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Due to the difficulty for constructing two-dimensional wavelet filters, the commonly used wavelet
filters are tensor-product of one-dimensional wavelet filters. In some applications, more perfect
reconstruction filters should be provided. In this paper, we introduce a transformation which
is referred to as Shift Unitary Transform (SUT) of Conjugate Quadrature Filter (CQF). In terms of
this transformation, we propose a parametrization method for constructing two-dimensional or-
thogonal wavelet filters. It is proved that tensor-product wavelet filters are only special cases of
this parametrization method. To show this, we introduce the SUT of one-dimensional CQF and
present a complete parametrization of one-dimensional wavelet system. As a result, more ways are
provided to randomly generate two-dimensional perfect reconstruction filters.

1. Introduction

In her celebrated paper [1], Daubechies constructed a family of compactly supported ortho-
normal scaling functions and their corresponding orthonormal wavelets. Since then, wavelets
with compact support have been found to be very useful in applications (see [2] and ref-
erences therein). By now, the theory for the construction of one-dimensional wavelets is
well developed [1, 3–9]. But, there still exists many open problems for the construction of
multidimensional wavelets ([10–13], etc.).

To apply wavelet methods to digital image processing, two-dimensional wavelets
have to be constructed. The most common wavelets used for image processing are tensor-
product of one-dimensional wavelets (separable wavelets). Nevertheless, separable wavelets
have a number of drawbacks [11]. Nonseparable wavelets offer the hope of more isotropic
analysis ([14–16], etc.). Many efforts have beenmade on constructing nonseparable wavelets.
However, up to now, only a few constructions have been published. Cohen and Daubechies
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[14] used the univariate construction [1] to produce nonseparable scaling function with
higher accuracy. Continuous nonseparable scaling functions were constructed by He and Lai
[12] and Kovac̆ević [15]. Arbitrarily smooth nonseparable orthogonal wavelets were con-
structed by Ayache [10] and Belogay and wang [11]. Recently, Lai [13] proposed a construct-
ive method to find compactly supported orthonormal wavelets for any given compactly
supported scaling function in the multivariate setting.

In some applications of wavelets, such as wavelet-based watermarking [17, 18], para-
metrization of two-dimensional wavelet filters is preferred. To make some wavelet-based wa-
termarking schemes more robust, we need to create as many ways as possible to randomly
generate perfect reconstruction filters [17]. The ample choices of wavelet filters will increase
the difficulty for counterfeiters to gain the exact knowledge of the filters (see [17–20]). But in
methods available, to derive two-dimensional wavelet filters, one has to solve transcendental
constraints for the parameters. Hence, wavelet filters used in wavelet-based watermarking
schemes, such as [17–20], are only tensor-product of one-dimensional wavelets.

In this paper, a transformation that we refer to as Shift Unitary Transform (SUT) of Con-
jugate Quadrature Filter (CQF) is proposed. In terms of this transformation, we present a para-
metrization method for constructing two-dimensional orthogonal wavelet filters. The choos-
ing of the parameters is not restricted by any implicit condition. It is proved that tensor-
product wavelet filters are only special cases of this parametrization method. Therefore, more
ways are provided to randomly generate perfect reconstruction filters. The ample choices of
wavelet filters will increase the difficulty for counterfeiters to gain the exact knowledge of the
filters and make watermarking schemes based on wavelet filters more robust [17–20].

First of all, it should be pointed out that all the filters along the paper are FIR (finite
impulse response). For a matrix A, we denote its transpose by AT in this paper.

To show that tensor-product wavelet filters are only special cases of our construction,
we introduce the SUT of one-dimensional CQF and present a complete parametrization
of one-dimensional wavelet system in Section 2. In Section 3, we show that tensor-product
orthogonal wavelet filters can be constructed by SUT of CQF. Then, based on SUT of two-
dimensional CQF, a parameterized method is presented for constructing real-valued two-di-
mensional orthogonal wavelet filters. Finally, nonseparable wavelet filters are derived. Con-
clusion remarks are given in Section 4.

2. Parametrization of One-Dimensional Wavelet Filters

To construct one-dimensional orthogonal scaling function

ϕ(x) =
√
2
∑

k∈Z

hkϕ(2x − k), (2.1)

we need construct sequences {hk}k∈Z
such that (see [4, 21] and many others)

∑

k∈Z

hk =
√
2, (2.2)

∑

k∈Z

h2k =
∑

k∈Z

h2k+1, (2.3)

∑

k∈Z

hkhk+2α = δ0,α, α ∈ Z, (2.4)
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where δ denotes the Kronecker delta

δα,β =

⎧
⎨

⎩
0, α /= β,

1, α = β.
α, β ∈ Z. (2.5)

The sequence {hk}k∈Z
which satisfies (2.4) is called a one-dimensional CQF, and the sequence

{hk}k∈Z
, which satisfies (2.2), (2.3), (2.4) simultaneously, is called one-dimensional orthogo-

nal low-pass wavelet filter.

Definition 2.1. Let {hn}n∈Z
be a one-dimensional CQF and G an arbitrary 2 × 2 orthogonal

matrix. {h̃n}n∈Z
is called the shift unitary transform (SUT) of {hn}n∈Z

by G if {h̃n}n∈Z
satisfies

Υ̃i = ΛiG, i ∈ Z, (2.6)

and {h̃′n}n∈Z
is called the inverse shift unitary transform (ISUT) of {hn}n∈Z

by G if {h̃′n}n∈Z

satisfies

Λ̃′
i = ΥiG, i ∈ Z, (2.7)

where for any i ∈ Z,

Υ̃i =

⎛

⎝ h̃2i

h̃2i+1

⎞

⎠
T

, Λi =

(
h2i

h2i−1

)T

, Λ̃′
i =

⎛

⎝ h̃′2i

h̃′2i−1

⎞

⎠
T

, Υi =

(
h2i

h2i+1

)T

. (2.8)

The SUT and the ISUT of {hn}n∈Z
by G are, respectively, denoted by

{
h̃n
}

n∈Z

= G{hn}n∈Z
,

{
h̃′n
}

n∈Z

= G−{hn}n∈Z
. (2.9)

By directly calculating, we have the following results.

Lemma 2.2. If {hn}n∈Z
is a one-dimensional CQF, then {h̃n}n∈Z

= G{hn}n∈Z
and {h̃n}n∈Z

=
G−{hn}n∈Z

are one-dimensional CQFs.

Lemma 2.3. If {h̃n}n∈Z
= G{hn}n∈Z

, then {hn}n∈Z
= (GT )−{h̃n}n∈Z

.

Therefore, for a one-dimensional CQF, different one-dimensional CQFs can be
derived when we choose different orthogonal matrices G. For a sequence {sn}n∈Z

, letting
Γ = {n : sn /= 0}, we call Γ the support of {sn}n∈Z

. If {sn}n∈Z
is a one-dimensional CQF and the

support of it is in {0, 1}, we call {sn}n∈Z
a simple one-dimensional CQF.

Theorem 2.4. If {hn}n∈Z
is a one-dimensional CQF, it can be constructed from a simple one-dimen-

sional CQF by a series of SUT.
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Proof. It only needs to prove that by a series of ISUT of {hn}n∈Z
, we can get a simple one-di-

mensional CQF.
Without loss of generality, we assume that the support of {hn}n∈Z

is in {0, 1, 2, . . ., 2N −
1} and h0h2N−1 /= 0. We will prove this theorem by induction.

We see that the theorem is true for N = 1. Assume it is true for the case N ≤ L (L ≥
1, L ∈ Z). We now prove it is true for the case N = L + 1. Suppose that {hn}n∈Z

is a one-
dimensional CQF and h0h2L+1 /= 0. We denote that

G =

(
cos θ sin θ

− sin θ cos θ

)
,

{
h̃n
}

n∈Z

= G{hn}n∈Z
, (2.10)

where tan θ = −h1/h0. Recall that {hn}n∈Z
is a one-dimensional CQF, that is,

∑
n∈Z

hnhn+2m =
δ0,m, which implies that h0h2L + h1h2L+1 = 0. Therefore,

h̃−1 = sin θh0 + cos θh1 = − cos θh1 + cos θh1 = 0,

h̃2L = cos θh2L − sin θh2L+1 = cos θh2L + cos θ
h1
h0
h2L+1 = 0.

(2.11)

It follows that the support of {h̃n}n∈Z
is in {0, 1, 2, . . . , 2L − 1}. Suppose that −π/2 < θ < π/2,

then h̃0 /= 0. It follows that there exists t ∈ Z (t ≤ L), such that h̃0h̃2t−1 /= 0. Furthermore, if
n ∈ Z \ {0, 1, 2, . . . , 2t − 1}, then h̃n = 0. By the hypothesis, the theorem is proved.

Theorem 2.4 shows that any one-dimensional orthogonal low-pass wavelet filter can
be constructed by a series of SUT. Suppose that an orthogonal scaling function φ(x) satisfies
(2.1). Then the sequence {hn}n∈Z

is a one-dimensional CQF. By Theorem 2.4, we know that
{hn}n∈Z

can be constructed by a simple one-dimensional CQF and a series of 2× 2 orthogonal
matrices. For a real number θ ∈ R, we denote Gθ as the 2 × 2 orthogonal matrix:

(
cos θ sin θ

− sin θ cos θ

)
, θ ∈ R. (2.12)

Let {Hn}γn∈Z
be a simple one-dimensional CQF such that

Hn =

⎧
⎪⎪⎪⎨

⎪⎪⎪⎩

cos γ, n = 0,

sin γ, n = 1,

0, otherwise.

γ ∈ R. (2.13)

For an arbitrary positive integer N, choosing γ0, γ1, . . . , γN−1 ∈ R, we define {hNn }n∈Z
as fol-

lows:

{
hNn

}

n∈Z

= GγN−1GγN−2 · · ·Gγ1{Hn}γ0n∈Z
. (2.14)
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In general, the support of {hNn }n∈Z
is in [0, 2N−1]∩Z. In other words, {hNn }n∈Z

is a length-2N
filter. From the proof of Theorem 2.4, we know that the length-2N filter can be constructed
by at mostN − 1 times SUT of one-dimensional CQF.

We can prove inductively the following theorems.

Theorem 2.5. Let η = γ0 + γ1 + · · · + γN−1, then

∑

i∈Z

hN2i = cosη,
∑

i∈Z

hN2i+1 = sinη. (2.15)

Theorem 2.6. Let

γ0 + γ1 + · · · + γN−1 = 2kπ +
π

4
, k ∈ Z, (2.16)

then the sequence {hNn }n∈Z
given in (2.14) is a one-dimensional low-pass wavelet filter.

Theorem 2.6 provides a condition for choosing γ0, γ1, . . . , γN−1 such that the one-dimen-
sional CQF {hNn }n∈Z

given in (2.14) is a one-dimensional orthogonal low-pass wavelet filter.
In addition, if the low-pass wavelet filter {hNn }n∈Z

satisfies the Cohen’s condition (see
[4]), then the ϕ(x) corresponding to {hNn }n∈Z

in (2.2) is an orthogonal scaling function.
By Theorem 2.6, we know that a length-2N one-dimensional low-pass wavelet filter

{hNn }n∈Z
can be constructed by choosing γ0, γ1, . . . , γN−1 such that condition (2.16) is satisfied.

Therefore, any length-2N one-dimensional low-pass wavelet filter can be parameterized into
a (N−1)-parameter family of wavelet system. In fact, we can give an explicit parametrization
of any length-2N filter:

{
hNn

}

n∈Z

= GγN−1GγN−2 · · ·Gγ1{Hn}π/4−γN−1−γN−2−···−γ1
n∈Z

, (2.17)

where γ1, γ2, . . . , γN−1 ∈ R.
Applications of one-dimensional parameterized wavelets to compression are, for ex-

ample, discussed in [22, 23]. Parameterizing all possible filter coefficients that correspond
to compactly supported one-dimensional orthonormal wavelets has been studied by several
authors [6, 9, 24–26]. We provide explicit parametrization of any length-2N filters which
satisfy the necessary conditions for orthogonality in terms of SUT.

3. Construction of Two-Dimensional Wavelet Filters

3.1. SUT of Two-Dimensional CQF

To construct two-dimensional orthogonal scaling function

φ(x) = 2
∑

α∈Z2

bαφ(2x − α) (3.1)
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and its associated wavelets

ψl(x) = 2
∑

α∈Z2

dlαφ(2x − α), l = 1, 2, 3, (3.2)

we need construct sequences {bα}α∈Z2 and {dlα}α∈Z2 such that (see [10, 12, 13], etc.)

∑

α∈Z2

bα = 2, (3.3)

∑

α∈Z2

bαbα+2β = δ0β, (3.4)

∑

i,j∈Z

b(2i,2j) =
∑

i,j∈Z

b(2i+1,2j) =
∑

i,j∈Z

b(2i,2j+1) =
∑

i,j∈Z

b(2i+1,2j+1), (3.5)

∑

α∈Z2

d
j1
α d

j2
α+2β = δj1,j2δ0,β, (3.6)

∑

α∈Z2

bαd
j

α+2β = 0, (3.7)

where j, j1, j2 = 1, 2, 3 and β ∈ Z
2.

The sequence {bα}α∈Z2 , which satisfies (3.4), is called a two-dimensional CQF. If
{bα}α∈Z2 satisfies (3.3), (3.4), and (3.5) simultaneously, we call it a two-dimensional low-pass
wavelet filter. The sequences {djα}α∈Z2 (j = 1, 2, 3), which satisfy (3.6) and (3.7), are called two-
dimensional high-pass wavelet filters.

For an arbitrary real-valued sequence {lα}α∈Z2 ∈ �2(Z2), we define

Δ =
{
α : α ∈ Z

2, lα /= 0
}
, (3.8)

andΔ is called the support set of {lα}α∈Z2 ∈ �2(Z2). IfΔ is finite, we call {lα}α∈Z2 ∈ �2(Z2) finite
supported sequence. As aforementioned, the sequences we consider are real-valued and finite
supported (FIR).

We note that any sequence {bα}α∈Z2 can be split into 4 disjoint subsets

{
b(2i,2j) : i, j ∈ Z

}
,

{
b(2i,2j+1) : i, j ∈ Z

}
,

{
b(2i+1,2j) : i, j ∈ Z

}
,

{
b(2i+1,2j+1) : i, j ∈ Z

}
.

(3.9)
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Definition 3.1. Let U be an arbitrary 4 × 4 orthogonal matrix, and let {bα}α∈Z2 be an FIR. For
integers As, Bs (s = 1, 2, 3, 4) and for all i, j ∈ Z, we set

Γ̃i,j =

⎛
⎜⎜⎜⎜⎜⎜⎝

b̃(2i,2j)

b̃(2i,2j+1)

b̃(2i+1,2j)

b̃(2i+1,2j+1))

⎞
⎟⎟⎟⎟⎟⎟⎠

T

,

Γi,j(A1,B1,A2,B2,A3,B3,A4,B4)
=

⎛
⎜⎜⎜⎜⎜⎝

b(2i−2A1,2j−2B1)

b(2i−2A2,2j−2B2+1)

b(2i−2A3+1,2j−2B3)

b(2i−2A4+1,2j−2B4+1)

⎞
⎟⎟⎟⎟⎟⎠

T

.

(3.10)

Then {b̃α}α∈Z2 , which is defined as follows:

Γ̃i,j = Γi,j(A1,B1,A2,B2,A3,B3,A4,B4)
U (3.11)

is called the two-dimensional SUT of {bα}α∈Z2 .

Lemma 3.2. If {bα}α∈Z2 is a two-dimensional CQF and {b̃α}α∈Z2 is given by (3.11), then {b̃α}α∈Z2 is
also a two-dimensional CQF.

Proof. By directly calculating, we can prove that {b̃α}α∈Z2 satisfies the following equation:

∑

α∈Z2

b̃αb̃α+2β = δ0,β, ∀β ∈ Z
2. (3.12)

This completes the proof.

If the new two-dimensional CQF is a low-pass wavelet filter, then it is worthwhile to
construct the associated high-pass wavelet filters. Now we provide a result of it.

Lemma 3.3. Suppose that {bα}α∈Z2 is a two-dimensional CQF, {dkα}α∈Z2 (k = 1, 2, 3) satisfy (3.6)
and (3.7), {b̃α}α∈Z2 is a two-dimensional CQF obtained by SUT of {bα}α∈Z2 , then {d̃kα}α∈Z2 , which are
derived by SUT of {dkα}α∈Z2 (k = 1, 2, 3), satisfy (3.6) and (3.7) simultaneously.

It can be proved by direct calculation, so we omit the proof.

Definition 3.4. (i) {b̃}α∈Z2 is called the SUT0 of {bα}α∈Z2 if one chooses

Ai = Bi = 0 (i = 1, 2, 3, 4) (3.13)

in (3.11). This transform is denoted by {b̃α}α∈Z2 = 0U{bα}α∈Z2 .
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(ii) {b̃}α∈Z2 is called the SUTT1 of {bα}α∈Z2 if one chooses

B2 = B4 = 1, B1 = B3 = Ai = 0 (i = 1, 2, 3, 4) (3.14)

in (3.11). This transform is denoted by {b̃α}α∈Z2 = T1U{bα}α∈Z2 . {b̃}α∈Z2 is called the SUTT2 of
{bα}α∈Z2 if one chooses

A3 = A4 = 1, A1 = A2 = Bi = 0 (i = 1, 2, 3, 4). (3.15)

This transform is denoted by {b̃α}α∈Z2 = T2U{bα}α∈Z2 .
(iii) {b̃}α∈Z2 is called the SUT1 of {bα}α∈Z2 if one chooses

A2 = A4 = 1, A1 = A3 = Bi = 0 (i = 1, 2, 3, 4) (3.16)

in (3.11). This transform is denoted by {b̃α}α∈Z2 = 1U{bα}α∈Z2 . {b̃}α∈Z2 is called the SUT2 of
{bα}α∈Z2 if we choose

B3 = B4 = 1, B1 = B2 = Ai = 0 (i = 1, 2, 3, 4). (3.17)

This transform is denoted by {b̃α}α∈Z2 = 2U{bα}α∈Z2 .

For a two-dimensional CQF, whenwe choose different orthogonal matrices, many new
two-dimensional CQFs can be obtained. It is obvious that, after SUT0, the support of the new
two-dimensional CQF does not change. But it is different for SUTT1, SUTT2, SUT1, and SUT2.
For example, the support of the two-dimensional CQF

bα =

⎧
⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎩

1
4

if α = (0, 0) or (1, 1),
√
3
4

if α = (1, 0) or (0, 1),

0 otherwise

(3.18)

is {(0, 0), (0, 1), (1, 0), (1, 1)}, and the support of the filter {b̃α}α∈Z2 = 1U{bα}α∈Z2 is {(0, 0), (0, 1),
(1, 0), (1, 1), (2, 0), (2, 1), (3, 0), (3, 1)} ⊂ ([0, 3] × [0, 1] ∩ Z

2), whereU = diag (H,H) and

H =

⎡
⎢⎢⎢⎣

1
2

√
3
2

−
√
3
2

1
2

⎤
⎥⎥⎥⎦
. (3.19)

In general, for integers N,M, if the support of {bα}α∈Z2 is in [0, 2N − 1] × [0, 2M − 1] ∩ Z
2,

after SUT1 (or SUT2) the support of the new filter is in [0, 2N + 1] × [0, 2M − 1] ∩ Z
2 (or in

[0, 2N − 1] × [0, 2M + 1] ∩ Z
2). If the support of {bα}α∈Z2 is {(0, 0), (1, 0), (0, 1), (1, 1)}, we call

{bα}α∈Z2 a simple two-dimensional filter.
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We will adopt the following notations in the rest of this paper. For arbitrary ξ0, λ0, ξ,
λ ∈ R, let {Bα}λ0,ξ0α∈Z2 be the FIR defined as follows:

Bα =

⎧
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

cos ξ0 cosλ0, α = (0, 0);

cos ξ0 sinλ0, α = (0, 1);

sin ξ0 cosλ0, α = (1, 0);

sin ξ0 sinλ0, α = (1, 1);

0, otherwise.

(3.20)

Furthermore, let {Dk
α}λ0,ξ0α∈Z2 (k = 1, 2, 3) be the filters as follows

D1
α =

⎧
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

cos ξ0 sinλ0, α = (0, 0);

− cos ξ0 cosλ0, α = (0, 1);

sin ξ0 sinλ0, α = (1, 0);

− sin ξ0 cosλ0, α = (1, 1);

0, otherwise,

D2
α =

⎧
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

sin ξ0 cosλ0, α = (0, 0);

sin ξ0 sinλ0, α = (0, 1);

− cos ξ0 cosλ0, α = (1, 0);

− cos ξ0 sinλ0, α = (1, 1);

0, otherwise,

(3.21)

D3
α =

⎧
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

sin ξ0 sinλ0, α = (0, 0);

− sin ξ0 cosλ0, α = (0, 1);

− cos ξ0 sinλ0, α = (1, 0);

cos ξ0 cosλ0, α = (1, 1);

0, otherwise,

(3.22)
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and letUλ,Uξ be orthogonal matrices such that

Uλ =

⎛
⎜⎜⎜⎜⎜⎜⎜⎝

cosλ sinλ 0 0

− sinλ cosλ 0 0

0 0 cosλ sinλ

0 0 − sinλ cosλ

⎞
⎟⎟⎟⎟⎟⎟⎟⎠

,

U
ξ

=

⎛
⎜⎜⎜⎜⎜⎜⎝

cos ξ 0 sin ξ 0

0 cos ξ 0 sin ξ

− sin ξ 0 cos ξ 0

0 − sin ξ 0 cos ξ

⎞
⎟⎟⎟⎟⎟⎟⎠
,

(3.23)

respectively. Then {Bα}λ0,ξ0α∈Z2 is a simple two-dimensional CQF, and {Dk
α}λ0,ξ0α∈Z2 satisfy (3.6) and

(3.7).
From the special two-dimensional CQF {Bα}λ0,ξ0α∈Z2 , by SUTT1, SUTT2, SUT1, SUT2, and

the matricesUλ,Uξ, we can construct some new two-dimensional CQFs.

3.2. Tensor-Product Wavelet Filters

In this subsection, we will show that all tensor-product wavelet filters can be constructed by
SUTT1 and SUTT2.

A two-dimensional low-pass wavelet filters {bα}α∈Z2 is called tensor-product wavelet
filter if it satisfies the following equations:

b(2i,2j) = h2ih̃2j ,

b(2i,2j+1) = h2ih̃2j+1,

b(2i+1,2j) = h2i+1h̃2j ,

b(2i+1,2j+1) = h2i+1h̃2j+1,

i, j ∈ Z, (3.24)

where {hi}i∈Z
, {h̃i}i∈Z

are one-dimensional orthogonal low-pass wavelet filters.

Theorem 3.5. If {bα}α∈Z2 is a tensor-product low-pass wavelet filter, then, it can be constructed by
SUTT1 and SUTT2 from {Bα}λ0,ξ0α∈Z2 .
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Proof. For all i, j ∈ Z, it follows from (3.24) that

(
b(2i,2j), b(2i,2j+1), b(2i+1,2j), b(2i+1,2j+1)

)
= (h2i, h2i, h2i+1, h2i+1)

⎛
⎜⎜⎜⎜⎜⎜⎜⎝

h̃2j 0 0 0

0 h̃2j+1 0 0

0 0 h̃2j 0

0 0 0 h̃2j+1

⎞
⎟⎟⎟⎟⎟⎟⎟⎠

. (3.25)

Suppose that {h̃i}i∈Z
is a length-2N one-dimensional filter. Then there exist λ0, . . . , λN−2,

λN−1 ∈ R such that λ0 + · · · + λN−2 + λN−1 = π/4, and

{
h̃n
}

n∈Z

= GλN−1GλN−2 · · ·Gλ1{Hn}λ0n∈Z
. (3.26)

We denote

{
h̃n
}N−1

n∈Z

= GλN−2 · · ·Gλ1{Hn}λ0n∈Z
. (3.27)

Let {bα}N−1
α∈Z2 be two-dimensional filter such that

bN−1
(2i,2j) = h2ih̃

N−1
2j ,

bN−1
(2i,2j+1) = h2ih̃

N−1
2j+1 ,

bN−1
(2i+1,2j) = h2i+1h̃

N−1
2j ,

bN−1
(2i+1,2j+1) = h2i+1h̃

N−1
2j+1 ,

i, j ∈ Z. (3.28)

It follows that

(
b(2i,2j), b(2i,2j+1), b(2i+1,2j), b(2i+1,2j+1)

)

= (h2i, h2i, h2i+1, h2i+1)

⎛
⎜⎜⎜⎜⎜⎜⎜⎝

h̃2j 0 0 0

0 h̃2j+1 0 0

0 0 h̃2j 0

0 0 0 h̃2j+1

⎞
⎟⎟⎟⎟⎟⎟⎟⎠
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= (h2i, h2i, h2i+1, h2i+1)

⎛
⎜⎜⎜⎜⎜⎜⎜⎜⎝

h̃N−1
2j 0 0 0

0 h̃N−1
2j−1 0 0

0 0 h̃N−1
2j 0

0 0 0 h̃N−1
2j−1

⎞
⎟⎟⎟⎟⎟⎟⎟⎟⎠

×

⎛
⎜⎜⎜⎜⎜⎜⎜⎝

cosλN−1 sinλN−1 0 0

− sinλN−1 cosλN−1 0 0

0 0 cosλN−1 sinλN−1

0 0 − sinλN−1 cosλN−1

⎞
⎟⎟⎟⎟⎟⎟⎟⎠

=
(
bN−1
(2i,2j), b

N−1
(2i,2j−1), b

N−1
(2i+1,2j), b

N−1
(2i+1,2j−1)

)
UλN−1.

(3.29)

Hence, {bα}α∈Z2 can be constructed by SUTT1 of {bα}N−1
α∈Z2 .

It can be proved inductively that {bα}α∈Z2 can be constructed by a series of SUTT1 from
{bα}0α∈Z2 , and {bα}0α∈Z2 can be constructed by a series of SUTT2 from {Bα}λ0,ξ0α∈Z2 , where {bα}0α∈Z2

denotes the filter

b0(2i,2j) = h2iH̃2j ,

b0(2i,2j+1) = h2iH̃2j+1,

b0(2i+1,2j) = h2i+1H̃2j ,

b0(2i+1,2j+1) = h2i+1H̃2j+1,

i, j ∈ Z. (3.30)

Therefore, any tensor-product two-dimensional low-pass wavelet filters can be constructed
by SUTT1 and SUTT2 from {Bα}λ0,ξ0α∈Z2 .

3.3. Two-Dimensional Wavelet Filters in Terms of SUT1 and SUT2

From now on, we give a method of construction of two-dimensional orthogonal wavelet
filters from a simple two-dimensional CQF by SUT1 and SUT2.

For arbitrary positive integersN andM, choosing λ0, λ1, . . . , λN−1, ξ0, ξ1,. . . , ξM−1 ∈ R,
{bN,M

α }α∈Z2 is defined as

{
bN,M
α

}

α∈Z2
= εnN+M−2UnN+M−2

εnN+M−3UnN+M−3 · · · εn1Un1 {Bα}λ0,ξ0α∈Z2 , (3.31)
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where n1, n2, . . . , nN+M−2 ∈ {λ1, λ2, . . . , λN−1, ξ1, ξ2, . . . , ξM−1} and

εnj =

⎧
⎨

⎩

1, if nj ∈ {λ1, λ2, . . . , λN−1},

2, if nj ∈ {ξ1, ξ2, . . . , ξM−1}.
(3.32)

Then {bN,M
α }α∈Z2 is a two-dimensional CQF, and its support is in [0, 2N −1]× [0, 2M−1]∩Z

2.
We are now in a position to draw some conditions on choosing λ0, λ1, . . . , λN1 , ξ0, ξ1, . . . , ξM1 ,
such that {bN,M

α }α∈Z2 is a two-dimensional low-pass wavelet filter.

Theorem 3.6. Let η = λ0 + λ1 + · · · + λN−1, η̃ = ξ0 + ξ1 + · · · + ξM−1. Then

∑

i,j∈Z

bN,M

(2i,2j) = cosη cos η̃,
∑

i,j∈Z

bN,M

(2i,2j+1) = sinη cos η̃, (3.33)

∑

i,j∈Z

bN,M

(2i+1,2j) = cosη sin η̃,
∑

i,j∈Z

bN,M

(2i+1,2j+1) = sinη sin η̃. (3.34)

Proof. It can be proved inductively. For the caseN =M = 1, it is obviously true. Assume that
it is true for the case N ≤ k1,M ≤ k2 (k1 ≥ 1, k2 ≥ 1, k1, k2 ∈ Z); now we prove that it is true
for the caseN = k1 + 1,M = k2.

Let s be the integer such that ns+1 ∈ {λ1, λ2, . . . , λk1} and ns+t ∈ {ξ1, ξ2, . . . , ξk2} (t > 1, t ∈
Z). Suppose that

i1, i2, . . . , iu ≤ s =⇒ ni1 , ni2 , . . . , niu ∈ {λ1, λ2, . . . , λk1},

j1, j2, . . . , jv ≤ s =⇒ nj1 , nj2 , . . . , njv ∈ {ξ1, ξ2, . . . , ξk1}.
(3.35)

It follows that u = k1 and v ≤ k2 − 1. Let

ηs = λ0 + ni1 + ni2 + · · · + niu , η̃s = ξ0 + nj1 + nj2 + · · · + njv ,

{bsα}α∈Z2 = εnsUns
εns−1Uns−1 · · · εn1Un1{Bα}λ0,ξ0α∈Z2 ;

(3.36)

it follows that

∑

i,j∈Z

bs(2i,2j) = cosηs cos η̃s,
∑

i,j∈Z

bs(2i,2j+1) = sinηs cos η̃s,

∑

i,j∈Z

bs(2i+1,2j) = cosηs sin η̃s,
∑

i,j∈Z

bs(2i+1,2j+1) = sinηs sin η̃s.
(3.37)
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Let {bs+1α }α∈Z2 = εns+1Uns+1{bsα}α∈Z2 . Since ns+1 ∈ {λ1, λ2, . . . , λk1}, then

bs+1(2i,2j) = cosns+1bs(2i,2j) − sinns+1bs(2i−2,2j+1),

bs+1(2i,2j+1) = sinns+1bs(2i,2j) + cosns+1bs(2i−2,2j+1),

bs+1(2i+1,2j) = cosns+1bs(2i+1,2j) − sinns+1bs(2i−1,2j+1),

bs+1(2i+1,2j+1) = sinns+1bs(2i+1,2j) + cosns+1bs(2i−1,2j+1).

(3.38)

Therefore,

∑

i,j∈Z

bs+1(2i,2j) = cos
(
ηs + ns+1

)
cos η̃s;

∑

i,j∈Z

bs+1(2i,2j+1) = sin
(
ηs + ns+1

)
cos η̃s;

∑

i,j∈Z

bs+1(2i+1,2j) = cos
(
ηs + ns+1

)
sin η̃s;

∑

i,j∈Z

bs+1(2i+1,2j+1) = sin
(
ηs + ns+1

)
sin η̃s.

(3.39)

For t > 1, let

{
bs+tα

}
α∈Z2= εns+tUns+t · · · εns+1Uns+1{bsα}α∈Z2 . (3.40)

It follows from ns+t ∈ {ξ1, ξ2, . . . , ξk2−1} that

bs+t(2i,2j) = cosns+tbs+t−1(2i,2j) − sinns+tbs+t−1(2i+1,2j−2),

bs+t(2i,2j+1) = cosns+tbs+t−1(2i,2j+1) − sinns+tbs+t−1(2i+1,2j−1),

bs+t(2i+1,2j) = sinns+tbs+t−1(2i,2j) + cosns+tbs+t−1(2i+1,2j−2),

bs+t(2i+1,2j+1) = sinns+tbs+t−1(2i,2j+1) + cosns+tbs+t−1(2i+1,2j−1).

(3.41)

Therefore,

∑

i,j∈Z

bs+t(2i,2j) = cosηs+t−1 cos
(
η̃s+t−1 + ns+t

)
;

∑

i,j∈Z

bs+t(2i,2j+1) = sinηs+t−1 cos
(
η̃s+t−1 + ns+t

)
;

∑

i,j∈Z

bs+t(2i+1,2j) = cosηs+t−1 sin
(
η̃s+t−1 + ns+t

)
;

∑

i,j∈Z

bs+t(2i+1,2j+1) = sinηs+t−1 sin
(
η̃s+t−1 + ns+t

)
,

(3.42)
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where

ηs+t−1 = λ0 + λ1 + · · · + λk1 , η̃s+t−1 = ξ0 + nj1 + · · · + njv + ns+2 + ns+t−1. (3.43)

Namely, it is true for the caseN = k1 + 1,M = k2.

Similarly for the caseN = k1,M = k2 + 1. This completes the proof.

Now we provide the condition on choosing λ0, λ1, . . . , λN1 , ξ0, ξ1, . . . , ξM1 , such that
{bN,M

α }α∈Z2 is a two-dimensional low-pass wavelet filter.

Theorem 3.7. If there exists integers n1 and n2, such that

η = λ0 + λ1 + · · · + λN−1 = 2n1π +
π

4
, (3.44)

η̃ = ξ0 + ξ1 + · · · + ξM−1 = 2n2π +
π

4
, (3.45)

then the sequence {bN,M
α }α∈Z2 constructed in (3.31) is a two-dimensional low-pass wavelet filter.

Proof. It follows from Theorem 3.6 that

∑

i,j∈Z

b(2i,2j) = cosη cos η̃ =
1
2
,

∑

i,j∈Z

b(2i,2j+1) = sinη cos η̃ =
1
2
,

∑

i,j∈Z

b(2i+1,2j) = cosη sin η̃ =
1
2
,

∑

i,j∈Z

b(2i+1,2j+1) = sinη sin η̃ =
1
2
.

(3.46)

Therefore, {bN,M
α }α∈Z2 satisfies conditions (3.3) and (3.5), then it is a two-dimensional low-

pass wavelet filter.

Corollary 3.8. If {bN,M
α }α∈Z2 as given in (3.31) is a low-pass wavelet filter, then

{
dk,N,M
α

}

α∈Z2
= εnN+M−2UnN+M−2

εnN+M−3UnN+M−3 · · · εn1Un1

{
Dk
α

}λ0,ξ0
α∈Z2

(3.47)

are the high-pass filters associated with {bN,M
α }α∈Z2 , where k = 1, 2, 3.
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Table 1: The coefficients of a nonseparable orthogonal low-pass wavelet filter.

b(i,j) j = 0 j = 1 j = 2 j = 3
i = 0 −0.020275 −0.054787 0.243250 0.657306
i = 1 0.024899 0.067282 0.198076 0.535237
i = 2 −0.025190 0.009322 0.302214 −0.111841
i = 3 0.030935 −0.011448 0.246090 −0.091071

Table 2: The coefficients of a high-pass wavelet filter (d1
(i,j)) associated with the low-pass wavelet filter in

Table 1.

d1
(i,j) j = 0 j = 1 j = 2 j = 3

i = 0 0.009322 0.025190 −0.111841 −0.302214
i = 1 −0.011448 −0.030935 −0.091071 −0.246090
i = 2 −0.054787 0.020275 0.657306 −0.243250
i = 3 0.067282 −0.024899 0.535237 −0.198076

Remark 3.9. We can choose other orthogonal matrices than Uλ and Uξ such as

Uλ,λ̃ =

⎛
⎜⎜⎜⎜⎜⎜⎝

cosλ sinλ 0 0

− sinλ cosλ 0 0

0 0 cos λ̃ sin λ̃

0 0 − sin λ̃ cos λ̃

⎞
⎟⎟⎟⎟⎟⎟⎠
,

Uξ,ξ̃ =

⎛
⎜⎜⎜⎜⎜⎜⎝

cos ξ 0 sin ξ 0

0 cos ξ̃ 0 sin ξ̃

− sin ξ 0 cos ξ 0

0 − sin ξ̃ 0 cos ξ̃

⎞
⎟⎟⎟⎟⎟⎟⎠
,

(3.48)

where λ, λ̃, ξ, ξ̃ ∈ R; but conditions in Theorem 3.7 should be changed.

Example 3.10. We chooseN = 2,M = 2 in (3.31). For ξ0, ξ1, λ0, λ1 ∈ R, define {bα}α∈Z2 as follows:

{bα}α∈Z2 = 2Uξ1
1Uλ1 {Bα}λ0,ξ0α∈Z2 . (3.49)

By choosing ξ0, ξ1, λ0, λ1 such that λ0 + λ1 = ξ0 + ξ1 = π/4, we can get many two-
dimensional low-pass wavelet filters and their corresponding high-pass wavelet filters. For
instance, set ξ1 = 2.254190, ξ0 = π/4 − ξ1, λ1 = 4.357946, λ0 = π/4 − λ1. By (3.31) and (3.47),
we can get a nonseparable orthogonal low-pass wavelet filter (see Table 1) and its associated
high-pass wavelet filters (Tables 2, 3, and 4). Figure 1 shows that the high frequency sub-
bands by the derived filter can reveal more features than that by the commonly used tensor-
product wavelet filter.

Remark 3.11. By Section 3.2, we know that any two-dimensional tensor-product orthogonal
wavelet filters can be constructed by SUTT1 and SUTT2. By Example 3.10, we know that, by
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(a) (b)

Figure 1: It shows that the high-frequency subbands by the derived filter can reveal more features than that
by the commonly used tensor-productwavelet filter. (a)Decomposition of the “Lena” image by the derived
filter. (b)Decomposition of the “Lena” image by tensor-product filter. All the coefficients in the high-frequ-
ency subbands are magnified by a factor 20 to see the difference.

Table 3: The coefficients of a high-pass wavelet filter (d2
(i,j)) associated with the low-pass wavelet filter in

Table 1.

d2
(i,j) j = 0 j = 1 j = 2 j = 3

i = 0 0.198076 0.535237 0.024899 0.067282
i = 1 −0.243250 −0.657306 0.020275 0.054787
i = 2 0.246090 −0.091071 0.030935 −0.011448
i = 3 −0.302214 0.111841 0.025190 −0.009322

Table 4: The coefficients of a high-pass wavelet filter (d3
(i,j)) associated with the low-pass wavelet filter in

Table 1.

d3
(i,j) j = 0 j = 1 j = 2 j = 3

i = 0 −0.091071 −0.246090 −0.011448 −0.030935
i = 1 0.111841 0.302214 −0.009322 −0.025190
i = 2 0.535237 −0.198076 0.067282 −0.024899
i = 3 −0.657306 0.243250 0.054787 −0.020275

SUT1 and SUT2, nonseparable wavelet filters can be achieved. Therefore, the construction of
two-dimensional wavelet filters in terms of SUT of two-dimensional CQF is a generalization
of the construction of separable orthogonal wavelet filters. Furthermore, from (3.31) and
(3.47), we can see that our construction is a parametrization method.

4. Conclusion

SUT of CQF is introduced in this paper. In terms of SUT of one-dimensional CQF, any
one-dimensional orthogonal wavelet filters with dilation factor 2 can be given in explicit
expression. The SUT of two-dimensional CQF is applied to the construction of two-dimen-
sional orthogonal wavelet filters, and a parametrization method is presented. The selection
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of the parameters is not restricted by any implicit condition. Tensor-product wavelet filters
are only special case of this method. It provides more ways to randomly generate perfect
reconstruction filters.

Our method provides many possible choices for the parameters. But what is a good
choice of the parameters? Should any restriction on the choice of the parameters imply certain
properties? Characteristics of SUT should be deeply studied.
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