj and gj < 0,

xj = bj if x0j = bj and gj > 0

define what we call the face (at X0), denoted by F. The row-vector p (the projected reduced
gradient) is also named the projection of g onto F.

Let d be any nonzero vector column-vector in F such that pd > 0; the vector d is an
ascent direction for the reduced function φ(x).

There is a striking analogy with what is usually done in linear programming, where
y(x) can be computed in close form. This is generally not the case if the constraints h(X) are
nonlinear. Even if close form is available, actual substitution may very well be undesirable.

The generalized reduced gradient algorithm consists of the following steps.

Step 1. Assume that some that feasible X0 is known. Set k = 0 and go to the next step.
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Step 2. Step 2 is conveniently divided into substeps.

(1.1) Compute the Jacobian A and the gradient of the objective function.

(1.2) Determine a splitting of X into (x,y) and corresponding of A into (N,B), such that
yk is strictly between bound and B is nonsingular;

invert B.

(1.3) Compute the Lagrange multipliers u and the reduced gradient g.

(1.4) Determine the face F and the projection p of g onto F [16].

(1.5) If p is zero (or almost zero in some sense), then terminate. Xk is a KKT point [17, 18].
Otherwise, go to the next step.

Step 3. Choose ascent direction d = pt [18], that is,

dj =

⎧
⎪⎪⎪⎨

⎪⎪⎪⎩

0 if gj > 0, uj = aj ,

0 if gj < 0, uj = bj ,

gj , otherwise.

(3.10)

Step 4. Choose a first stepsize η1.

Step 5. Maximize, with respect to η, the function

ψ
(
η
)
= f
(
xk + ηd,y

(
xk + ηd

))
= φ
(
xk + ηd

)
(3.11)

with more or less accuracy (the linear search). For each value of η under consideration, this
step requires solving the following system ofm equations:

h
(
xk + ηd,y

)
= 0, (3.12)

where y is them-dimensional vector of unknowns.

Step 6. Assuming that Step 5 succeeds, an improved feasible point is obtained, which
replaced Xk. Replace k by k + 1 and go back to Step 2.

Let us recall briefly the essential points of the generalized reduced gradient method:
an initial feasible guess X0 ∈ C is given and a sequence {Xk}k≥0 ⊂ C is generated by using
iterations of the general form:

∀k ≥ 0 Xk+1 = Qk

(
Xk
)
= Xk + ηkdk. (3.13)

Remark 3.1. The theoretical convergence of generalized reduced gradient method has been
proved by [17, 19, 20].
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4. Two-Phase Generalized Reduced Gradient (TPGRG) Method

The main difficulty remains the lack of concaveity: if f is not concave, the Kuhn-Tucker points
may not correspond to a global maximum (see e.g., [7, 8]). In the next, this point is improved
by using an appropriate random perturbation.

The sequence of real numbers {Xk}k≥0 is replaced by a sequence of random variables
{X̂k}k≥0 involving a random perturbation Pk of the deterministic iteration (3.13); then we
have X̂0 = X0;

∀k ≥ 0 X̂k+1 = Qk

(
X̂k
)
+ Pk = X̂k + ηkdk + Pk = X̂k + ηk

(

dk +
Pk

ηk

)

, (4.1)

where ηk /= 0 satisfied the Step 5 in GRG algorithm, and

∀k ≥ 1 : Pk is independent from
(
X̂k−1, . . . , X̂0

)
, (4.2)

see [9], and

X̂ ∈ C =⇒ Qk

(
X̂
)
+ Pk ∈ C. (4.3)

Equation (4.1) can be viewed as perturbation of the ascent direction dk, which is replaced by
a new direction Dk = dk + Pk/ηk, and the iterations (4.1) become

X̂k+1 = X̂k + ηkDk. (4.4)

General properties defining convenient sequences of perturbation {Pk}k≥O can be found in
the literature [13, 14]: usually, sequence of Gaussian laws may be used in order to produce
elements satisfying these properties.

We introduce a random vector Zk, and we denote by Φk and φk the cumulative
distribution function and the probability density of Zk, respectively.

We denote by Fk+1(Y | X̂k = X) the conditional cumulative distribution function:

Fk+1
(
Y | X̂k = X

)
= P
(
X̂k+1 < Y | X̂k = X

)
, (4.5)

and the condition probability density of X̂k+1 is denoted by fk+1.
Let us introduce a sequence of n-dimensional random vectors {Zk}k≥0 ∈ C. We

consider also {ξk}k≥0, a suitable decreasing sequence of strictly positive real numbers
converging to 0 and such that ξ0 ≤ 1.

The optimal choice for ηk is determined by Step 5. Let Pk = ξkZk:

Fk+1
(
Y | X̂k = X

)
= P
(
X̂k+1 < Y | X̂k = X

)
. (4.6)
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It follows that

Fk+1
(
Y | X̂k = X

)
= P
(

Zk <
Y −Qk(X)

ξk

)

= Φk

(
Y −Qk(X)

ξk

)

. (4.7)

So, we have

fk+1
(
Y | X̂k = X

)
=

1
ξn
k

φk

(
Y −Qk(X)

ξk

)

Y ∈ C. (4.8)

The relation (2.11) shows that

‖Y −Qk(X)‖ ≤ β(α, ε) for (X,Y) ∈ Cα × Cα. (4.9)

We assume that there exists a decreasing function t �→ gk(t), gk(t) > 0 on R
+ such that

Y ∈ Cα =⇒ φk

(
Y −Qk(X)

ξk

)

≥ gk
(
β(α, ε)
ξk

)

. (4.10)

For simplicity, let

Zk = 1C(Zk)Zk, (4.11)

where Z is a random variable; for simplicity let Z ∼ N(0, 1).
The procedure generates a sequence Uk = f(X̂k). By construction this sequence is

increasing and upper bounded by l∗:

∀k ≥ 0 : l∗ ≥ Uk+1 ≥ Uk. (4.12)

Thus, there exists U ≤ l∗ such that

Uk −→ U for k −→ +∞. (4.13)

Lemma 4.1. Let Pk = ξkZk and γ = f(X0) if Zk is given by (4.11); then there exists ν > 0 such that

P(Uk+1 > θ | Uk ≤ θ) ≥ meas
(
Cγ − Cθ

)

ξn
k

gk

(
β
(
γ, ε
)

ξk

)

> 0 ∀θ ∈ [l∗ − ν, l∗), (4.14)

where n = dim(E).

Proof . Let Ĉθ = {X ∈ C | f(X) > θ}, for θ ∈ [l∗ − ν, l∗).

Since Cα ⊂ Ĉθ , l∗ > α > θ, it follows from (2.7) that Ĉθ is not empty and has a strictly
positive measure.
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If meas(C − Ĉθ) = 0 for any θ ∈ [l∗ − ν, l∗), the result is immediate, since we have
f(X) = l∗ on C.

Let us assume that there exists ε > 0 such that meas(C − Ĉε) > 0. For θ ∈ [l∗ − ε, l∗), we
have Ĉθ ⊂ Ĉε and meas(C − Ĉθ) > 0.

P(X̂k /∈ Ĉθ) = P(X̂k ∈ C − Ĉθ) =
∫
C−Ĉθ

P(X̂k ∈ dX) > 0 for any θ ∈ [l∗ − ε, l∗), since the
sequence {Ui}i≥0 is increasing, and we have also

{
X̂i
}

i≥0
⊂ Cγ . (4.15)

Thus

P
(
X̂k /∈ Ĉθ

)
= P
(
X̂k ∈ Cγ − Ĉθ

)
=
∫

Cγ−Ĉθ

P
(
X̂k ∈ dX

)
> 0 for any θ ∈ [l∗ − ε, l∗). (4.16)

Let θ ∈ [l∗ − ε, l∗); we have from (4.12)

P(Uk+1 > θ | Uk ≤ θ) = P
(
X̂k+1 ∈ Ĉθ | X̂i /∈ Ĉθ, i = 0, . . . , k

)
. (4.17)

But Markov chain yields that

P
(
X̂k+1 ∈ Ĉθ | X̂i /∈ Ĉθ, i = 0, . . . , k

)
= P
(
X̂k+1 ∈ Ĉθ | X̂k /∈ Ĉθ

)
. (4.18)

By the conditional probability rule

P
(
X̂k+1 ∈ Ĉθ | X̂k /∈ Ĉθ

)
=
P
(
X̂k+1 ∈ Ĉθ, X̂k /∈ Ĉθ

)

P
(
X̂k /∈ Ĉθ

) . (4.19)

Moreover

P
(
X̂k+1 ∈ Ĉθ, X̂k /∈ Ĉθ

)
=
∫

C−Ĉθ

P
(
X̂k ∈ dX

)∫

Ĉθ

fk+1
(
Y | X̂k = X

)
dY. (4.20)

From (4.15), we have

P
(
X̂k+1 ∈ Ĉθ, X̂k /∈ Ĉθ

)
=
∫

Cγ−Ĉθ

P
(
X̂k ∈ dX

)∫

Ĉθ

fk+1
(
Y | X̂k = X

)
dY, (4.21)

P
(
X̂k+1 ∈ Ĉθ, X̂k /∈ Ĉθ

)
≥ inf

X∈Cγ−Ĉθ

{∫

Ĉθ

fk+1
(
Y | X̂k = X

)
dY

}∫

Cγ−Ĉθ

P
(
X̂k ∈ dX

)
. (4.22)
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Thus

P
(
X̂k+1 ∈ Ĉθ | X̂k /∈ Ĉθ

)
≥ inf

X∈Cγ−Ĉθ

{∫

Ĉθ

fk+1
(
Y | X̂k = X

)
dY

}

. (4.23)

Taking (4.8) into account, we have

P
(
X̂k+1 ∈ Ĉθ | X̂k /∈ Ĉθ

)
≥ 1
ξnk

inf
X∈Cγ−Ĉθ

{∫

Ĉθ

φk

(
Y −Qk(X)

ξk

)

dY

}

. (4.24)

The relation (2.11) shows that

‖Y −Qk(X)‖ ≤ β(γ, ε), (4.25)

and (4.10) yields that

φk

(
Y −Qk(X)

ξk

)

≥ gk

(
β
(
γ, ε
)

ξk

)

. (4.26)

Hence

P
(
X̂k+1 ∈ Ĉθ | X̂k /∈ Ĉθ

)
≥ 1
ξn
k

inf
X∈Cγ−Ĉθ

∫

Ĉθ

gk

((
β
(
γ, ε
)

ξk

))

dY,

P
(
X̂k+1 ∈ Ĉθ | X̂k /∈ Ĉθ

)
≥ meas

(
Cγ − Cθ

)

ξnk
gk

(
β
(
γ, ε
)

ξk

)

.

(4.27)

4.1. Global Convergence

The global convergence is a consequence of the following result, which yields from the Borel-
Catelli’s lemma (e.g., see [13]):

Lemma 4.2. Let {Uk}k≥0 be an increasing sequence, upper bounded by l∗. Then, there exists U such
that Uk → U for k → +∞. Assume that there exists ν > 0 such that for any θ ∈ [l∗ − ν, l∗), there is
a sequence of strictly positive real numbers {ck(θ)}k≥0 such that

∀k ≥ 0 : P(Uk+1 > θ | Uk ≤ θ) ≥ ck(θ) > 0,
+∞∑

k=0

ck(θ) = +∞. (4.28)

Then U = l∗ almost surely.

Proof. For instance, see [13, 21].
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Theorem 4.3. Let γ = f(X0); assume that X0 ∈ C, the sequence ξk is nonincreasing, and

+∞∑

k=0

gk

(
β
(
γ, ε
)

ξk

)

= +∞. (4.29)

Then U = l∗ almost surely.

Proof. Let

ck(θ) =
meas

(
Cγ − Cθ

)

ξn
k

gk

(
β
(
γ, ε
)

ξk

)

> 0. (4.30)

Since the sequence {ξk}k≥0 is nonincreasing,

ck(θ) ≥
meas

(
Cγ − Cθ

)

ξn0
gk

(
β
(
γ, ε
)

ξk

)

> 0. (4.31)

Thus, (4.29) shows that

+∞∑

k=0

ck(θ) ≥
meas

(
Cγ − Cθ

)

ξn0

+∞∑

k=0

gk

(
β
(
γ, ε
)

ξk

)

= +∞. (4.32)

Using Lemmas 4.1 and 4.2 we have U = l∗ almost surely.

Theorem 4.4. Let Zk be defined by (4.11), and let

ξk =

√
√
√
√

â

log
(
k + d̂

) , (4.33)

where â > 0, d̂ > 0, and k is the iteration number. If X0 ∈ C, then, for â large enough, U = l∗ almost
surely.

Proof . We have

φk(Z) =
1

(√
2π
)n exp

(

−1
2
‖Z‖2

)

= gk(‖Z‖) > 0. (4.34)

So,

gk

(
β
(
γ, ε
)

ξk

)

=
1

(√
2π
)n(

k + d̂
)β(γ,ε)2/(2â)

. (4.35)
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For â such that

0 <
β
(
γ, ε
)2

2â
< 1, (4.36)

we have

∞∑

k=0

gk

(
β
(
γ, ε
)

ξk

)

= +∞, (4.37)

and, from Theorem 4.4, we have U = l∗ almost surely.

4.2. Practical Implementation

The above results suggest the following numerical algorithm.

(1) An initial guess X0 ∈ C is given.

(2) At the iteration number k ≥ 0, Xk is known and Xk+1 is determined by performing
the following three substeps.

(2.1) Unperturbed ascent: we determine the descent direction dk and the step ηk

using ascent method (3.13). This generates the first trial point:

T0
k+1 = Qk

(
Xk
)
. (4.38)

(2.2) Perturbation: we determine a sample (P1
k
, . . . ,Pksto

k
) of ksto new trial points:

Tik+1 = T0
k+1 + Pi

k, i = 1, . . . , ksto. (4.39)

(2.3) Dynamics: we determine Xk+1 by selecting it from the set of available points:

Ak =
{
Xk,T0

k+1, . . . ,T
ksto
k+1

}
. (4.40)

The computation of Xk+1 is performed in two phases.

First phase: we determine a trial point (unperturbed ascent step and perturbation
step).

Second phase: we determine Xk+1 by selection it fromAk (dynamics step).

As was shown in Theorem 4.4, Substep (2.2) may use Pi
k

= ξkZk, where Z =
(Z1, . . . ,Zk+1) is a sample ofN(0, 1) and ξk is given by (4.33).

For instance, we can consider elitistic dynamics:

Xk+1 = argmin
X∈Ak

f(X). (4.41)
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•

•

•

•

• •

•

A4 = (0, 1)

A0 = (0, 0)

A3 = (−x1,y1)

A2 = (x3 − x1 − x5,y1 − y3 + y5)

A1 = (x1 − x2,y1 − y2) A7 = (x3 − x1,y1 − y3)

A6 = (x1 − x2 + x4,y1 − y2 + y4)

A5 = (x1,y1)

Figure 1: Definition of variables for the configuration conjectured by Graham to have maximum area.

5. Numerical Results

In order to apply the method presented in (4.41), we start at the initial value X̂0 = X0 ∈ C. At
step k ≥ 0, X̂k is known and X̂k+1 is determined.

We generate ksto the number of perturbation; the iterations are stopped when Xk is
a Kuhn-Tucker point. We denote by kend the value of k when the iterations are stopped (it
corresponds to the number of evaluations of the gradient of f). The optimal value and optimal
point are fopt and Xopt, respectively. The perturbation is normally distributed and samples
are generated by using the log-trigonometric generator and the standard random number

generator of the FORTRAN library. We use ξk =
√
â/ log(k + 2), where â > 0.

Concern experiments performed on aworkstationHP Intel(R)Celeron(R)Mprocessor
1.30GHz, 224 Mo RAM. The row cpu gives the mean CPU time in seconds for one run.

5.1. Octagon Problem

Consider polygon in the plane with 5 sides (5-gons for short) and unit diameter. Which of
them have maximum area? (see e.g., [22]).

Graham’s conjecture states that the optimal octagon can be illustrated as in Figure 1,
in which a solid line between two vertices indicates that the distance between these points is
one.

This question can be formulated to the quadratically constrained quadratic optimiza-
tion problem defining this configuration that appears as follows:

Maximize
1
2
{(x2 + x3 − 4x1)y1 + (3x1 − 2x3 + x5)y2 + (3x1 − 2x2 + x4)y3

+(x3 − 2x1)y4 + (x2 − 2x1)y5} − x1

Subject to

‖A0 −A1‖ ≤ 1 :(x1 − x2)2 + (y1 − y2)2 + z1 = 1,

‖A0 −A2‖ ≤ 1 :(−x1 + x2 − x5)2 + (y1 − y3 + y5)2 + z2 = 1,
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‖A0 −A6‖ ≤ 1 :(x1 − x2 + x4)2 + (y1 − y2 + y4)2 + z3 = 1,

‖A0 −A7‖ ≤ 1 :(−x1 + x3)2 + (y1 − y3)2 + z4 = 1,

‖A1 −A2‖ ≤ 1 :(2x1 − x2 − x3 + x5)2 + (y2 − y3 + y5)2 + z5 = 1,

‖A1 −A3‖ ≤ 1 :(2x1 + x2)2 + y22 + z6 = 1,

‖A1 −A4‖ ≤ 1 :(x1 − x2)2 + (y1 − y2 − 1)2 + z7 = 1,

‖A1 −A7‖ ≤ 1 :(2x1 − x2 − x3)2 + (−y2 + y3)2 + z8 = 1,

‖A2 −A3‖ ≤ 1 :(x3 − x5)2 + (−y3 + y5)2 + z9 = 1,

‖A2 −A4‖ ≤ 1 :(−x1 + x3 − x5)2 + (y1 − y3 + y5 − 1)2 + z10 = 1,

‖A2 −A5‖ ≤ 1 :(2x1 + x3 − x5)2 + (−y3 + y5)2 + z11 = 1,

‖A2 −A6‖ = 1 :(2x1 − x2 − x3 + x4 + x5)2 + (−y2 + y3 + y4 − y5)2 = 1,

‖A3 −A6‖ ≤ 1 :(−2x1 + x2 − x4)2 + (y2 − y4)2 + z12 = 1,

‖A4 −A6‖ ≤ 1 :(x1 − x2 + x4)2 + (y1 − y2 + y4 − 1)2 + z13 = 1,

‖A4 −A7‖ ≤ 1 :(x1 − x3)2 + (1 − y1 + y3)2 + z14 = 1,

‖A5 −A6‖ ≤ 1 :(x2 − x4)2 + (y2 − y4)2 + z15 = 1,

‖A5 −A7‖ ≤ 1 :(2x1 − x3)2 + y23 + z16 = 1,

‖A6 −A1‖ ≤ 1 :(2x1 − x2 − x3 + x4)2 + (−y2 + y3 + y4)2 + z17 = 1,

x2 − x3 − z18 = 0,

x2i + y2i = 1, i = 1, 2, 3, 4, 5,

x1 + z19 = 0.5,

xi + z18+i = 1, i = 2, 3, 4, 5,

0 ≤ xi,yi i = 1, 2, . . . , 5, 0 ≤ zi i = 1, 2, . . . , 23.

(5.1)

There are 33 variables and 34 constraints.
We use â = 10d + 6 and ksto = 15000 and used regular octagon as a starting point (area

of regular octagon ≈ 0.7071 see Figure 2), and if we let the error less than 10−5.
The Fortran code of TPGRG furnishs the following optimal solutions, fopt ≈ 0.72687:

Xopt = (0.25949, 0.66664, 0.66664, 0.90703, 0.90730),

yopti =
√

1 − xopti , kend = 626, CPU time = 4684 s (1.5 hours).
(5.2)
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Figure 2: Regular octagon.
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Figure 3: A Problem of mixture.

Branch and cut method [23] was solving the octagon problem with using regular
octagon as a starting point, the maximum area found is ≈ 0.72687, but the cpu time is more
than 30 hours.

5.2. Mixture Problem

In this example of petrochemical mixture, we have four reservoirs: R1, R2, R3, and R4. The
two first receive three distinct source products, and then their content is combined in the two
other in order to create the wanted miscellanies. The question is to determine the quantity of
every product to buy in order to maximize the profits (see e.g., [24, 25]).

The R1 reservoir receives two quality products 3 and 1 in quantities q0 and q1,
respectively. The R2 reservoir contains a product of the third source, of quality 2 in quantity
q2. One wants to get in the reservoirs R3 and R4 of capacities 10 and 20, respectively.

Figure 3, where the variable x1 to x2 represents some quantities, illustrates this
situation. The unit prices of the products bought are, respectively, 60, 160, and 100; those of
the products finished are 90 and 150. Therefore the difference between the costs of purchase
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and sale is

60q0 + 160q1 + 100q2 − 90(x1 + x3) − 150(x2 − x4). (5.3)

The quality of the mixture done contained in R1 is

x5 =
3q0 + q1

q0 + q1
∈ [1, 3]. (5.4)

The qualities of the final miscellanies are

x1x5 + 2x3
x1 + x3

≤ 2.5,
x2x5 + 2x4
x2 + x4

≤ 1.5. (5.5)

The addition of the constraints of volume conservation q0 + q1 = x1 + x2 and q2 = x3 + x4 does
permit the elimination of the variables q0,q1, and q2:

q0 =
(x5 − 1)(x1 + x2)

2
, q1 =

(3 − x5)(x1 + x2)
2

, q2 = x3 + x4. (5.6)

Remark 5.1. One has

1 ≤ x5 ≤ 1.5. (5.7)

By the relation (5.5),

x2x5 ≤ 1.5x2. (5.8)

Suppose that x5 > 1.5, then x2x5 > 1.5x2, and so x2x5 > 1.5x2 − 0.5x4 that contradict with
inequality (5.8).
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The mathematical model transformed is the following:

Maximize − 120x1 − 60x2 − 10x3 + 50x4 + 50x1x5 + 50x2x5

Subject to

2.5x1 + 0.5x3 − x1x5 − z1 = 0,

1.5x2 − 0.5x4 − x2x5 − z2 = 0,

x1 + x3 + z3 = 10,

x2 + x4 + z4 = 20,

x5 + z5 = 1.5,

x5 − z6 = 1,

0 ≤ xi i = 1, . . . , 5; 0 ≤ zi i = 1, . . . , 6.

(5.9)

There are 11 variables and 10 constraints.
We use â = 10d10, ksto = 20000, and

X0 = (2, 9, 0, 8, 1), f
(
X0
)
= 170. (5.10)

The Fortran code of TPGRG furnishes the following optimal solutions: cpu = 100 second, and
kend = 1390,

Xopt = (0, 10, 0, 10, 1), fopt = 400, (5.11)

since the mixture problem is known by this global solution.

6. Concluding Remarks

A two-phase generalized reduced gradient method is presented for nonlinear constraints,
involving the adjunction of a stochastic perturbation. This approach leads to a stochastic
ascent method where the deterministic sequence generated by the two-phase generalized
gradient method is replaced by a sequence of random variables.

TPGRG method converges to global maximum for all differential objective function,
but GRG method converges to local maximum.

The numerical experiments show that the method is effective to calculate for
global optimization problems. Here yet, we observe that the adjunction of the stochastic
perturbation improves the result, with a larger number of evaluations of the objective
function. The main difficulty in the practical use of the stochastic perturbation is connected
to the tuning of the parameters â and ksto.



18 Journal of Applied Mathematics

References

[1] A. El Mouatasim and A. Al-Hossain, “Reduced gradient method for minimax estimation of a
bounded Poisson mean,” Journal of Statistics: Advances in Theory and Applications, vol. 2, no. 2, pp.
183–197, 2009.

[2] J. Mo, K. Zhang, and Z. Wei, “A variant of SQP method for inequality constrained optimization and
its global convergence,” Journal of Computational and Applied Mathematics, vol. 197, no. 1, pp. 270–281,
2006.

[3] H. Jiao, Y. Guo, and P. Shen, “Global optimization of generalized linear fractional programming with
nonlinear constraints,” Applied Mathematics and Computation, vol. 183, no. 2, pp. 717–728, 2006.

[4] Y. C. Park, M. H. Chang, and T.-Y. Lee, “A new deterministic global optimization method for general
twice-differentiable constrained nonlinear programming problems,” Engineering Optimization, vol. 39,
no. 4, pp. 397–411, 2007.

[5] A. A. Haggag, “A variant of the generalized reduced gradient algorithm for nonlinear programming
and its applications,” European Journal of Operational Research, vol. 7, no. 2, pp. 161–168, 1981.

[6] C. C. Y. Dorea, “Stopping rules for a random optimization method,” SIAM Journal on Control and
Optimization, vol. 28, no. 4, pp. 841–850, 1990.

[7] A. El Mouatasim, R. Ellaia, and J. E. Souza de Cursi, “Random perturbation of the variable metric
method for unconstrained nonsmooth nonconvex optimization,” International Journal of Applied
Mathematics and Computer Science, vol. 16, no. 4, pp. 463–474, 2006.

[8] J. E. Souza de Cursi, R. Ellaia, and M. Bouhadi, “Global optimization under nonlinear restrictions by
using stochastic perturbations of the projected gradient,” in Frontiers in Global Optimization, vol. 74 of
Nonconvex Optimization and Its Applications, pp. 541–563, Kluwer Academic Publishers, Boston, Mass,
USA, 2004.

[9] P. Sadegh and J. C. Spall, “Optimal random perturbations for stochastic approximation using a
simultaneous perturbation gradient approximation,” IEEE Transactions on Automatic Control, vol. 43,
no. 10, pp. 1480–1484, 1998.

[10] W. L. Price, “Global optimization by controlled random search,” Journal of Optimization Theory and
Applications, vol. 40, no. 3, pp. 333–348, 1983.

[11] D. E. Goldberg, Genetic Algorithms in Search, Optimization, and Machine Learning, Addison-Wesley,
Reading, Mass, USA, 1989.

[12] A. Corana, M. Marchesi, C. Martini, and S. Ridella, “Minimizing multimodal functions of continuous
variables with the “simulated annealing” algorithm,” ACM Transactions on Mathematical Software, vol.
13, no. 3, pp. 262–280, 1987.

[13] M. Pogu and J. E. Souza de Cursi, “Global optimization by random perturbation of the gradient
method with a fixed parameter,” Journal of Global Optimization, vol. 5, no. 2, pp. 159–180, 1994.

[14] J. E. Souza de Cursi, R. Ellaia, and M. Bouhadi, “Stochastic perturbation methods for affine
restrictions,” in Advances in Convex Analysis and Global Optimization, vol. 54 of Nonconvex Optimization
and Its Applications, pp. 487–499, Kluwer Academic Publishers, Boston, Mass, USA, 2001.

[15] P. Beck, L. Lasdon, andM. Engquist, “A reduced gradient algorithm for nonlinear network problems,”
ACM Transactions on Mathematical Software, vol. 9, no. 1, pp. 57–70, 1983.

[16] J. Abadie, “The GRG method for non-linear programming,” in Design and Implementation of
Optimization Software, H. J. Greenberg, Ed., Sijthoff and Noordhoff, Alphen aan den Rijn, The
Netherlands, 1978.

[17] D. Gabay and D. G. Luenberger, “Efficiently converging minimization methods based on the reduced
gradient,” SIAM Journal on Control and Optimization, vol. 14, no. 1, pp. 42–61, 1976.

[18] E. P. de Carvalho, A. dos Santos Jr., and T. F. Ma, “Reduced gradient method combined with
augmented Lagrangian and barrier for the optimal power flow problem,” Applied Mathematics and
Computation, vol. 200, no. 2, pp. 529–536, 2008.

[19] H. Mokhtar-Kharroubi, “Sur la convergence théorique de la méthode du gradient réduit généralisé,”
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