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Recently, Liu extended He’s variational iteration method to strongly nonlinear q-difference
equations Liu (2010). In this study, the iteration formula and the Lagrange multiplier are given
in a more accurate way. The q-oscillation equation of second order is approximately solved to
show the new Lagrange multiplier’s validness.

1. Introduction

Generally, applying the variational iteration method (VIM) [1, 2] in differential equations
follows the three steps:

(a) establishing the correction functional;

(b) identifying the Lagrange multipliers;

(c) determining the initial iteration.

Obviously, the step (b) is crucial and critical in the method.
For the strongly nonlinear q-difference equation,

d2
q

dqt2
x + (2 + εx)

dq

dqt
x + Ω2x + x2 = 0, (1.1)

where dq/dqt is the q-derivative [3], Liu [4] used the Lagrange multiplier

λ(t, s) = s − t, (1.2)
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which results in the iteration formula (see [4, (4.10) and (4.11)]):

xn+1 = xn +
∫ t
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dq
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xn + Ω2xn + x2

n

)
dqs. (1.3)

In this paper, it is pointed out that the iteration formula (1.3) can be given in a more
accurate way and a new Lagrange multiplier is explicitly identified.

2. Properties of q-Calculus

2.1. q-Calculus

Let f(x) be a real continuous function. The q-derivative is defined as

dq

dqx
f(x) =

f
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)
x

, x /= 0, 0 < q < 1, (2.1)

and (dq/dqx)f(x)|x=0 = limn→∞((f(qn) − f(0))/qn).
The partial q-derivative with respect to x is
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The corresponding q-integral [5] is

∫x
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)
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)
. (2.3)

2.2. q-Leibniz Product Law

One has
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2.3. q-Integration by Parts

One has

∫b

a

g
(
qt
) dq

dqt
f(t)dqt = f(t)g(t)

∣∣b
a −

∫b

a

f(t)
dq

dqt
g(t)dqt. (2.5)

The properties above are needed in the construction of the correction functional for
q-difference equations. For more results and properties in q-calculus, readers are referred to
the recent monographs [5–8].
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3. A q-Analogue of Lagrange Multiplier

In order to identify the Lagrange multipliers of the q-difference equations, we first establish
the correctional functional for (1.1) as

xn+1 = xn +
∫ t

0
λ
(
t, q2s

)( d2
q

dqs2
xn + (2 + εxn)

dq

dqs
xn + Ω2xn + x2

n

)
dqs. (3.1)

The correction functional here is different from the one in ordinary calculus since the para-
meter q “disappears” after the integration by parts (2.5) each time. As a result, we use λ(t, q2s)
in the above functional.

We only need to consider the leading term (d2
q/dqt

2)x when other terms are restricted
variations in (1.1)

xn+1 = xn +
∫ t
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Through the integration by parts (2.5), we can have
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where δ is the variation operator and “′” denotes the q-derivative with respect to t. As a
result, the system of the Lagrange multiplier can be obtained:

the coefficient of δxn : 1 − q(∂q/∂qs)λ(t, s)|s=t = 0,

the coefficient of δx′
n : λ(t, qs)|s=t = 0,

the coefficient of δxn in the q-integral : q(∂2q/∂qs
2)λ(t, s) = 0,

from which we can get

λ(t, s) = q−1
(
s − tq

)
, (3.4)

instead of λ(t, s) = s − t in [4]. More introductions to the identification of various Lagrange
multipliers of the VIM can be found in [9, 10].

We also can show the above q-analogue of Lagrange multiplier’s validness. For 0 <
q < 1, let Tq be the time scale: Tq = {qn : n ∈ Z} ∪ {0}, where Z is the set of positive integers.
For the real continuous function u(t) : Tq → R, a q-oscillator equation of second order is
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= 1. (3.5)
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From (3.4), the iteration formula can be given as

un+1 = un +
∫ t
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Starting from the initial iteration u0 = 1+ t/[1]q!, the successive approximate solutions
can be obtained as
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.

(3.7)

The limit u = limn→∞un = eq(t) is an exact solution of (3.5). Here eq(t) is one of the q-
exponential functions.

4. Conclusions

In the past ten years, the VIM has been one of the often used nonlinear methods. The q-
derivative is a deformation of the classical derivative and it has played a crucial role in
quantummechanics and quantum calculus. In this study, themethod is successfully extended
to q difference equations of second order. A q-analogue of Lagrange multiplier is presented.
Readers who feel interested in the initial value problems of the q difference equations are
referred to [11–17].
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