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A class of generalized definitions of expectation value is often employed in nonequilibrium
statistical mechanics for complex systems. Here, the necessary and sufficient condition is presented
for such a class to be stable under small deformations of a given arbitrary probability distribution.

Given a probability distribution {pi}i=1,2,...,W , that is, 0 ≤ pi ≤ 1 (i = 1, 2, . . . ,W) and
∑W

i=1 pi =
1, the ordinary expectation value of a quantity Q of a system under consideration is defined
by
∑W

i=1 piQi, where W is the total number of accessible states and is enormously large in
statistical mechanics, typically being 210

23
. In the field of generalized statistical mechanics for

complex systems, on the other hand, discussions are oftenmade about altering this definition.
Among others, the so-called “escort average” is widely employed in the field of generalized
statistical mechanics [1–3]. It is defined as follows:

〈Q〉φ
[
p
]
=

W∑

i=1

P
(φ)
i Qi, (1)

where P (φ)
i stands for the escort probability distribution [4] given by

P
(φ)
i =

φ
(
pi
)

∑W
j=1 φ

(
pj
) , (2)

with a nonnegative function φ. In the special case when φ(x) = x, 〈Q〉φ is reduced to the
ordinary expectation value mentioned above.
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Consider measurements of a certain quantity of a system to obtain information
about the probability distribution. Repeated measurements should be performed on the
system, which is identically prepared each time. Suppose that two probability distributions,
{pi}i=1,2,...,W and {p′i}i=1,2,...,W , are obtained through the measurements. They may slightly be
different from each other, in general. If such measurements make sense, then the expectation
values, 〈Q〉[p] and 〈Q〉[p′], calculated from these two distributions should also be close
to each other. This condition, which implies “experimental robustness,” is represented as
follows.

Definition (stability). An expectation value 〈Q〉[p] is said to be stable, if the following
predicate holds for any pair of probability distributions, {pi}i=1,2,...,W and {p′i}i=1,2,...,W :

(∀ε > 0) (∃δ > 0) (∀W)
(∥
∥p − p′

∥
∥
1 < δ =⇒ ∣

∣〈Q〉[p] − 〈Q〉[p′]∣∣ < ε
)
. (3)

Here, ‖p − p′‖1 =
∑W

i=1 |pi−p′i| is the l1-norm describing the distance between these two
probability distributions. One might consider norms of other kinds, but what is physically
relevant to discrete systems is the present l1-norm [5]. Equation (3) is analogous to Lesche’s
stability condition on entropic functionals [5], which has recently been revisited in the
literature [6–11] (note that the discussion in [8] is corrected in [9]). This concept of stability
is actually equivalent to that of uniform continuity.

In recent papers [12, 13], it has been shown that the generalized expectation value in
(1) with a specific class, φ(x) = xq (q > 0), (the associated expectation value being termed
the q-expectation value), is not stable unless q = 1. This result needs the q-expectation-value
formalism of nonextensive statistical mechanics [1, 2] be reconsidered. In addition, the result
is supported by Boltzmann-like kinetic theory in an independent manner [14].

Here, it seems appropriate to make some comments on the latest situation of the
problems concerning stabilities of entropic functionals and generalized expectation values.
The authors of [15, 16] have presented discussions which aim to rescue the q-expectation
values from the difficulties of their instability pointed out in [12]. Those authors insist
that the q-expectation values can be stable in both the finite-W and continuous cases.
Such possibilities are, however, fully refuted by the work in [13] both physically and
mathematically, and the controversy seems to have been terminated with that work. The case
of the continuous variables has further been carefully examined in a recent paper [17], where
the so-called Tsallis q-entropies [1, 2] do not have the continuous limit in consistency with the
physical principles such as the thermodynamic laws (see also [18, 19]). These controversies
have led the researchers to give up the traditional form of nonextensive statistical mechanics
based on the q-entropies and q-expectation values and to examine other entropic functionals
combined with the ordinary definition of expectation values [20] (see also [21, 22]). Thus, it
seems that nonextensive statistical mechanics has to be fully reexamined, theoretically.

In this paper, we present the necessary and sufficient condition for 〈Q〉φ[p] in (1) to
be stable.

Our main result is as follows.

Theorem. Let φ be nonnegative and continuous on [0, 1], differentiable on (0, 1), and satisfy the
condition that φ(x) = 0 ⇔ x = 0. And, let Q = {Qi}i=1,2,...,W be a random variable. Then, 〈Q〉φ[p] in
(1) is stable, if and only if limx→+0φ(x)/x ∈ (0,∞).
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Proof. First, assume that limx→+0φ(x)/x = a > 0. Then, there exists δ1 > 0 such that

a − a

2
<

φ(x)
x

< a +
a

2
(∀x ∈ (0, δ1]). (4)

φ(x)/x does not vanish because of the condition φ(x) = 0 ⇔ x = 0. Therefore, there exists
b > 0 such that

φ(x)
x

≥ b (∀x ∈ (δ1, 1]). (5)

Putting c = min{a/2, b} we have

cx ≤ φ(x) (∀x ∈ [0, 1]). (6)

Consequently, for an arbitrarily largeW and an arbitrary probability distribution {pi}i=1,2,...,W ,
we obtain

1
∑W

i=1 φ
(
pi
) ≤ c. (7)

From the mean value theorem, it follows that

∣
∣φ
(
pi
) − φ

(
p′i
)∣
∣ ≤ ∣∣pi − p′i

∣
∣ · sup

x∈(0,1)

∣
∣φ′(x)

∣
∣, (8)

where φ′(x) is the derivative of φ(x) with respect to x. For ε > 0, we put

δ = inf

⎛

⎜
⎝δ1,

cε

2|Qmax| ·
(
supx∈(0,1)

∣
∣φ′(x)

∣
∣
)

⎞

⎟
⎠ , (9)

where Qmax = max {Qi}i=1,2,...,W . Now, for ‖p − p′‖1 < δ, we have

∣
∣
∣〈Q〉φ

[
p
] − 〈Q〉φ

[
p′
]∣∣
∣

=
1

∑W
i=1 φ

(
pi
)∑W

j=1 φ
(
p′j
)

∣
∣
∣
∣
∣
∣

W∑

i=1

Qi

⎧
⎨

⎩
φ
(
pi
) W∑

j=1

φ
(
p′j
)
− φ
(
p′i
) W∑

j=1

φ
(
pj
)

⎫
⎬

⎭

∣
∣
∣
∣
∣
∣

≤ 1
∑W

i=1 φ
(
pi
)∑W

j=1 φ
(
p′j
)

×
⎡

⎣
W∑

i=1

|Qi|
⎧
⎨

⎩

∣
∣φ
(
pi
) − φ

(
p′i
)∣
∣

W∑

j=1

φ
(
p′j
)
+ φ
(
p′i
)
∣
∣
∣
∣
∣
∣

W∑

j=1

φ
(
pj

)
−

W∑

j=1

φ
(
p′j
)
∣
∣
∣
∣
∣
∣

⎫
⎬

⎭

⎤

⎦
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≤ 1
∑W

j=1 φ
(
pj
)

W∑

i=1

|Qi|
∣
∣φ
(
pi
) − φ

(
p′i
)∣
∣

+

∑W
j=1

∣
∣
∣φ
(
pj
) − φ

(
p′j
)∣
∣
∣

∑W
i=1 φ

(
pi
)∑W

j=1 φ
(
p′j
)

W∑

i=1

|Qi|φ
(
p′i
)

≤ 2|Qmax|
∑W

j=1 φ
(
pj
)

W∑

i=1

∣
∣φ
(
pi
) − φ

(
p′i
)∣
∣

≤ 2|Qmax|
∑W

j=1 φ
(
pj
)
∥
∥p − p′

∥
∥
1 · sup

x∈(0,1)

∣
∣φ′(x)

∣
∣

≤ 2|Qmax|
c

∥
∥p − p′

∥
∥
1 · sup

x∈(0,1)

∣
∣φ′(x)

∣
∣

< ε.

(10)

Therefore, 〈Q〉φ[p] is stable.
On the other hand, suppose that limx→+0φ(x)/x /∈ (0,∞). That is, (i) limx→+0φ(x)/x =

0 or (ii) limx→+0φ(x)/x = ∞. Below, we will examine these cases separately.

(i) Consider the following deformation:

pi =
1

W − 1
(1 − δi1),

p′i =
(

1 − δ

2

)

pi +
δ

2
δi1,

(11)

which are normalized and satisfy ‖p − p′‖1 = δ. We have

W∑

i=1

φ
(
pi
)
= (W − 1)φ

(
1

W − 1

)

,

W∑

i=1

φ
(
p′i
)
= φ

(
δ

2

)

+ (W − 1)φ
(

1
W − 1

(

1 − δ

2

))

.

(12)

Difference of the expectation values is calculated as follows:

〈Q〉φ
[
p
] − 〈Q〉φ

[
p′
]

= − Q1φ(δ/2)
φ(δ/2) + (W − 1)φ((1/(W − 1))(1 − δ/2))

+

(
W∑

i=2

Qi

){
1

W − 1
− φ((1/(W − 1))(1 − δ/2))
φ(δ/2) + (W − 1)φ((1/(W − 1))(1 − δ/2))

}
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=
W

W − 1

(
Q −Q1

)

× φ(δ/2)/(1 − δ/2)
φ(δ/2)/(1 − δ/2) + φ((1/(W − 1))(1 − δ/2))/[(1/(W − 1))(1 − δ/2)]

W →∞−−−−−−→ Q −Q1,

(13)

since limx→+0φ(x)/x = 0, where Q is the arithmetic mean, Q =
∑W

i=1 Qi/W .
Therefore, 〈Q〉φ[p] is not stable.

(ii) Consider the following deformation:

pi = δi1,

p′i =
(

1 − δ

2
W

W − 1

)

pi +
δ

2
1

W − 1
,

(14)

which are also normalized and satisfy ‖p − p′‖1 = δ. We have

W∑

i=1

φ
(
pi
)
= φ(1),

W∑

i=1

φ
(
p′i
)
= φ

(

1 − δ

2

)

+ (W − 1)φ
(
δ

2
1

W − 1

)

.

(15)

Difference of the expectation values is calculated as follows:

〈Q〉φ
[
p
] − 〈Q〉φ

[
p′
]
= Q1

{

1 − φ(1 − δ/2)
φ(1 − δ/2) + (W − 1)φ((δ/2)(1/(W − 1)))

}

−
(

W∑

i=2

Qi

)
φ((δ/2)(1/(W − 1)))

φ(1 − δ/2) + (W − 1)φ((δ/2)(1/(W − 1)))

=
W

W − 1

(
Q1 −Q

)

× φ((δ/2)(1/(W − 1)))/[(δ/2)(1/(W − 1))]
φ(1 − δ/2)/(δ/2) + φ((δ/2)(1/(W − 1)))/[(δ/2)(1/(W − 1))]

W →∞−−−−−−→ Q1 −Q,

(16)

since limx→+0φ(x)/x = ∞. Therefore, 〈Q〉φ[p] is not stable.

In the above proof, we have employed the specific deformations of the probability
distributions as the counterexamples, which are considered in [5]. It is pointed out in [13]
that these deformed distributions may experimentally be generated.
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Finally, we mention a couple of simple stable examples.

Example 1.

φ(x) = ex − 1. (17)

Example 2.

φ(x) = ln(1 + xα), (18)

which yields a stable generalized expectation value, if and only if α = 1.

On the other hand, as mentioned earlier, the q-expectation value is not stable, since
φ(x) = xq (q > 0, q /= 1) does not satisfy the condition limx→+0 φ(x)/x ∈ (0,∞).

In conclusion, we have considered a class of generalized definitions of expectation
value that are often employed in nonequilibrium statistical mechanics for complex systems,
and have presented the necessary and sufficient condition for such a class to be stable under
small deformations of a given arbitrary probability distribution.
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