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This paper proposes an improved predictor-corrector interior-point algorithm for the linear
complementarity problem (LCP) based on the Mizuno-Todd-Ye algorithm. The modified corrector
steps in our algorithm cannot only draw the iteration point back to a narrower neighborhood of the
center path but also reduce the duality gap. It implies that the improved algorithm can converge
faster than the MTY algorithm. The iteration complexity of the improved algorithm is proved to
obtain O(

√
nL) which is similar to the classical Mizuno-Todd-Ye algorithm. Finally, the numerical

experiments show that our algorithm improved the performance of the classical MTY algorithm.

1. Introduction

Since Karmarkar published the first paper on interior point method [1] in 1984, the interior
point methodologies have yielded rich theories and algorithms in the fields of linear
programming (LP), quadratic programming (QP), and linear complementarity problems
(LCP). Among these interior point methods, predictor-corrector interior-point methods play
a special role due to their best polynomial complexity and superlinear convergence.

In 1993, Mizuno et al. [2] proposed the classical representative of predictor-corrector
method for linear programming. The Mizuno-Todd-Ye (MTY) algorithm has O(

√
nL)-

iteration complexity which is the best iteration complexity obtained so far for all the
interior-point method [3, 4]. Moreover, Ye et al. [5] proved the duality gap of classical
MTY algorithm converges to zero quadratically, which dedicated that MTY algorithm has
superlinear convergence. The classical MTY algorithm is the first algorithm for LP has
both polynomial complexity and superlinear convergence. So the classical MTY algorithm
therefore was considered as the most efficient interior point methods for LP.
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Afterwards, the MTY algorithm was extended to LCP [6, 7] for its excellent
performance. In recent papers, Potra [8, 9] presented several predictor-corrector methods for
linear complementarity problems acting in awide neighborhood of the central path, and Stoer
et al. [10] proposed a predictor-corrector algorithmwith arbitrarily high order of convergence
to degenerate sufficient linear complementarity problems.

Subsequently, Potra proposed a generalization of the MTY algorithm for infeasible
starting points for monotone LCP [11]. Based on the so-called “fast step-safe step” strategy,
Wright proposed an infeasible interior point method with polynomial and quadratic
convergence for nondegenerate LCP [12]. And Ai and Zhang presented anO(

√
nL)-iteration

primal-dual path-following method for monotone LCP based on wide neighborhoods and
large updates [13]. These workings improved the MTY algorithm in various aspects. In
this paper, the MTY algorithm for LCP will be improved by modifying the corrector of the
algorithm to obtain a larger iteration reduce factor than the original, which can guarantee a
faster convergence.

The typical iterations of the MTY algorithm operate between two neighborhoods of
the central path, ρ(1/4) and ρ(1/2). Before starting the MTY algorithm, an arbitrary initial
point ω ∈ ρ(1/4) will be given. And then, the predictor produces a point ω ∈ ρ(1/2) by
carefully choosing a steplength along the affine-scaling direction at ω and reduces the primal
dual gap by a factor of at least (1 − χ̂/

√
n) where χ̂ = 1/ 4

√
8 ≈ 0.5946. In the corrector steps,

the corrector produces a point ω̂ ∈ ρ(1/4) by taking a unit steplength along the centering
direction at ω. It is shown that the corrector put the iteration points back to ρ(1/4) which
is the narrower neighborhood of the central path and maintains the same duality gap. Thus
predictor-corrector reduces the duality gap μk by a factor of at least (1 − χ̂/

√
n) and holds

the iteration points in the neighborhood ρ(1/4). It follows that the corresponding iterative
procedure has O(

√
nL)-iteration complexity.

The modified algorithm in this paper has only one corrector step in neighborhood of
the central path ρ(1/2) and one predictor step in a narrow neighborhood ρ(1/4) same as
the MTY algorithm. Moreover, the modified iteration direction of corrector step can make
a reduction for duality gap. This improvement attained a larger iteration reduce factor and
results in a faster convergence than the classical MTY algorithm.

Section 2 describes the procedure of our predictor-corrector algorithm. Section 3 gives
the convergence analysis of our algorithm. It shows that the improved algorithm can generate
a sequence {(xk, yk)} in the neighborhood ρ(1/4) from an arbitrary initial point (x0, y0) ∈
ρ(1/4) and converge to optimal solution (xk, yk) with O(

√
nL)-iteration complexity. Finally,

the performances of our algorithm are evaluated by numerical experiments in Section 4.

2. Description of the Algorithm

In this paper, LCP is to find a vector pair (x, y) ∈ Rn ×Rn such that y = Mx + h, (x, y) ≥ (0, 0)
and xTy = 0, where h ∈ Rn and M is a n × n positive semidefinite matrix.

Denote the set of all feasible points of LCP by S = {(x, y) | Mx−y+h = 0, x ≥ 0, y ≥ 0}
and the solution set of LCP by S∗ = {(x∗, y∗) | (x∗, y∗) ∈ S, x∗Ty∗ = 0}. The relative interior
of S, S+ = {(x, y) | (x, y) ∈ S, x > 0, y > 0} is called the set of strictly feasible points, or
the set of interior points. We assume S+ /=Φ in this paper. It is known that if S+ is nonempty,
then for any parameter τ > 0 the nonlinear system Mx − y + h = 0, xy = τe has a unique
positive solution [14]. The set of all such solutions defines the central path C of LCP. So the
assumption is sufficient to establish the existence of the central path and the existence of a
solution to LCP.
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The mean value of xTy is denoted as μ = xTy/n throughout this paper. Then ρ(β) =
{(x, y) ∈ S+ | ‖Xy −μe‖ ≤ βμ, μ = xTy/n} is considered as the neighborhood of central path,
where β > 0, e denotes the vector of ones, X = diag(x) and ‖ · ‖ express the Euclidean norm.

The improved predictor-corrector interior-point algorithm (IPCIP) is as follows.

2.1. Main Steps of IPCIP Algorithm

Step 0. Choose an initial pair of interior point (x0, y0) with (x0, y0) ∈ ρ(1/4), and set the
accuracy parameter ε > 0. Let k = 0.

Step 1. If (xk)Tyk/n ≤ ε, then stop.

Step 2. Compute the predictor direction (Δxp,Δyp) by solving the system (2.1),

MΔxp −Δyp = 0,

Y kΔxp +XkΔyp =
2
3
μke −Xkyk.

(2.1)

Step 3. Set (x̂k, ŷk) = (xk, yk) + Qk(Δxp,Δyp) where Qk = min{1/8√n,
√

μk/8‖ΔXpΔyp‖}.
(We will show later that ‖ ̂Xkŷk − μke‖ ≤ (1/2)μk, where μk = (1 − Qk)μk holds for every
(x̂k, ŷk).)

Step 4. Set r = 1 − 1/4
√
2n, and compute the corrector direction (Δxc,Δyc) by solving the

system (2.2),

MΔxc −Δyc = 0,

̂YkΔxc + ̂XkΔyc = rμke − ̂Xkŷk.
(2.2)

Step 5. Set (xk+1, yk+1) = (x̂k, ŷk) + (Δxc,Δyc), update k = k + 1, and return to Step 1.

3. Convergence and Complexity Analysis

Lemma 3.1. If b, c ∈ Rn and b + c = h, bTc ≥ 0, B = diag(b), then

(i) ‖Bc‖ ≤ (
√
2/4)‖h‖2;

(ii) bTc ≤ (1/2)‖h‖2;
(iii) ‖b‖2 ≤ ‖h‖2.

Proof. The proof of (i) can be seen in Lemma 1 of [2].
From ‖h‖2 = ‖b + c‖2 = ‖b‖2 + ‖c‖2 + 2bTc and bTc ≥ 0, we can obtain bTc ≤ (1/2)‖h‖2

and ‖b‖2 ≤ ‖h‖2. Thus inequalities (ii) and (iii) hold. This completes the proof.

Lemma 3.2. If the point (x̂k, ŷk)was generated by the algorithm, then one has μ̂k = (x̂k)T ŷk/n ≥ μk,
where μk = (1 −Qk)μk.
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Proof. From Step 2 of our algorithm and M is a n × n positive semidefinite matrix, we have
(Δxp)TΔyp = (Δxp)TMΔxp ≥ 0. Hence

μ̂k =

(

x̂k
)T
ŷk

n

=

(

xk +QkΔxp
)T(

yk +QKΔyp
)

n

=

(

xk
)T
yk +Qk

[

(

xk
)TΔyp + (Δxp)Tyk

]

+
(

Qk
)2
(Δxp)TΔyp

n

≥
(

xk
)T
yk

n
+
Qk

n

(

n · 2
3
μk −
(

xk
)T

yk

)

= μk +
2
3
Qkμk −Qkμk

≥
(

1 −Qk
)

μk

= μk.

(3.1)

This completes the proof.

Lemma 3.3. If (xk, yk) ∈ ρ(1/4), then the point (x̂k, ŷk) generated by the algorithm satisfies x̂k >

0, ŷk > 0, ‖ ̂Xkŷk − μke‖ ≤ (1/2)μk, and (x̂k, ŷk) ∈ ρ(1/2).

Proof. Let us define (x(Q), y(Q)) = (xk +QΔxp, yk +QΔyp), where

0 ≤ Q ≤ Qk = min

⎧

⎨

⎩

1
8
√
n
,

√

√

√

√

μk

8
∥

∥ΔXpΔyp
∥

∥

⎫

⎬

⎭

. (3.2)

Note that 0 ≤ Q ≤ Qk = min{1/8√n,
√

μk/8‖ΔXpΔyp‖}, then we have (2/3)
√
nQ ≤

1/12 from Q ≤ 1/8
√
n and Q2‖ΔXpΔyp‖ ≤ (1/8)μk from Q ≤

√

μk/8‖ΔXpΔzp‖.
Furthermore ‖Xkyk −μke‖ ≤ (1/4)μk holds since (xk, yk) ∈ ρ(1/4). Therefore we have

∥

∥

∥X(Q)y(Q) − (1 −Q)μke
∥

∥

∥ =
∥

∥

∥Xkyk +Q
(

XpΔyp + ΔXpyp) +Q2ΔXpΔyp − (1 −Q)μke
∥

∥

∥

=
∥

∥

∥

∥

Xkyk +Q

(

2
3
μke −Xkyk

)

+Q2ΔXpΔyp − (1 −Q)μke

∥

∥

∥

∥

≤ (1 −Q)
∥

∥

∥Xkyk − μke
∥

∥

∥ +
2
3
√
nQμk +Q2∥

∥ΔXpΔyp
∥

∥
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≤ (1 −Q)
1
4
μk +

1
12

μk +
1
8
μk

=
[

1
4
+

1
1 −Q

(

1
12

+
1
8

)]

(1 −Q)μk

≤
(

1
4
+

5
21

)

(1 −Q)μk

≤ 1
2
(1 −Q)μk.

(3.3)

So xi(Q)yi(Q) ≥ (1/2)(1 −Q)μk > 0 (i = 1, 2, . . . , n) for any Q (0 ≤ Q ≤ QK).
Since (x(Q), y(Q)) = (xk +QΔxp, yk +QΔyp) is continuous with respect to Q,xk > 0

and yk > 0, it is easily seen that x̂k = x(Qk) > 0, ŷk = y(Qk) > 0.
Note that X(Qk) = ̂Xk, Y (Qk) = ̂Yk, (1 − Qk)μk = μk, the above argument implies

‖ ̂Xkŷk − μke‖ ≤ (1/2)μk.
It’s well known that the inequality ‖Xz − (xTz/n)e‖ ≤ ‖Xz − ce‖ holds for arbitrary

vector x, z and arbitrary constant c.
So we have ‖ ̂Xkŷk − μ̂ke‖ ≤ ‖ ̂Xkŷk − μke‖ ≤ (1/2)μk ≤ (1/2)μ̂ from the proof above

and Lemma 3.2, thus (x̂k, ŷk) ∈ ρ(1/2).
This completes the proof.

Remark 3.4. So Lemma 3.3 dedicates that the predictors of our algorithm operate in a wide
neighborhood of the central path ρ(1/2).

Lemma 3.5. If ‖ ̂Xkŷk−μke‖ ≤ (1/2)μk then ‖( ̂Xk
̂Yk)

−1/2
(rμke − ̂Xkŷk)‖

2
≤ 2(1/4+(1−r)2n)μk

Proof.

∥

∥

∥

∥

(

̂Xk
̂Yk
)−1/2(

rμke − ̂Xkŷk
)

∥

∥

∥

∥

2

≤ 1

min
1≤i≤n

x̂k
i ŷ

k
i

∥

∥

∥rμ
ke − ̂Xkŷk

∥

∥

∥

2

≤ 1

(1 − 1/2)μk

∥

∥

∥

̂Xkŷk − μke + (1 − r)μke
∥

∥

∥

2

≤ 2

μk

(

∥

∥

∥

̂Xkŷk − μke
∥

∥

∥

2
+
∥

∥

∥(1 − r)μke
∥

∥

∥

2
)

≤ 2
(

1
4
+ (1 − r)2n

)

μk.

(3.4)

This completes the proof.

Lemma 3.6. If n > 2 and the point (xk+1, yk+1) was generated by the algorithm, then μk+1 ≤ (1 −
Qk)μk always hold.
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Proof. Denote D = ( ̂Xk)1/2( ̂Yk)−1/2 then

D−1Δxc +DΔyc =
(

̂Xk
̂Yk
)−1/2(

rμke − ̂Xkŷk
)

(

D−1Δxc
)T
(

DΔyc) = (Δxc)TΔyc = (Δxc)TMΔxc ≥ 0.

(3.5)

From Lemmas 3.1 and 3.5 we have

(Δxc)TΔyc ≤ 1
2

∥

∥

∥

∥

(

̂Xkŷk
)−1/2(

rμke − ̂Xkŷk
)

∥

∥

∥

∥

2

≤
(

1
4
+ (1 − r)2n

)

μk

∴ μk+1 =

(

xk+1)Tyk+1

n

=

(

x̂k + Δxc
)T(

ŷk + Δyc
)

n

=

(

x̂k
)T
ŷk +
(

x̂k
)TΔyc + (Δxc)T ŷk + (Δxc)TΔyc

n

=
nrμk + (Δxc)TΔyc

n

≤ rμk +
(

1
4n

+ (1 − r)2
)

μk.

(3.6)

Note that r = 1 − 1/4
√
2n, we have

(

r +
1
4n

+ (1 − r)2
)

= 1 − 1

4
√
2n

+
1
4n

+
1

32n
= 1 − 4

√
2n − 9
32n

. (3.7)

It is obvious that (r + 1/4n + (1 − r)2) < 1 when n > 2, so μk+1 ≤ μk = (1 −Qk)μk.
This completes the proof.

Remark 3.7. From Lemmas 3.2 and 3.6, we can obtain immediately that μk+1 ≤ μk ≤ μ̂k. That
means the corrector reduces μ̂k to μk+1. Because the corrector in the classical MTY algorithm
just maintains the same duality gap, the improvement of the corrector in our algorithm will
make a faster reduction of μk than MTY algorithm.

Then the polynomial convergence of the algorithm could be established.

Theorem 3.8. Suppose that the sequence {(xk+1, yk+1)} generated by the algorithm, then one has
(xk+1, yk+1) ∈ ρ(1/4).

Proof. Let us define that xk+1(α) = x̂k + αΔxc, yk+1(α) = ŷk + αΔyc, and denote

μk+1(α) =

(

xk+1(α)
)T
yk+1(α)

n
. (3.8)
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As discussed in Lemma 3.6, we also have (D−1Δxc)T (DΔyc) = (Δxc)TΔyc = (Δxc)TMΔxc ≥
0.

From Lemmas 3.1 and 3.5 and r = 1 − 1/4
√
2n, then

∥

∥ΔXcΔyc
∥

∥ ≤
√
2
4

∥

∥

∥

∥

(

̂Xk
̂Yk
)−1/2(

rμke − ̂Xkŷk
)

∥

∥

∥

∥

2

≤
√
2
4

2
(

1
4
+ (1 − r)2n

)

μk

=
1
4

(√
2
2

+ 2
√
2n(1 − r)2

)

μk

≤ 1
4

(√
2
2

+
1
8

)

μk

≤ 7
32

μk,

μk+1(α) =

(

xk+1(α)
)T
yk+1(α)

n

=

(

x̂k + αΔxc
)T(

ŷk + αΔyc
)

n

=

(

x̂k
)T
ŷk + α

(

(

x̂k
)TΔyc + (Δxc)T ŷk

)

+ α2(Δxc)TΔyc

n

≥
(

x̂k
)T
ŷk + α

(

(

x̂k
)TΔyc + (Δxc)T ŷk

)

n

=

(

x̂k
)T
ŷk + α

(

nrμk − (x̂k
)T
ŷk
)

n

= μ̂k + α
(

rμk − μ̂k
)

= (1 − α)μ̂k + αrμk

≥ (1 − (1 − r)α)μk.

(3.9)

So we can write μk+1(α) ≥ (1 − (1 − r)α)μk, that is, μk ≤ μk+1(α)/(1 − (1 − r)α).
Hence

Xk+1(α)yk+1(α) − μk+1(α)e =
(

̂Xk + αΔXc
)(

ŷk + αΔyc
)

−
(

x̂k + αΔxc
)T(

ŷk + αΔyc
)

n
e

= ̂Xkŷk + α
(

̂XkΔyc + ΔXcŷk
)

+ α2ΔXcΔyc

−
(

x̂k
)T
ŷk + α

(

(

x̂k
)TΔyc + (Δxc)T ŷk

)

+ α2(Δxc)TΔyc

n
e
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= ̂Xkŷk + α
(

rμke − ̂Xkŷk
)

+ α2ΔXcΔyc

−
(

x̂k
)T
ŷk + α

(

nrμk − (x̂k
)T
ŷk
)

+ α2(Δxc)TΔyc

n
e

= (1 − α)

⎛

⎝̂Xkŷk −
(

x̂k
)T
ŷk

n
e

⎞

⎠ + α2

(

ΔXcΔyc − (Δxc)TΔyc

n
e

)

.

(3.10)

Since the inequality ‖Xz − (xTz/n)e‖ ≤ ‖Xz − ce‖ holds for arbitrary vector x, z and
arbitrary constant c, thus

∥

∥

∥Xk+1(α)yk+1(α) − μk+1(α)e
∥

∥

∥ ≤ (1 − α)

∥

∥

∥

∥

∥

∥

̂Xkŷk −
(

x̂k
)T
ŷk

n
e

∥

∥

∥

∥

∥

∥

+ α2

∥

∥

∥

∥

∥

ΔXcΔyc − (Δxc)TΔyc

n
e

∥

∥

∥

∥

∥

≤ (1 − α)
∥

∥

∥

̂Xkŷk − μke
∥

∥

∥ + α2∥
∥ΔXcΔyc

∥

∥

≤ (1 − α)
1
2
μk + α2 7

32
μk

≤ (1/2)(1 − α) + (7/32)α2

1 − (1 − r)α
μk+1(α).

(3.11)

Let us define f(α) = ((1/2)(1 − α) + (7/32)α2)/(1 − (1 − r)α), then f ′(α) = (−(1/2)r +
(7/16)α − (7/32)α2(1 − r))/[1 − (1 − r)α]2.

When n > 2, we have r ≥ 7/8, this results in f ′(α) ≤ 0 and f(α) decreases
monotonously, when 0 ≤ α ≤ 1. Because f(α) ≤ f(0) = 1/2 holds for every α ∈ [0, 1] thus

∥

∥

∥Xk+1(α)yk+1(α) − μk+1(α)e
∥

∥

∥ ≤ 1
2
μk+1(α). (3.12)

Since μk > ε > 0 (otherwise the algorithm will be terminated), it follows that

Xk+1
i (α)yk+1

i (α) ≥ 1
2
μk+1(α)

≥ 1
2
(1 − (1 − r)α)μk

=
1
2
(1 − (1 − r)α)

(

1 −Qk
)

μk > 0.

(3.13)

We have proved that x̂k = x(Qk) > 0, ŷk = y(Qk) > 0 in Lemma 3.3. So we have

xk+1(0) = x̂k > 0, yk+1(0) = ŷk > 0, when α = 0. (3.14)
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Note that xk+1(α) and yk+1(α) are continuous with respect to α. It implies that xk+1(α) >
0 and yk+1(α) > 0 hold for any α ∈ [0, 1].

Let α = 1, then we have xk+1 > 0 and yk+1 > 0.
Furthermore, when α = 1, f(α) = 7/32r thus ‖Xk+1yk+1 − μk+1e‖ ≤ (7/32r)μk+1 ≤

(1/4)μk+1.
Consider that we can obtain Mxk+1 − yk+1 + h = 0 directly from the steps in our

algorithm, so (xk+1, yk+1) ∈ ρ(1/4) holds for every (xk+1, yk+1) generated by the algorithm.
This completes the proof.

Theorem 3.9. The iteration complexity of the algorithm is O(
√
nL).

Proof. Let D′ = (Xk)1/2(Yk)−1/2 then

(

D′)−1Δxp +D′Δyp =
(

XkYk
)−1/2(2

3
μke −Xkyk

)

,

(

(

D′)−1Δxp
)T
(

D′Δyp) = (Δxp)TΔyp = (Δxp)TMΔyp ≥ 0.

(3.15)

From Lemma 3.1, we have

∥

∥ΔXpΔyp
∥

∥ =
∥

∥

∥

(

D′)−1ΔXpD′Δyp
∥

∥

∥

≤
√
2
4

·
∥

∥

∥

∥

(

Xkyk
)−1/2(2

3
μke −Xkyk

)∥

∥

∥

∥

2

≤
√
2
4

·
⎛

⎝

√

√

√

√

n
∑

i=1

(

(

2
3
μk

)2(
xk
i

)−1(
yk
i

)−1 − 4
3
μk + xk

i y
k
i

)

⎞

⎠

2

.

(3.16)

From ‖Xkyk − μke‖ ≤ (1/4)μk, we have xk
i y

k
i ≥ (3/4)μk, then (xk

i )
−1(yk

i )
−1 ≤ 4/3μk,

∥

∥ΔXpΔyp
∥

∥ ≤
√
2
4

·
n
∑

i=1

(

4
9
· 4
3
· μk − 4

3
μk

)

+ nμk

=
√
2
4

· 7
27

nμk

=
7
√
2

108
nμk.

(3.17)

Hence
√

μk/8‖ΔXpΔyp‖ ≥
√

27/14
√
2n, and we can obtain min{1/8√n,

√

μk/8‖ΔXpΔyp‖}
≥
√

27/14
√
2n.

So it implies that μk+1 ≤ (1 −Qk)μk ≤ (1 −
√

27/14
√
2n)μk for each k. This means that

μk will decrease at least by a constant factor of (1 −
√

27/14
√
2n) at each iteration, which

guarantees a O(
√
nL)-iteration complexity for the algorithm.

This completes the proof.
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Remark 3.10. Note that the reduce factor in the MTY algorithm is (1 − χ̂/
√
n) where χ̂ =

1/ 4
√
8 ≈ 0.5946, but the reduce factor in our algorithm is (1 −

√

27/14
√
2n) = (1 − λ/

√
n)

where λ =
√

27/14
√
2 ≈ 1.168, which is larger than χ̂. It implies that our algorithm will

converge faster than the MTY algorithm, although both have the same iteration complexity.

4. Examples and Numerical Results

Finally, the numerical experiments were carried out to evaluate the performance and practical
efficiency of the algorithm,

Test Problem 1

Find a vector pair (x, y) ∈ R3 × R3 such that y = M1x + h1, (x, y) ≥ (0, 0), xTy = 0, where
h1 ∈ R3 and M1 is a 3 × 3 positive semidefinite matrix,

M1 =

⎛

⎜

⎜

⎝

2 1 3

3 2 0

1 1 5

⎞

⎟

⎟

⎠

, h1 =

⎛

⎜

⎜

⎝

−1
0

−2

⎞

⎟

⎟

⎠

. (4.1)

Test Problem 2

Find a vector pair (x, y) ∈ R5 × R5 such that y = M2x + h2, (x, y) ≥ (0, 0), xTy = 0, where
h2 ∈ R5 and M2 is a 5 × 5 positive semidefinite matrix,

M2 =

⎛

⎜

⎜

⎜

⎜

⎜

⎜

⎜

⎜

⎝

7 0 0 2 0

2 8 3 5 9

0 0 3 0 3

0 1 4 6 1

8 0 0 2 5

⎞

⎟

⎟

⎟

⎟

⎟

⎟

⎟

⎟

⎠

, h2 =

⎛

⎜

⎜

⎜

⎜

⎜

⎜

⎜

⎜

⎝

−9.5
−36.5
−5
−14
−18.5

⎞

⎟

⎟

⎟

⎟

⎟

⎟

⎟

⎟

⎠

. (4.2)

Test Problem 3

This example is a general test problem used byNoor et al. [15]. The problem is to find a vector
pair (x, y) ∈ Rn × Rn such that y = M3x + h3, (x, y) ≥ (0, 0), xTy = 0, where h3 ∈ Rn and M3

is a n × n positive semidefinite matrix. To test the efficiency of our algorithm by large-scale
problem, we set the dimension of test problem 3 as 100, that is, n = 100,

M3 =

⎛

⎜

⎜

⎜

⎜

⎜

⎜

⎜

⎜

⎜

⎝

4 −2 0 · · · 0

1 4 −2 · · · 0

0 1 4 · · · 0

...
...

...
...

...

0 0 0 · · · 4

⎞

⎟

⎟

⎟

⎟

⎟

⎟

⎟

⎟

⎟

⎠

, h3 =

⎛

⎜

⎜

⎜

⎜

⎜

⎜

⎜

⎜

⎜

⎝

1

1

...

1

1

⎞

⎟

⎟

⎟

⎟

⎟

⎟

⎟

⎟

⎟

⎠

. (4.3)
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Table 1: Computational results of test problem 1.

MTY IPCIP
x0 (1, 1, 1)T (1, 1, 1)T

y0 (5, 5, 5)T (5, 5, 5)T

ε 1e − 06 1e − 06
Iterations 12 11
μk 3.76e − 07 5.73e − 07
xk (0.0, 0.0004, 0.3999)T (0.0, 0.0009, 0.3998)T

yk (0.2002, 0.0009, 9.29e − 07)T (0.2004, 0.0018, 1.81e − 07)T

Run time (s) 0.078220 0.049975

Table 2: Computational results of test problem 2.

MTY IPCIP
x0 (1.5, 1.5, 1.5, 1.5, 1.5)T (1.5, 1.5, 1.5, 1.5, 1.5)T

y0 (4, 4, 4, 4, 4)T (4, 4, 4, 4, 4)T

ε 1e − 06 1e − 06
Iterations 10 9
μk 2.61e − 08 2.18e − 07
xk (0.8402, 1.3726, 0.0347, 1.8094, 1.6320)T (0.8402, 1.3726, 0.0347, 1.8094, 1.6320)T

yk (0, 0, 0, 0, 0)T (0, 0, 0, 0, 0)T

Run time (s) 0.071335 0.037116

Table 3: Computational results of test problem 3.

MTY IPCIP
x0 (1, 1, 1, . . ., 1, 1)T (1, 1, 1, . . ., 1, 1)T

y0 (3, 4, 4, . . ., 4, 6)T (3, 4, 4, . . ., 4, 6)T

ε 1e − 05 1e − 05
Iterations 8 7
μk 1.00e − 08 1.92e − 08
xk (0, 0, 0, . . ., 0, 0)T (0, 0, 0, . . ., 0, 0)T

yk (1, 1, 1, . . ., 1, 1)T (1, 1, 1, . . ., 1, 1)T

Run time (s) 0.217375 0.177515

These test problems are solved by our IPCIP algorithm and the classical MTY
algorithm. The experiments are run on a PC (2.6GHz CPU, 2GDDRRAM) usingMATLAB 7.
The results including the corresponding numbers of iterations, μk, the approximate solutions,
and computing times are shown in Tables 1, 2, and 3.

5. Conclusion

This paper modified the MTY algorithm for solving monotone LCPs to strengthen the
convergence results. Although the iteration complexity of the improved algorithm was
proved to beO(

√
nL)which is similar to the classical MTY algorithm, but the reduce factor of

duality gap was enhanced to 1.168 and results in a faster convergence than the classical MTY
algorithm.
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The numerical results show that our IPCIP algorithm is more efficient than the MTY
algorithm. The number of iterations was decreased, and the computing times could be
reduced by nearly 20% to 50%. That indicated IPCIP algorithm has a better performance than
the MTY algorithm.
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