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The event of large losses plays an important role in credit risk. As these large losses are typically
rare, and portfolios usually consist of a large number of positions, large deviation theory is
the natural tool to analyze the tail asymptotics of the probabilities involved. We first derive a
sample-path large deviation principle (LDP) for the portfolio’s loss process, which enables the
computation of the logarithmic decay rate of the probabilities of interest. In addition, we derive
exact asymptotic results for a number of specific rare-event probabilities, such as the probability of
the loss process exceeding some given function.

1. Introduction

For financial institutions, such as banks and insurance companies, it is of crucial importance
to accurately assess the risk of their portfolios. These portfolios typically consist of a large
number of obligors, such as mortgages, loans, or insurance policies, and therefore it is
computationally infeasible to treat each individual object in the portfolio separately. As
a result, attention has shifted to measures that characterize the risk of the portfolio as a
whole, see, for example, [1] for general principles concerning managing credit risk. The
best-known metric is the so-called value at risk, see [2], which is measuring the minimum
amount of money that can be lost with α percent certainty over some given period. Several
other measures have been proposed, such as economic capital, the risk-adjusted return on
capital (RAROC), or expected shortfall, which is a coherent risk measure [3]. Each of these
measurements is applicable to market risk as well as credit risk. Measures such as loss-given
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default (LGD) and exposure at default (EAD) are measures that purely apply to credit risk.
These and other measures are discussed in detail in, for example, [4].

The currently existing methods mainly focus on the distribution of the portfolio loss
up to a given point in time (e.g., one year into the future). It can be argued, however, that in
many situations it makes more sense to use probabilities that involve the (cumulative) loss
process, say {L(t) : t ≥ 0}. Highly relevant, for instance, is the event that L(·) ever exceeds a
given function ζ(·) (within a certain time window, e.g., between now and one year ahead),
that is, an event of the type

{∃t ≤ T : L(t) ≥ ζ(t)}. (1.1)

It is clear that measures of the latter type are intrinsically harder to analyze, as it does not
suffice anymore to have knowledge of the marginal distribution of the loss process at a given
point in time, for instance, the event (1.1) actually corresponds to the union of events {L(t) ≥
ζ(t)}, for t ≤ T , and its probability will depend on the law of L(·) as a process on [0, T].

In line with the remarks we made above, earlier papers on applications of large-
deviation theory to credit risk, mainly address the (asymptotics of the) distribution of the
loss process at a single point in time, see, for example, [5, 6]. The former paper considers,
in addition, also the probability that the increments of the loss process exceed a certain level.
Other approaches to quantifying the tail distribution of the losses have been taken by [7],
who use extreme-value theory (see [8] for a background), [9, 10], where the authors consider
saddle point approximations to the tails of the loss distribution. Numerical and simulation
techniques for credit risk can be found in, for example, [11]. The first contribution of our work
concerns a so-called sample-path large deviation principle (LDP) for the average cumulative
losses for large portfolios. Loosely speaking, such an LDP means that, with Ln(·) denoting
the loss process when n obligors are involved, we can compute the logarithmic asymptotics
(for n large) of the average or normalized loss process Ln(·)/n being in a set of trajectoriesA:

lim
n→∞

1
n
logP

(
1
n
Ln(·) ∈ A

)
, (1.2)

we could, for instance, pick a set A that corresponds to the event (1.1). Most of the sample-
path LDPs that have been developed so far involve stochastic processes with independent or
nearly-independent increments, see, for instance, the results by Mogul’skiı̆ for randomwalks
[12], de Acosta for Lévy processes [13], and Chang [14] for weakly correlated processes;
results for processes with a stronger correlation structure are restricted to special classes of
processes, such as Gaussian processes, see, for example, [15]. It is observed that our loss
process is not covered by these results, and therefore new theory had to be developed. The
proof of our LDP relies on “classical” large deviation results (such as Cramér’s theorem,
Sanov’s theorem, Mogul’skiı̆’s theorem), in addition, the concept of epi-convergence [16] is
relied upon.

Our secondmain result focuses specifically on the event (1.1) of ever (before some time
horizon T) exceeding a given barrier function ζ(·). Whereas we so far considered, inherently
imprecise, logarithmic asymptotics of the type displayed in (1.2), we can now compute the
so-called exact asymptotics; we identify an explicit function f(n) such that f(n)/pn → 1 as
n → ∞, where pn is the probability of our interest. As is known from the literature, it
is in general substantially harder to find exact asymptotics than logarithmic asymptotics.
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The proof of our result uses the fact that, after discretizing time, the contribution of just a
single time epoch dominates, in the sense that there is a t� such that

P((1/n)Ln(t�) ≥ ζ(t�))
pn

−→ 1, with pn := P

(
∃t : 1

n
Ln(t) ≥ ζ(t)

)
. (1.3)

This t� can be interpreted as the most likely epoch of exceeding ζ(·).
Turning back to the setting of credit risk, both of the results we present are derived in a

setup where all obligors in the portfolio are i.i.d., in the sense that they behave independently
and stochastically identically. A third contribution of our work concerns a discussion on how
to extend our results to cases where the obligors are dependent (meaning that they, in the
terminology of [5], react to the same “macroenvironmental” variable, conditional uponwhich
they are independent again). We also treat the case of obligor-heterogeneity: we show how to
extend the results to the situation of multiple classes of obligors.

The paper is structured as follows. In Section 2 we introduce the loss process and
we describe the scaling under which we work. We also recapitulate a couple of relevant
large-deviation results. Our first main result, the sample-path LDP for the cumulative loss
process, is stated and proved in Section 3. Special attention is paid to, easily-checkable,
sufficient conditions under which this result holds. As argued above, the LDP is a generally
applicable result, as it yields an expression for the decay rate of any probability that depends
on the entire sample path. Then, in Section 4, we derive the exact asymptotic behavior of
the probability that, at some point in time, the loss exceeds a certain threshold, that is, the
asymptotics of pn, as defined in (1.3). After this we derive a similar result for the increments
of the loss process. Eventually, in Section 5, we discuss a number of possible extensions to
the results we have presented. Special attention is given to allowing dependence between
obligors, and to different classes of obligors each having its own specific distributional
properties. In the appendix we have collected a number of results from the literature in order
to keep the exposition of the paper self-contained.

2. Notation and Definitions

The portfolios of banks and insurance companies are typically very large; they may consist
of several thousands of assets. It is therefore computationally impossible to estimate the risks
for each element, or obligor, in a portfolio. This explains why one attempts to assess the
aggregated losses resulting from defaults, for example, bankruptcies, failure to repay loans
or insurance claims, for the portfolio as a whole. The risk in the portfolio is then measured
through this (aggregate) loss process. In the following sections we introduce the loss process
and the portfolio constituents more formally.

2.1. Loss Process

Let (Ω,F,P) be the probability space on which all random variables below are defined. We
assume that the portfolio consists of n obligors, and we denote the default time of obligor i
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by τi. Further, we write Ui for the loss incurred on a default of obligor i. We then define the
cumulative loss process Ln as

Ln(t) :=
n∑
i=1

UiZi(t), (2.1)

where Zi(t) = 1{τi≤t} is the default indicator of obligor i. We assume that the loss amounts
Ui ≥ 0 are i.i.d., and that the default times τi ≥ 0 are i.i.d. as well. In addition, we assume that
the loss amounts and the default times are mutually independent. In the remainder of this
paper,U and Z(t) denote generic random variables with the same distribution as theUi and
Zi(t), respectively.

Throughout this paper we assume that the defaults only occur on the time grid N; in
Section 5, we discuss how to deal with the default epochs taking continuous values. In some
cases we explicitly consider a finite time grid, say {1, 2, . . . ,N}. The extension of the results
we derive to a more general grid {0 < t1 < t2 < · · · < tN} is completely trivial. The distribution
of the default times, for each j, is denoted by

pj := P
(
τ = j

)
, (2.2)

Fj := P
(
τ ≤ j) =

j∑
i=1

pi. (2.3)

Given the distribution of the loss amounts Ui and the default times τi, our goal is to
investigate the loss process. Many of the techniques that have been developed so far, first
fix a time T (typically one year), and then stochastic properties of the cumulative loss at
time T , that is, Ln(T), are studied. Measures such as value at risk and economic capital are
examples of these “one-dimensional” characteristics. Many interesting measures, however,
involve properties of the entire path of the loss process rather than those of just one time
epoch, examples being the probability that Ln(·) exceeds some barrier function ζ(·) for some
t smaller than the horizon T , or the probability that (during a certain period) the loss always
stays above a certain level. The event corresponding to the former probability might require
the bank to attract more capital, or worse, it might lead to the bankruptcy of this bank. The
event corresponding to the latter event might also lead to the bankruptcy of the bank, as a
long period of stress may have substantial negative implications. We conclude that having
a handle on these probabilities is therefore a useful instrument when assessing the risks
involved in the bank’s portfolios.

As mentioned above, the number of obligors n in a portfolio is typically very large,
thus prohibiting analyses based on the specific properties of the individual obligors. Instead,
it is more natural to study the asymptotical behavior of the loss process as n → ∞. One could
rely on a central-limit-theorem-based approach, but in this paper we focus on rare events, by
using the theory of large deviations.

In the following subsection we provide some background of large-deviation theory,
and we define a number of quantities that are used in the remainder of this paper.
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2.2. Large Deviation Principle

In this section we give a short introduction to the theory of large deviations. Here, in an
abstract setting, the limiting behavior of a family of probability measures {μn} on the Borel
sets B of a complete separable metric space, a Polish space, (X, d) is studied, as n → ∞. This
behavior is referred to as the large deviation principle (LDP), and it is characterized in terms
of a rate function. The LDP states lower and upper exponential bounds for the value that the
measures μn assign to sets in a topological space X. Below we state the definition of the rate
function that has been taken from [17].

Definition 2.1. A rate function is a lower semicontinuous mapping I : X → [0,∞], for all
α ∈ [0,∞) the level set ΨI(α) := {x | I(x) ≤ α} is a closed subset of X. A good rate function is
a rate function for which all the level sets are compact subsets of X.

With the definition of the rate function in mind we state the large deviation principle
for the sequence of measure {μn}.

Definition 2.2. We say that {μn} satisfies the large deviation principle with a rate function I(·)
if

(i) (upper bound) for any closed set F ⊆ X

lim sup
n→∞

1
n
logμn(F) ≤ −inf

x∈F
I(x), (2.4)

(ii) (lower bound) for any open set G ⊆ X

lim inf
n→∞

1
n
logμn(G) ≥ −inf

x∈G
I(x). (2.5)

We say that a family of random variables X = {Xn}, with values in X, satisfies an LDP with
rate function IX(·) if and only if the laws {μXn } satisfy an LDP with rate function IX , where μXn
is the law of Xn.

The so-called Fenchel-Legendre transform plays an important role in expressions for
the rate function. Let for an arbitrary random variableX, the logarithmic moment generating
function, sometimes referred to as cumulant generating function, be given by

ΛX(θ) := logMX(θ) = logE

[
eθX

]
≤ ∞, (2.6)

for θ ∈ R. The Fenchel-Legendre transform Λ�
X of ΛX is then defined by

Λ�
X(x) := sup

θ

(θx −ΛX(θ)). (2.7)

We sometimes say that Λ�
X is the Fenchel-Legendre transform of X.
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The LDP from Definition 2.2 provides upper and lower bounds for the log-asymptotic
behavior of measures μn. In case of the loss process (2.1), fixed at some time t, we can easily
establish an LDP by an application of Cramér’s theorem (Theorem A.1). This theorem yields
that the rate function is given by Λ�

UZ(t)(·), where Λ�
UZ(t)(·) is the Fenchel-Legendre transform

of the random variableUZ(t).
The results we present in this paper involve either Λ�

U(·) (Section 3), which corre-
sponds to i.i.d. loss amountsUi only, or Λ�

UZ(t)(·) (Section 4), which corresponds to those loss
amounts up to time t. In the following section we derive an LDP for the whole path of the
loss process, which can be considered as an extension of Cramér’s theorem.

3. A Sample-Path Large Deviation Result

In the previous section we have introduced the large deviation principle. In this section we
derive a sample-path LDP for the cumulative loss process (2.1). We consider the exponential
decay of the probability that the path of the loss process Ln(·) is in some set A, as the size n
of the portfolio tends to infinity.

3.1. Assumptions

In order to state a sample-path LDP, we need to define the topology that we work on. To
this end we define the space S of all nonnegative and nondecreasing functions on TN =
{1, 2, . . . ,N},

S :=
{
f : TN → R

+
0 | 0 ≤ fi ≤ fi+1 for i < N

}
. (3.1)

This set is identified with the space R
N
≤ := {x ∈ R

N | 0 ≤ xi ≤ xi+1 for i < N}. The topology
on this space is the one induced by the supremum norm

∥∥f∥∥∞ = max
i=1,...,N

∣∣fi∣∣. (3.2)

As we work on a finite-dimensional space, the choice of the norm is not important, as any
other norm on S would result in the same topology. We use the supremum norm as this is
convenient in some of the proofs in this section.

We identify the space of all probability measures on TN with the simplex Φ:

Φ :=

{
ϕ ∈ R

N |
N∑
i=1

ϕi = 1, ϕi ≥ 0 for i ≤N
}
. (3.3)

For a given ϕ ∈ Φwe denote the cumulative distribution function by ψ, that is,

ψi =
i∑
j=1

ϕj, for i ≤N, (3.4)

note that ψ ∈ S and ψN = 1.
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Furthermore, we consider the loss amounts Ui as introduced in Section 2.1, a ϕ ∈ Φ
with cdf ψ, and a sequence of ϕn ∈ Φ, each with cdf ψn, such that ϕn → ϕ as n → ∞, meaning
that ϕni → ϕi for all i ≤N. We define two families of measures (μn) and (νn):

μn(A) := P

⎛
⎜⎝

⎛
⎝ 1
n

[nψi]∑
j=1

Uj

⎞
⎠

N

i=1

∈ A

⎞
⎟⎠, (3.5)

νn(A) := P

⎛
⎜⎝

⎛
⎝ 1
n

[nψni ]∑
j=1

Uj

⎞
⎠

N

i=1

∈ A

⎞
⎟⎠, (3.6)

where A ∈ B := B(RN) and [x] := sup{k ∈ N | k ≤ x}. Below we state an assumption
under which the main result in this section holds. This assumption refers to the definition of
exponential equivalence, which can be found in Definition A.2.

Assumption 1. Let ϕ, ϕn be as above. We assume that ϕn → ϕ and moreover that the measures μn
and νn as defined in (3.5) and (3.6), respectively, are exponentially equivalent.

From Assumption 1, we learn that the differences between the two measures μn and
νn go to zero at a “superexponential” rate. In the next section, in Lemma 3.3, we provide a
sufficient condition, that is, easy to check, under which this assumption holds.

3.2. Main Result

The assumptions and definitions in the previous sections allow us to state the main result of
this section.We show that the average loss process Ln(·)/n satisfies a large deviation principle
as in Definition 2.2. It is noted that various expressions for the associated rate function can
be found. Directly from the multivariate version of Cramér’s theorem [17, Section 2.2.2],
it is seen that, under appropriate conditions, a large deviations principle applies with rate
function

I(x) = sup
θ∈RN

⎛
⎝ N∑

j=1

θjxj − log E exp

⎛
⎝ N∑

j=1

θjVj

⎞
⎠

⎞
⎠, (3.7)

where Vj is a generic random variable distributed asUiZi(j). In this paper we choose to work
with another rate function that has the important advantage that it gives us considerably
more precise insight into the system conditional of the rare event of interest occurring. We
return to this issue in greater detail in Remark 3.6.

The large deviations principle allows us to approximate a large variety of probabilities
related to the average loss process, such as the probability that the loss process stays above
a certain time-dependent level or the probability that the loss process exceeds a certain level
before some given point in time.
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Theorem 3.1. WithΦ as in (3.3) and under Assumption 1, the average loss process, Ln(·)/n satisfies
an LDP with rate function IU,p. Here, for x ∈ R

N
≤ , IU,p is given by

IU,p(x) := inf
ϕ∈Φ

N∑
i=1

ϕi

(
log

(
ϕi
pi

)
+ Λ�

U

(
Δxi
ϕi

))
, (3.8)

with Δxi := xi − xi−1 and x0 := 0.

Observing the rate function for this sample-path LDP, we see that the effects of the
default times τi and the loss amounts Ui are nicely decoupled into the two terms in the rate
function, one involving the distribution of the default epoch τ (the “Sanov term”, cf. [17,
Theorem 6.2.10]), the other one involving the incurred loss size U (the “Cramér term”, cf.
[17, Theorem 2.2.3]. Observe that we recover Cramér’s theorem by considering a time grid
consisting of a single time point, which means that Theorem 3.1 extends Cramér’s result. We
also remark that, informally speaking, the optimizing ϕ ∈ Φ in (3.8) can be interpreted as the
“most likely” distribution of the loss epoch, given that the path of Ln(·)/n is close to x.

As a sanity check we calculate the value of the rate function IU,p(x) for the “average
path” of Ln(·)/n, given by x�j = E[U]Fj for j ≤ N, where Fj is the cumulative distribution of
the default times as given in (2.3); this path should give a rate function equal to 0. To see this,
we first remark that clearly IU,p(x) ≥ 0 for all x, since both the Sanov term and the Cramér
term are nonnegative. This yields the following chain of inequalities:

0 ≤ IU,p(x�) = inf
ϕ∈Φ

N∑
i=1

ϕi

(
log

(
ϕi
pi

)
+ Λ�

U

(
E[U]pi
ϕi

))

ϕ=p
≤

N∑
i=1

pi

(
log

(
pi
pi

)
+ Λ�

U

(
E[U]pi
pi

))

=
N∑
i=1

piΛ�
U(E[U]) = Λ�

U(E[U]) = 0,

(3.9)

where we have used that for E[U] < ∞, it always holds that Λ�
U(E[U]) = 0 cf. [17, Lemma

2.2.5]. The inequalities above thus show that if the “average path” x� lies in the set of
interest, then the corresponding decay rate is 0, meaning that the probability of interest decays
subexponentially.

In the proof of Theorem 3.1we use the following lemma, which is related to the concept
of epi-convergence, extensively discussed in [16]. After this proof, in which we use a “bare
hands” approach, we discuss alternative, more sophisticated ways to establish Theorem 3.1.

Lemma 3.2. Let fn, f : D → R, with D ⊂ R
m compact. Assume that for all x ∈ D and for all

xn → x in D we have

lim sup
n→∞

fn(xn) ≤ f(x). (3.10)
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Then we have

lim sup
n→∞

sup
x∈D

fn(x) ≤ sup
x∈D

f(x). (3.11)

Proof. Let f�n = supx∈Dfn(x), f
� = supx∈Df(x). Consider a subsequence f�nk →

lim supn→∞f
�
n. Let ε > 0 and choose xnk such that f�nk < fnk(xnk) + ε for all k. By the

compactness of D, there exists a limit point x ∈ D such that along a subsequence xnkj → x.
By the hypothesis (3.10)we then have

lim sup
n→∞

f�n ≤ lim sup fnkj
(
xnkj

)
+ ε ≤ f(x) + ε ≤ f� + ε. (3.12)

Let ε ↓ 0 to obtain the result.

Proof of Theorem 3.1. We start by establishing an identity from which we show both bounds.
We need to calculate the probability

P

(
1
n
Ln(·) ∈ A

)
= P

((
1
n
Ln(1), . . . ,

1
n
Ln(N)

)
∈ A

)
, (3.13)

for certain A ∈ B. For each point j on the time grid TN we record by the “default counter”
Kn,j ∈ {0, . . . , n} the number of defaults at time j:

Kn,j := #
{
i ∈ {1, . . . , n} | τi = j

}
. (3.14)

These counters allow us to rewrite the probability to

P

(
1
n
Ln(·) ∈ A

)
= E

⎡
⎣P

⎛
⎝

⎛
⎝ 1
n

Kn,1∑
j=1

U(j), . . . ,
1
n

Kn,1+···+Kn,N∑
j=1

U(j)

⎞
⎠ ∈ A | Kn

⎞
⎠

⎤
⎦

=
∑

k1+···+kN=n

P(Kn,i = ki for i ≤N) × P

⎛
⎜⎝

⎛
⎝ 1
n

mi∑
j=1

U(j)

⎞
⎠

N

i=1

∈ A

⎞
⎟⎠,

(3.15)

where mi :=
∑i

j=1kj and the loss amounts Uj have been ordered, such that the first U(j)

corresponds to the losses at time 1, and so forth.

Upper Bound

Starting from Equality (3.15), let us first establish the upper bound of the LDP. To this end,
let F be a closed set and consider the decay rate

lim sup
n→∞

1
n
logP

(
1
n
Ln(·) ∈ F

)
. (3.16)
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An application of Lemma A.3 together with (3.15) implies that (3.16) equals

lim sup
n→∞

1
n
logP

(
1
n
Ln(·) ∈ F

)

= lim sup
n→∞

max
ki:

∑
ki=n

1
n

⎡
⎢⎣logP

(
Kn,i

n
=
ki
n
, i ≤N

)
+ logP

⎛
⎜⎝

⎛
⎝ 1
n

mi∑
j=1

U(j)

⎞
⎠

N

i=1

∈ F

⎞
⎟⎠

⎤
⎥⎦.
(3.17)

Next, we replace the dependence on n in the maximization by maximizing over the set Φ as
in (3.3). In addition, we replace the ki in (3.17) by

ϕ̂n,i :=

[
nψi

] − [
nψi−1

]
n

, (3.18)

where the ψi has been defined in (3.4). As a result, (3.16) reads

lim sup
n→∞

sup
ϕ∈Φ

1
n

⎡
⎢⎣logP

(
Kn,i

n
= ϕ̂n,i, i ≤N

)
+ logP

⎛
⎜⎝

⎛
⎝ 1
n

[nψi]∑
j=1

U(j)

⎞
⎠

N

i=1

∈ F

⎞
⎟⎠

⎤
⎥⎦. (3.19)

Note that (3.16) equals (3.19), since for each n and vector (k1, . . . , kN) ∈ N
N , with

∑N
i=1ki = n,

there is a ϕ ∈ Φ with ϕi = ki/n. On the other hand, we only cover outcomes of this form by
rounding off the ϕi.

We can bound the first term in this expression from above using Lemma A.5, which
implies that the decay rate (3.16) is majorized by

lim sup
n→∞

sup
ϕ∈Φ

⎡
⎢⎣−

N∑
i=1

ϕ̂n,i log
(
ϕ̂n,i
pi

)
+
1
n
logP

⎛
⎜⎝

⎛
⎝ 1
n

[nψi]∑
j=1

U(j)

⎞
⎠

N

i=1

∈ F

⎞
⎟⎠

⎤
⎥⎦. (3.20)

Now note that calculating the lim sup in the previous expression is not straightforward due
to the supremum overΦ. The idea is therefore to interchange the supremum and the lim sup,
by using Lemma 3.2. To apply this lemma we first introduce

fn
(
ϕ
)
:= −

N∑
i=1

ϕ̂n,i log
(
ϕ̂n,i
pi

)
+
1
n
logP

⎛
⎜⎝

⎛
⎝ 1
n

[nψi]∑
j=1

U(j)

⎞
⎠

N

i=1

∈ F

⎞
⎟⎠,

f
(
ϕ
)
:= −inf

x∈F

N∑
i=1

ϕi

(
log

(
ϕi
pi

)
+ Λ�

U

(
Δxi
ϕi

))
,

(3.21)
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and note that Φ is a compact subset of R
n. We have to show that for any sequence ϕn → ϕ

Condition (3.10) is satisfied, that is,

lim sup
n→∞

fn
(
ϕn

) ≤ f(ϕ), (3.22)

such that the conditions of Lemma 3.2 are satisfied. We observe, with ϕ̂ni as in (3.18) and ψni
as in (3.4)with ϕ replaced by ϕn, that

lim sup
n→∞

fn
(
ϕn

) ≤ lim sup
n→∞

(
−

N∑
i=1

ϕ̂nn,i log

(
ϕ̂nn,i
pi

))

+ lim sup
n→∞

1
n
logP

⎛
⎜⎝

⎛
⎝ 1
n

[nψni ]∑
j=1

U(j)

⎞
⎠

N

i=1

∈ F

⎞
⎟⎠.

(3.23)

Since ϕn → ϕ and since ϕ̂nn,i differs at most by 1/n from ϕni , it immediately follows that
ϕ̂nn,i → ϕi. For an arbitrary continuous function g we thus have g(ϕ̂nn,i) → g(ϕi). This implies
that

lim sup
n→∞

(
−

N∑
i=1

ϕ̂n,i log

(
ϕ̂nn,i
pi

))
= −

N∑
i=1

ϕi log
(
ϕi
pi

)
. (3.24)

Inequality (3.22) is established once we have shown that

lim sup
n→∞

1
n
logP

⎛
⎜⎝

⎛
⎝ 1
n

[nψni ]∑
j=1

U(j)

⎞
⎠

N

i=1

∈ F

⎞
⎟⎠ ≤ −inf

x∈F

N∑
i=1

ϕiΛ�
U

(
Δxi
ϕi

)
. (3.25)

By Assumption 1, we can exploit the exponential equivalence together with Theorem A.7, to
see that (3.25) holds as soon as we have that

lim sup
n→∞

1
n
logP

⎛
⎜⎝

⎛
⎝ 1
n

[nψi]∑
j=1

U(j)

⎞
⎠

N

i=1

∈ F

⎞
⎟⎠ ≤ −inf

x∈F

N∑
i=1

ϕiΛ�
U

(
Δxi
ϕi

)
. (3.26)

But this inequality is a direct consequence of Lemma A.6, and we conclude that (3.25) holds.
Combining (3.24) with (3.25) yields

lim sup
n→∞

fn
(
ϕn

) ≤ −
N∑
i=1

ϕi log
(
ϕi
pi

)
− inf
x∈F

N∑
i=1

ϕiΛ�
U

(
Δxi
ϕi

)

= −inf
x∈F

N∑
i=1

ϕi

(
log

(
ϕi
pi

)
+ Λ�

U

(
Δxi
ϕi

))
= f

(
ϕ
)
,

(3.27)
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so that indeed the conditions of Lemma 3.2 are satisfied, and therefore

lim sup
n→∞

sup
ϕ∈Φ

fn
(
ϕ
) ≤ sup

ϕ∈Φ
f
(
ϕ
)

= sup
ϕ∈Φ

(
−inf
x∈F

N∑
i=1

ϕi

(
log

(
ϕi
pi

)
+ Λ�

U

(
Δxi
ϕi

)))

= −inf
x∈F

inf
ϕ∈Φ

N∑
i=1

ϕi

(
log

(
ϕi
pi

)
+ Λ�

U

(
Δxi
ϕi

))
= −inf

x∈F
IU,p(x).

(3.28)

This establishes the upper bound of the LDP.

Lower Bound

To complete the proof, we need to establish the corresponding lower bound. LetG be an open
set and consider

lim inf
n→∞

1
n
logP

(
1
n
Ln(·) ∈ G

)
. (3.29)

We apply Equality (3.15) to this lim inf, with A replaced by G, and we observe that this sum
is larger than the largest term in the sum, which shows that (where we directly switch to the
enlarged space Φ) the decay rate (3.29)majorizes

lim inf
n→∞

sup
ϕ∈Φ

1
n

⎛
⎜⎝logP

(
1
n
Kn,i = ϕ̂n,i, i ≤N

)
+ logP

⎛
⎜⎝

⎛
⎝ 1
n

[nψi]∑
j=1

U(j)

⎞
⎠

N

i=1

∈ G

⎞
⎟⎠

⎞
⎟⎠. (3.30)

Observe that for any sequence of functions hn(·) it holds that lim infnsupxhn(x) ≥
lim infnhn(x̃) for all x̃, so that we obtain the evident inequality

lim inf
n→∞

sup
x
hn(x) ≥ sup

x
lim inf
n→∞

hn(x). (3.31)

This observation yields that the decay rate of interest (3.29) is not smaller than

sup
ϕ∈Φ

⎛
⎜⎝lim inf

n→∞
1
n
logP

(
1
n
Kn,i = ϕ̂n,i, i ≤N

)
+ lim inf

n→∞
1
n
logP

⎛
⎜⎝

⎛
⎝ 1
n

[nψi]∑
j=1

U(j)

⎞
⎠

N

i=1

∈ G

⎞
⎟⎠

⎞
⎟⎠,

(3.32)
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where we have used that lim infn(xn +yn) ≥ lim infnxn + lim infnyn. We apply Lemma A.5 to
the first lim inf in (3.32), leading to

lim inf
n→∞

1
n
logP

(
1
n
Kn,i = ϕ̂n,i, i ≤N

)
≥ lim inf

n→∞

(
−

N∑
i=1

ϕ̂n,i log
(
ϕ̂n,i
pi

)
− N

n
log(n + 1)

)

= −
N∑
i=1

ϕi log
(
ϕi
pi

)
,

(3.33)

since log(n + 1)/n → 0 as n → ∞. The second lim inf in (3.32) can be bounded from below
by an application of Lemma A.6. Since G is an open set, this lemma yields

lim inf
n→∞

1
n
logP

⎛
⎜⎝

⎛
⎝ 1
n

[nψi]∑
j=1

U(j)

⎞
⎠

N

i=1

∈ G

⎞
⎟⎠ ≥ −inf

x∈G

N∑
i=1

ϕiΛ�
U

(
xi − xi−1

ϕi

)
. (3.34)

Upon combining (3.33) and (3.34), we see that we have established the lower bound:

lim inf
n→∞

1
n
logP

(
1
n
Ln(·) ∈ G

)

≥ − inf
ϕ∈Φ

inf
x∈G

(
N∑
i=1

ϕi

(
log

(
ϕi
pi

)
+ Λ�

U

(
xi − xi−1

ϕi

)))
= −inf

x∈G
IU,p(x).

(3.35)

This completes the proof of the theorem.

In order to apply Theorem 3.1, one needs to check that Assumption 1 holds. In general,
this could be a quite cumbersome exercise. In Lemma 3.3 below, we provide a sufficient, easy-
to-check condition under which this assumption holds.

Lemma 3.3. Assume that for all θ ∈ R : ΛU(θ) <∞. Then Assumption 1 holds.

Remark 3.4. The assumption we make in Lemma 3.3, that is, that the logarithmic moment
generating function is finite everywhere, is a common assumption in large deviations theory.
We remark that for instance Mogul’skiı̆’s theorem [17, Theorem 5.1.2], also relies on this
assumption; this theorem is a sample-path LDP for

Yn(t) :=
1
n

[nt]∑
i=1

Xi, (3.36)

on the interval [0, 1]. In Mogul’skiı̆’s result, the Xi are assumed to be i.i.d; in our model we
have that Ln(t) =

∑n
i=1UiZi(t)/n, so that our sample-path result clearly does not fit into the

setup of Mogul’skiı̆’s theorem.



14 Journal of Applied Mathematics

Remark 3.5. In Lemma 3.3 it was assumed that ΛU(θ) < ∞, for all θ ∈ R, but an equivalent
condition is

lim
x→+∞

Λ�
U(x)
x

= +∞. (3.37)

In other words, this alternative condition can be used instead of the condition stated in
Lemma 3.3. To see that both requirements are equivalent, make the following observations.
Lemma A.4 states that (3.37) is implied by the assumption in Lemma 3.3. In order to prove
the converse, assume that (3.37) holds, and that there is a 0 < θ0 <∞ for which ΛU(θ0) = +∞.
Without loss of generality we can assume thatΛU(θ) is finite for θ < θ0 and infinite for θ ≥ θ0.
For x > E[U], the Fenchel-Legendre transform is then given by

Λ�
U(x) = sup

0<θ<θ0
(θx −ΛU(θ)). (3.38)

SinceU ≥ 0 and ΛU(0) = 0, we know that ΛU(θ) ≥ 0 for 0 < θ < θ0, and hence

Λ�
U(x)
x

≤ θ0, (3.39)

which contradicts with the assumption that this ratio tends to infinity as x → +∞, and thus
establishing the equivalence.

Proof of Lemma 3.3. Let ϕn → ϕ for some sequence of ϕn ∈ Φ and ϕ ∈ Φ. We introduce two
families of random vectors {Yn} and {Zn},

Yn :=

⎛
⎝ 1
n

[nψi]∑
j=1

Uj

⎞
⎠

N

i=1

, Zn :=

⎛
⎝ 1
n

[nψni ]∑
j=1

Uj

⎞
⎠

N

i=1

, (3.40)

which have laws μn and νn, respectively, as in (3.5)-(3.6). Since ϕn → ϕwe know that for any
ε > 0 there exists anMε such that for all n > Mε we have that maxi|ϕni − ϕi| < ε/N, and thus
|ψni − ψi| < ε.

We have to show that for any δ > 0,

lim sup
n→∞

1
n
logP(‖Yn − Zn‖∞ > δ) = −∞. (3.41)

For i ≤N, consider the absolute difference between Yn,i and Zn,i, that is,

|Yn,i − Zn,i| =
∣∣∣∣∣∣
1
n

[nψi]∑
j=1

Uj − 1
n

[nψni ]∑
j=1

Uj

∣∣∣∣∣∣. (3.42)
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Next we have that for any n > Mε it holds that |nψni − nψi| < nε, which yields for all i the
upper bound

∣∣[nψni ] − [
nψi

]∣∣ < [nε] + 2, (3.43)

since the rounded numbers differ at most by 1 from their real counterparts. This means that
the difference of the two sums in (3.42) can be bounded by at most [nε]+2 elements of theUj ,
which are for convenience denoted byU�

j . Recalling that theUj are nonnegative, we obtain

max
i=1,...,N

∣∣∣∣∣∣
1
n

[nψi]∑
j=1

Uj − 1
n

[nψni ]∑
j=1

Uj

∣∣∣∣∣∣ ≤
1
n

[nε]+2∑
j=1

U�
j . (3.44)

Next we bound the probability that the difference exceeds δ, by using the above inequality:

P(‖Yn − Zn‖∞ > δ) ≤ P

⎛
⎝ 1
n

[nε]+2∑
j=1

U�
j > δ

⎞
⎠ ≤ (

E
[
exp(θU1)

])[nε]+2
e−nδθ, (3.45)

where the last inequality follows from the Chernoff bound [17, Eqn. (2.2.12)] for arbitrary
θ > 0. Taking the log of this probability, dividing by n, and taking the lim sup on both sides
results in

lim sup
n→∞

1
n
logP(‖Yn − Zn‖∞ > δ) ≤ εΛU1(θ) − δθ. (3.46)

By the assumption, ΛU1(θ) <∞ for all θ. Thus, ε → 0 yields

lim sup
n→∞

1
n
logP(‖Yn − Zn‖∞ > δ) ≤ −δθ. (3.47)

As θ was arbitrary, the exponential equivalence follows by letting θ → +∞.

Remark 3.6. Large deviations analysis provides us with insight into the behavior of the system
conditional on the rare event under consideration happening. In this remark we compare the
insight we gain from the rate functions (3.7) and (3.8). We consider the decay rate of the
probability of the rare event that the average loss process Ln(·)/n is in the setA, and do so by
minimizing the rate function over x ∈ A (where x� denotes the optimizing argument).

Let, for ease, the random vector (UiZi(1), . . . , UiZi(N)) have a density, given by
by f(y1, . . . , yN). Then well-known large deviations reasoning yields that, conditional on
the rare event A, the vector (UiZi(1), . . . , UiZi(N)) behaves as being sampled from an
exponentially twisted distribution with density

f
(
y1, . . . , yN

) · e
∑N

j=1θ
�
j yj

E exp
(∑N

j=1θ
�
j Vj

) , (3.48)

where θ� is the optimizing argument in (3.7)with x = x�.
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Importantly, the rate function we identified in (3.8) gives more detailed information on
the system conditional on being in the rare setA. The default times of the individual obligors
are to be sampled from the distribution (ϕ�1, . . . , ϕ

�
N) (with ϕ� ∈ Φ the optimizing argument

in (3.8)), whereas the claim size of an obligor defaulting at time i has density

fU
(
y
) eθiy

EeθiU
, (3.49)

where fU(·) denotes the density ofU, and

θi := arg sup
θ

(
θ
Δx�i
ϕ�i

−ΛU(θ)

)
. (3.50)

The rate functions (3.7) and (3.8) are of comparable complexity, as both correspond to
an N-dimensional optimization (where (3.8) also involves the evaluation of the Fenchel-
Legendre transform Λ�(·), which is a single-dimensional maximization of low computational
complexity).

We conclude this section with some examples.

Example 3.7. Assume that the loss amounts have finite support, say on the interval [0, u].
Then we clearly have

ΛU(θ) = logE

[
eθU

]
≤ θu <∞. (3.51)

So for any distribution with finite support, the assumption for Lemma 3.3 is satisfied, and
thus Theorem 3.1 holds. Here, the i.i.d. default times, τi, can have an arbitrary discrete
distribution on the time grid {1, . . . ,N}.

In practical applications, one (always) chooses a distribution with finite support for
the loss amounts, since the exposure to every obligor is finite. Theorem 3.1 thus clearly holds
for any (realistic) model of the loss given default.

An explicit expression for the rate function (3.8), or even the Fenchel-Legendre
transform, is usually not available. On the other hand one can use numerical optimization
techniques to calculate these quantities.

We next present an example to which Lemma 3.3 applies.

Example 3.8. Assume that the loss amount U is measured in a certain unit, and takes on
the values u, 2u, . . . for some u > 0. Assume that it has a distribution of Poisson type with
parameter λ > 0, in the sense that for i = 0, 1, . . .,

P(U = (i + 1)u) = e−λ
λi

i!
. (3.52)
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It is then easy to check that ΛU(θ) = θu + λ(eθu − 1), being finite for all θ. Further calculations
yield

Λ�
U(x) =

(x
u
− 1

)
log

(
1
λ

(x
u
− 1

))
−
(x
u
− 1

)
+ λ, (3.53)

for all x > u, and +∞ otherwise. Dividing this expression by x and letting x → +∞, we
observe that the resulting ratio tends to +∞. As a consequence, Remark 3.5 now entails that
Theorem 3.1 applies. It can also be argued that for any distribution U with tail behavior
comparable to that of a Poisson distribution, Theorem 3.1 applies as well.

4. Exact Asymptotic Results

In the previous section we have established a sample-path large deviation principle on a
finite time grid; this LDP provides us with logarithmic asymptotics of the probability that
the sample path of Ln(·)/n is contained in a given set, say A. The results presented in this
section are different in several ways. In the first place, we derive exact asymptotics (rather
than logarithmic asymptotics). In the second place, our time domain is not assumed to be
finite, instead, we consider all integer numbers, N. The price to be paid is that we restrict
ourselves to special setsA, namely, those corresponding to the loss process (or the increment
of the loss process) exceeding a given function. We work under the setup that we introduced
in Section 2.1.

4.1. Crossing a Barrier

In this section we consider the asymptotic behavior of the probability that the loss process at
some point in time is above a time-dependent level ζ. More precisely, we consider the set

A :=
{
f : N → R

+
0 | ∃t ∈ N : f(t) ≥ ζ(t)}, (4.1)

for some function ζ(t) satisfying

ζ(t) > E[UZ(t)] = E[U]Ft ∀t ∈ N, (4.2)

with Ft as in (2.3). If we would consider a function ζ that does not satisfy (4.2), we are not
in a large deviations setting, in the sense that the probability of the event {Ln(·)/n ∈ A}
converges to 1 by the law of large numbers. In order to obtain a more interesting result, we
thus limit ourselves to levels that satisfy (4.2). For such levels we state the first main result of
this section.

Theorem 4.1. Assume that

there is a unique t� ∈ N such that IUZ(t�) = min
t∈N

IUZ(t), (4.3)
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and that

lim inf
t→∞

IUZ(t)
log t

> 0, (4.4)

where IUZ(t) = supθ{θζ(t) −ΛUZ(t)(θ)} = Λ�
UZ(t)(ζ(t)). Then

P

(
1
n
Ln(·) ∈ A

)
=
e−nIUZ(t

�)C�

√
n

(
1 +O

(
1
n

))
, (4.5)

for A as in (4.1) and σ� is such that Λ′
UZ(t�)(σ

�) = ζ(t�). The constant C� follows from the Bahadur-
Rao theorem (Theorem A.8), with C� = CUZ(t�), ζ(t�).

Before proving the result, which will rely on arguments similar to those in [18], one
first discusses the meaning and implications of Theorem 4.1. In addition, one reflects on the
role played by the assumptions. One does so by a sequence of remarks.

Remark 4.2. Comparing Theorem 4.1 to the Bahadur-Rao theorem (Theorem A.8), we observe
that the probability of a sample mean exceeding a rare value has the same type of decay as
the probability of our interest (i.e., the probability that the normalized loss process Ln(·)/n
ever exceeds some function ζ). This decay looks like Ce−nI/

√
n for positive constants C and

I. This similarity can be explained as follows.
First, assume that the probability of our interest is actually the probability of a union

events. Evidently, this probability is larger than the probability of any of the events in this
union, and hence also larger than the largest among these:

P

(
1
n
Ln(·) ∈ A

)
≥ sup

t∈N

P

(
1
n
Ln(t) ≥ ζ(t)

)
. (4.6)

Theorem 4.1 indicates that the inequality in (4.6) is actually tight (under the conditions
stated). Informally, this means that the contribution of themaximizing t in the right-hand side
of (4.6), say t�, dominates the contributions of the other time epochs as n grows large. This
essentially says that given that the rare event under consideration occurs, with overwhelming
probability it happens at time t�.

As is clear from the statement of Theorem 4.1, two assumptions are needed to prove
the claim; we now briefly comment on the role played by these.

Remark 4.3. Assumption (4.3) is needed to make sure that there is not a time epoch t,
different from t�, having a contribution of the same order as t�. It can be verified from our
proof that if the uniqueness assumption is not met, the probability under consideration
remains asymptotically proportional to e−nI/

√
n, but we lack a clean expression for the

proportionality constant.
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Assumption (4.4) has to be imposed to make sure that the contribution of the “upper
tail”, that is, time epochs t ∈ {t� + 1, t� + 2, . . .}, can be neglected; more formally, we should
have

P

(
∃t ∈ {t� + 1, t� + 2, . . .} :

1
n
Ln(t) ≥ ζ(t)

)
= o

(
P

(
1
n
Ln(·) ∈ A

))
. (4.7)

In order to achieve this, the probability that the normalized loss process exceeds ζ for large t
should be sufficiently small.

Remark 4.4. We now comment on what Assumption (4.4) means. Clearly,

ΛUZ(t)(θ) = log
(
P(τ ≤ t)E

[
eθU

]
+ P(τ > t)

)
≤ logE

[
eθU

]
, (4.8)

as θ ≥ 0; the limiting value as t grows is actually logE[eθU] if P(τ <∞) = 1. This entails that

IUZ(t) = Λ�
UZ(t�)(ζ(t)) ≥ Λ�

U(ζ(t)) = sup
θ

(
θζ(t) − logE

[
eθU

])
. (4.9)

We observe that Assumption (4.4) is fulfilled if lim inft→∞Λ�
U(ζ(t))/ log t > 0, which turns

out to be valid under extremely mild conditions. Indeed, relying on Lemma A.4, we have
that in great generality it holds Λ�

U(x)/x → +∞ as x → +∞. Then clearly any ζ(t), for which
lim inftζ(t)/ log t > 0, satisfies Assumption (4.4), since

lim inf
t→∞

Λ�
U(ζ(t))
log t

= lim inf
t→∞

Λ�
U(ζ(t))
ζ(t)

ζ(t)
log t

. (4.10)

Alternatively, if U is chosen distributed exponentially with mean λ (which does not satisfy
the conditions of Lemma A.4), then Λ�

U(t) = λt − 1 − log (λt), such that we have that

lim inf
t→∞

IU
(
log t

)
log t

= λ > 0. (4.11)

Barrier functions ζ that grow at a rate slower than log t, such as log log t, are in this setting
clearly not allowed.

Proof of Theorem 4.1. We start by rewriting the probability of interest as

P

(
1
n
Ln(·) ∈ A

)
= P

(
∃t ∈ N :

Ln(t)
n

≥ ζ(t)
)
. (4.12)

For an arbitrary instant k in N we have

P

(
∃t ∈ N :

Ln(t)
n

≥ ζ(t)
)

≤ P

(
∃t ≤ k :

Ln(t)
n

≥ ζ(t)
)
+ P

(
∃t > k :

Ln(t)
n

≥ ζ(t)
)
. (4.13)
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We first focus on the second part in (4.13). We can bound this by

P

(
∃t > k :

Ln(t)
n

≥ ζ(t)
)

≤
∞∑

i=k+1

P

(
Ln(i)
n

≥ ζ(i)
)

≤
∞∑

i=k+1

inf
θ>0

E

⎡
⎣exp

⎛
⎝θ

n∑
j=1

UjZj(i)

⎞
⎠

⎤
⎦e−nζ(i)θ,

(4.14)

where the second inequality is due to the Chernoff bound [17, Eqn. (2.2.12)]. The indepen-
dence between the Ui and Zi(t), together with the assumption that the Ui are i.i.d. and the
Zi(t) are i.i.d. yields

∞∑
i=k+1

inf
θ>0

E

⎡
⎣exp

⎛
⎝θ

n∑
j=1

UjZj(i)

⎞
⎠

⎤
⎦e−nζ(i)θ = ∞∑

i=k+1

inf
θ>0

n∏
j=1

E
[
exp

(
θUjZj(i)

)]
e−nζ(i)θ

=
∞∑

i=k+1

exp

(
−n sup

θ>0

(
ζ(i)θ −ΛUZ(i)(θ)

))

=
∞∑

i=k+1

exp(−nIUZ(ζ(i))).

(4.15)

By (4.4)we have that

lim inf
t→∞

IUZ(t)
log t

= β, (4.16)

for some β > 0 (possibly +∞). Hence there exists anm such that for all i > m

IUZ(i) > α log i > IUZ(t�), (4.17)

where α = β/2 (in case β = +∞, any 0 < α < ∞ suffices) and t� defined in (4.3). Choosing
k = m, we obtain by using the first inequality in (4.17) for n > 1/α

∞∑
i=m+1

exp(−nIUZ(ζ(i))) ≤
∞∑

i=m+1

exp
(−nα log i) ≤ 1

nα − 1
exp

(
(−nα + 1) logm

)
, (4.18)

where the last inequality trivially follows by bounding the summation (from above) by an
appropriate integral. Next we multiply and divide this by P(Ln(t�)/n > ζ(t�)), and we apply
the Bahadur-Rao theorem, which results in

1
nα − 1

e(−nα+1) logm =
1

nα − 1
e(−nα+1) logm

P(Ln(t�)/n > ζ(t�))
P(Ln(t�)/n > ζ(t�))

= P

(
1
n
Ln(t�) > ζ(t�)

)
m
√
n C�

nα − 1

(
1 +O

(
1
n

))
e−n(α logm−IUZ(t�)).

(4.19)
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The second inequality in (4.17) yields α logm − IUZ(t�) > δ, for some δ > 0. Applying this
inequality, we see that this bounds the second term in (4.13), in the sense that as n → ∞,

P

(
∃t > k :

Ln(t)
n

≥ ζ(t)
)/

P

(
1
n
Ln(t�) > ζ(t�)

)
−→ 0. (4.20)

To complete the proof we need to bound the first term of (4.13), where we use that k = m. For
this we again use the Bahadur-Rao theorem. Next to this theorem we use the uniqueness of
t�, which implies that for i ≤ m and i /= t� there exists an ε� > 0, such that

IUZ(t�) + ε� ≤ IUZ(i). (4.21)

This observation yields, with σi such that Λ′
UZ(i)(σi) = ζ(i),

P

(
∃t ≤ m :

Ln(t)
n

≥ ζ(t)
)

≤
m∑
i=1

P

(
Ln(i)
n

≥ ζ(i)
)

≤ P

(
1
n
Ln(t�) > ζ(t�)

)(
1 +O

(
1
n

))(
m∑
i=1

C�

CUZ(i),ζ(i)

e−nIUZ(ti)

e−nIUZ(t�)

)

≤ P

(
1
n
Ln(t�) > ζ(t�)

)(
1 +O

(
1
n

))

×
(
1 +m × max

i=1,...,m

(
C�

CUZ(i),ζ(i)

)
e−nε

�

)

= P

(
1
n
Ln(t�) > ζ(t�)

)(
1 +O

(
1
n

))(
1 +O

(
e−nε

�
))
.

(4.22)

Combining the above findings, we observe

P

(
∃t ∈ N :

Ln(t)
n

≥ ζ(t)
)

≤ P

(
Ln(t�)
n

≥ ζ(t�)
)(

1 +O
(
1
n

))
. (4.23)

Together with the trivial bound

P

(
∃t ∈ N :

Ln(t)
n

≥ ζ(t)
)

≥ P

(
Ln(t�)
n

≥ ζ(t�)
)
, (4.24)

this yields

P

(
∃t ∈ N :

Ln(t)
n

≥ ζ(t)
)

= P

(
Ln(t�)
n

> ζ(t�)
)(

1 +O
(
1
n

))
. (4.25)

Applying the Bahadur-Rao theorem to the right hand side of the previous display yields the
desired result.
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4.2. Large Increments of the Loss Process

In the previous section we identified the asymptotic behavior of the probability that at some
point in time the normalized loss process Ln(·)/n exceeds a certain level. We can carry out a
similar procedure to obtain insight in the large deviations of the increments of the loss process.
Here we consider times where the increment of the loss between time s and t exceeds a
threshold ξ(s, t). More precisely, we consider the event

A :=
{
f : N −→ R

+
0 | ∃s, t ∈ N : s < t, f(t) − f(s) ≥ ξ(s, t)}. (4.26)

Being able to deal with events of this type, we can for instance analyze the likelihood of the
occurrence of a large loss during a short period; we remark that with the event (4.1) from
the previous subsection, one cannot distinguish the cases where the loss is zero for all times
before t and x > ζ(t) at time t, and the case where the loss is just below the level ζ for all times
before time t and then ends up at x at time t. Clearly, events of the (4.26) make it possible to
distinguish between such paths.

In order to avoid trivial results, we impose a condition similar to (4.2), namely,

ξ(s, t) > E[U](Ft − Fs), (4.27)

for all s < t. The law of large numbers entails that for functions ξ that do not satisfy this
condition, the probability under consideration does not correspond to a rare event.

A similar probability has been considered in [5], where the authors derive the
logarithmic asymptotic behavior of the probability that the increment of the loss, for some
s < t, in a bounded interval exceeds a thresholds that depends only on t − s. In contrast,
our approach uses a more flexible threshold, which depends on both times s and t, and in
addition we derive the exact asymptotic behavior of this probability.

Theorem 4.5. Assume that

there is a unique s� < t� ∈ N such that IUZ(s�, t�) = min
s,t:s<t

IUZ(s, t), (4.28)

and that

inf
s∈N

lim inf
t→∞

IUZ(s, t)
log t

> 0, (4.29)

where IUZ(s, t) = supθ(θξ(s, t) −ΛU(Z(t)−Z(s))(θ)) = Λ�
U(Z(t)−Z(s))(ξ(s, t)). Then

P

(
1
n
Ln(·) ∈ A

)
=
e−nIUZ(s

�,t�)C�

√
n

(
1 +O

(
1
n

))
, (4.30)

forA as in (4.27) and σ� is such that Λ′
U(Z(t�)−Z(s�))(σ

�) = ξ(s�, t�). The constant C� follows from the
Bahadur-Rao theorem (Theorem A.8), with C� = CU(Z(t�)−Z(s�)), ξ(s�,t�).
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Remark 4.6. A first glance at Theorem 4.5 tells us the obtained result is very similar to the
result of Theorem 4.1. The second condition, that is, Inequality (4.29), however, seems to be
more restrictive than the corresponding condition, that is, Inequality (4.4), due to the infimum
over s. This assumption has to make sure that the “upper tail” is negligible for any s. In the
previous subsection we have seen that, under mild restrictions, the upper tail can be safely
ignored when the barrier function grows at a rate of at least log t. We can extend this claim to
our new setting of large increments, as follows.

First note that

inf
s∈N

lim inf
t→∞

IUZ(s, t)
log t

≥ inf
s∈N

lim inf
t→∞

Λ�
U(ξ(s, t))
log t

. (4.31)

Then consider thresholds that, next to condition (4.27), satisfy that for all s

lim inf
t→∞

ξ(s, t)
log t

> 0. (4.32)

Then, under the conditions of Lemma A.4, we have that

lim inf
t→∞

Λ�
U(ξ(s, t))
log t

= lim inf
t→∞

Λ�
U(ξ(s, t))
ξ(s, t)

ξ(s, t)
log t

= +∞, (4.33)

since the second factor remains positive by (4.32) and the first factor tends to infinity by
Lemma A.4. Having established (4.33) for all s, it is clear that (4.29) is satisfied.

The sufficient condition (4.32) shows that the range of admissible barrier functions is
quite substantial, and, importantly, imposing (4.29) is not as restrictive as it seems at first
glance.

Proof of Theorem 4.5. The proof of this theorem is very similar to that of Theorem 4.1. Therefore
we only sketch the proof here.

As before, the probability of interest is split up into a “front part” and “tail part.”
The tail part can be bounded using Assumption (4.29); this is done analogously to the way
Assumption (4.4) was used in the proof of Theorem 4.1. The uniqueness assumption (4.28)
then shows that the probability of interest is asymptotically equal to the probability that the
increment between time s� and t� exceeds ξ(s�, t�); this is an application of the Bahadur-
Rao theorem. Another application of the Bahadur-Rao theorem to the probability that the
increment between time s� and t� exceeds ξ(s�, t�) yields the result.

5. Discussion and Concluding Remarks

In this paper, we have established a number of results with respect to the asymptotic behavior
of the distribution of the loss process. In this section we discuss some of the assumptions in
more detail and we consider extensions of the results that we have derived.
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5.1. Extensions of the Sample-Path LDP

The first part of our work, Section 3, was devoted to establishing a sample-path large
deviation principle on a finite time grid. Here we modeled the loss process as the sum of i.i.d.
loss amounts multiplied by i.i.d. default indicators. From a practical point of view one can
argue that the assumptions underlying our model are not always realistic. In particular, the
random properties of the obligors cannot always be assumed independent. In addition, the
assumption that all obligors behave in an i.i.d. fashion will not necessarily hold in practice.
Both shortcomings can be dealt with, however, by adapting the model slightly.

A common way to introduce dependence, taken from [5], is by supposing that there is
a “macroenvironmental” variable Y to which all obligors react, but conditional on which the
loss epochs and loss amounts are independent. First observe that our results are then valid
for any specific realization y of Y . Denoting the exponential decay rate by ry, that is,

lim
n→∞

1
n
logP

(
1
n
Ln(·) ∈ A | Y = y

)
= ry, (5.1)

the unconditional decay rate is just the maximum over the ry; this is trivial to prove if Y can
attain values in a finite set only. A detailed treatment of this is beyond the scope of this paper.

The assumption that all obligors have the same distribution can be relaxed to the case
where we assume that there are m different classes of obligors (e.g., determined by their
default ratings). We further assume that each class i makes up a fraction ai of the entire
portfolio. Then we can extend the LDP of Theorem 3.1 to a more general one, by splitting
up the loss process into m loss processes, each corresponding to a class. Conditioning on the
realizations of these processes, we can derive the following rate function:

IU,p,m(x) := inf
ϕ∈Φm

inf
v∈Vx

m∑
j=1

N∑
i=1

aiϕ
j

i

⎛
⎝log

⎛
⎝ϕ

j

i

p
j

i

⎞
⎠ + Λ�

U

⎛
⎝ v

j

i

aiϕ
j

i

⎞
⎠

⎞
⎠, (5.2)

where Vx = {v ∈ R
m×N
+ | ∑m

j=1v
j

i = Δxi for all i ≤ N}, and Φm is the Cartesian product
Φ × · · · × Φ (m times), with Φ as in (3.3). The optimization over the set Vx follows directly
from conditioning on the realizations of the perclass loss processes. We leave out the formal
derivation of this result; this multiclass case is notationally considerably more involved than
the single-class case, but essentially all steps carry over.

In our sample-path LDP we assumed that defaults can only occur on a finite grid.
While this assumption is justifiable from a practical point of view, an interestingmathematical
question is whether it can be relaxed. In self-evident notation, one would expect that the rate
function

IU,p,∞(x) := inf
ϕ∈Φ∞

∞∑
i=1

ϕi

(
log

(
ϕi
pi

)
+ Λ�

U

(
Δxi
ϕi

))
. (5.3)

It can be checked, however, that the argumentation used in the proof of Theorem 3.1 does not
work; in particular, the choice of a suitable topology plays an important role.
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If losses can occur on a continuous entire interval, that is, [0,N], we expect, for a non-
decreasing and differentiable path x, the rate function

IU,p,[0,N](x) := inf
ϕ∈M

∫N

0
ϕ(t)

(
log

(
ϕ(t)
p(t)

)
+ Λ�

U

(
x′(t)
ϕ(t)

))
dt, (5.4)

where M is the space of all densities on [0,N] and p the density of the default time τ . One
can easily guess the validity of (5.4) from (3.8) by using Riemann sums to approximate the
integral. A formal proof, however, requires techniques that are essentially different from the
ones used to establish Theorem 3.1, and therefore we leave this for future research.

5.2. Extensions of the Exact Asymptotics

In the second part of the paper, that is, Section 4, we have derived the exact asymptotic
behavior for two special events. First we showed that, under certain conditions, the
probability that the loss process exceeds a certain time-dependent level is asymptotically
equal to the probability that the process exceeds this level at the “most likely” time t�. The
exact asymptotics of this probability are obtained by applying the Bahadur-Rao theorem.
A similar result has been obtained for an event related to the increment of the loss process.
One could think of refining the logarithmic asymptotics, as developed in Section 3, to exact
asymptotics. Note, however, that this is far from straightforward, as for general sets these
asymptotics do not necessarily coincide with those of a univariate random variable, cf. [19].

Appendix

Background Results

In this section, we state a number of definitions and results, taken from [17], which are used
in the proofs in this paper.

Theorem A.1 (Cramér). Let Xi be i.i.d. real valued random variables with all exponential moments
finite, and let μn be the law of the average Sn =

∑n
i=1Xi/n. Then the sequence {μn} satisfies an LDP

with rate function Λ�(·), where Λ� is the Fenchel-Legendre transform of the Xi.

Proof . See, for example [17, Theorem 2.2.3].

Definition A.2. We say that two families of measures {μn} and {νn} on a complete separable
metric space (X, d) are exponentially equivalent if there exist two families of X-valued
random variables {Yn} and {Zn} with marginal distributions {μn} and {νn}, respectively,
such that for all δ > 0

lim sup
n→∞

1
n
logP(d(Xn, Yn) ≥ δ) = −∞. (A.1)
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Lemma A.3. For every triangular array ain ≥ 0, n ≥ 1, 1 ≤ i ≤ n,

lim sup
n→∞

1
n
log

n∑
i=1

ain = lim sup
n→∞

max
i=1,...,n

1
n
logain. (A.2)

Proof. Elementary, but also a direct consequence of [17, Lemma 1.2.15].

Lemma A.4. Let Λ(θ) <∞ for all θ ∈ R, then

lim
|x|→∞

Λ�(x)
|x| = +∞. (A.3)

Proof. This result is a part of [17, Lemma 2.2.20].

Lemma A.5. Let Kn,i be defined as Kn,j := #{i ∈ {1, . . . , n} | τi = j}. Then for any vector k ∈ N
N ,

such that
∑N

i=1ki = n, we have that

(n + 1)−N exp
(−nH(

k | p)) ≤ P(Kn = k) ≤ exp
(−nH(

k | p)), (A.4)

where

H
(
k | p) =

N∑
i=1

ki
n
log

(
ki
npi

)
, (A.5)

and pi as defined in (2.2).

Proof. See [17, Lemma 2.1.9].

Lemma A.6. Define

Zn(t) :=
1
n

[nt]∑
i=1

Xi, 0 ≤ t ≤ 1, (A.6)

for an i.i.d. sequence of R
d-valued random variables Xi. Let μn denote the law of Zn(·) in L∞([0, 1]).

For any discretization J = {0 < t1 < · · · < t|J | ≤ 1} and any f : [0, 1] → R
d, let pJ(f) denote the

vector (f(ti))
|J |
i=1 ∈ (Rd)|J |. Then the sequence of laws {μn ◦ p−1J } satisfies the LDP in (Rd)|j| with the

good rate function

IJ(z) =
|J |∑
i=1

(ti − ti−1)Λ�

(
zi − zi−1
ti − ti−1

)
, (A.7)

where Λ� is the Fenchel-Legendre transform of X1.

Proof. See [17, Lemma 5.1.8]. This lemma is one of the key steps in proving Mogul’skiı̆’s
theorem, which provides a sample-path LDP for Zn(·) on a bounded interval.
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TheoremA.7. If an LDPwith a good rate function I(·) holds for the probability measures {μn}, which
are exponentially equivalent to {νn}, then the same LDP holds for {νn}.

Proof. See [17, Theorem 4.2.13].

Theorem A.8 (Bahadur-Rao). Let Xi be a sequence of i.i.d. real-valued random variables. Then we
have

P

(
1
n

n∑
i=1

Xi ≥ q
)

=
e−nΛ

�
X(q)CX,q√
n

(
1 +O

(
1
n

))
. (A.8)

The constant CX,q depends on the type of distribution of X1, as specified by the following two cases.

(i) The law of X1 is lattice, that is, for some x0, d, the random variable (X1 − x0)/d is (a.s.)
an integer number, and d is the largest number with this property. Under the additional
condition 0 < P (X1 = q) < 1, the constant CX,q is given by

CX,q =
d(

1 − e−σd)σ√2πΛ′′
X(σ)

, (A.9)

where σ satisfies Λ′
X(σ) = q.

(ii) If the law of X1 is nonlattice, the constant CX,q is given by

CX,q =
1

σ
√
2πΛ′′

X(σ)
, (A.10)

with σ as in case (i).

Proof. We refer to [20] or [17, Theorem 3.7.4] for the proof of this result.
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