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Received 21 July 2012; Revised 29 August 2012; Accepted 6 September 2012

Academic Editor: Vu Phat
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This paper deals with Markov decision processes (MDPs) on Euclidean spaces with an infinite
horizon. An approach to study this kind of MDPs is using the dynamic programming technique
(DP). Then the optimal value function is characterized through the value iteration functions. The
paper provides conditions that guarantee the convergence of maximizers of the value iteration
functions to the optimal policy. Then, using the Euler equation and an envelope formula, the
optimal solution of the optimal control problem is obtained. Finally, this theory is applied to a
linear-quadratic control problem in order to find its optimal policy.

1. Introduction

This paper deals with the optimal control problem in discrete time and with an infinite
horizon. This problem is presented with the help of the Markov decision processes (MDPs)
theory. To describe the MDPs, it is necessary to provide a Markov control model. The
components of the Markov control model are used to describe the dynamic of the system.
In this way at each time t (t = 0, 1, . . .) the state of the system is affected by an admissible
action. This sequence of actions is called a policy. The optimal control problem consists in
determining an optimal policy, which is characterized through a performance criterion. In
this paper, the infinite-horizon expected total discounted reward is considered.

An approach for solving the optimal control problem is through the dynamic
programming technique (DP) (see [1–4]). DP characterizes the optimal solution of the
optimal control problem using a functional equation, known as the dynamic programming
equation (see [1–4]). In the literature there exists conditions that guarantee the value iteration
(VI) functions procedure, which is used to approximate the optimal value function of the
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optimal control problem. However, this technique has problems when the reward and/or
dynamic have a complicated functional form (see [5, page 93]).

An alternative for solving this problem is using the Euler Equation (EE), which is well
known in the applications of MDPs to economic models. This equation is established and
solved in this context (in some cases empirically) (see [6–13]).

An iterative method for deterministic MDPs is presented in [14]. In this case, the EE
is obtained in terms of the VI functions. Retaking this idea, this article presents an iterative
method of finding the solution of EE in terms of the VI functions in stochastic MDPs.

In this paper, the Euler equation is obtained using an envelope formula (see [15–
17]) under interiority conditions of the VI functions. The envelope formula characterizes
the performance criterion derivative with respect to the initial state of the system. The
performance criterion derivative is important in analyzing the behavior of theMarkov control
process. Also, in [18], a general study about the performance sensitivities in the policy
space is presented. In this context, two performance sensitivity formulas are studied: one for
performance derivatives at any policy in the policy space and the other one for performance
differences between any two policies in the policy space.

The technique proposed in this paper is used as follows. Firstly, EE is applied to obtain
the VI functions. Secondly, applying the envelope formula, themaximizers of the VI functions
are obtained. Then using the maximizers convergence to the optimal policy, the optimal
control problem is solved. This procedure is exemplified by a linear quadratic problem.

The paper is organized as follows: in Section 2, the theory of MDPs necessary for
subsequent sections is presented. In Section 3, some conditions on theMarkov Control Model
are presented to ensure both the differentiability of the VI functions and the optimal value
function. These conditions guarantee the validity of a version of the EE for the VI. Finally, in
Section 4, a linear quadratic problem is presented to illustrate the theory.

2. Markov Decision Process

A discrete-time markov control model is a quintuple (X,A, {A(x) | x ∈ X}, Q, r), where X
is the state space, A is the action space, A(x) is the set of feasible actions in the state x ∈ X,
Q is a transition law and r : K → R is the one-step reward function (see [3]). X and A are
(nonempty) Borel spaces with the Borel σ-algebras B(X) and B(A), respectively. Q(· | ·) is a
stochastic kernel on X given K, where K := {(x, a) | x ∈ X, a ∈ A(x)}, and r is a measurable
function.

Consider a Markov control model and, for each t = 0, 1, . . ., define the space Ht of
admissible histories up to time t as H0 = X, and Ht = K × Ht−1, for t = 1, 2, . . ..

A policy is a sequence π = {πt} of stochastic kernels πt on the action space A given Ht.
The set of policies will be denoted by Π.

Let F be the set of decision functions or measurable selectors, that is, the set of all
measurable functions f : X → A such that f(x) ∈ A(x) for all x ∈ X.

A sequence {ft} of functions ft ∈ F is called a Markov policy. A stationary policy is a
Markov policy π = {ft} such that ft = f for all t = 0, 1, 2, . . ., with f ∈ F, and it will be denoted
by f (see [3]).

Given the initial state x0 = x ∈ X, and any policy π ∈ Π, there is a probability
measure Pπ

x on the space (Ω,F), with Ω := (X × A)∞ and F, the product σ-algebra (see
[3]). The corresponding expectation operator will be denoted by Eπ

x . The stochastic process
((Ω,F, Pπ

x ), {xt}) is called a discrete-time Markov decision process.
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The total expected discounted reward is defined as

v(π, x) := Eπ
x

[ ∞∑
t=0

αtr(xt, at)

]
, (2.1)

π ∈ Π and x ∈ X, where α ∈ (0, 1) is called the discount factor.

Definition 2.1. A policy π∗ ∈ Π is optimal, if for each x ∈ X,

v(π∗, x) = sup
π∈Π

v(π, x). (2.2)

The function defined by

V (x) = sup
π∈Π

v(π, x), (2.3)

x ∈ X, will be called the optimal value function.

The optimal control problem consists in determining an optimal policy.

2.1. Dynamic Programming

Definition 2.2. A measurable function λ : X → R is said to be a solution to the optimal
equation (OE) if it satisfies

λ(x) = sup
a∈A(x)

{
r(x, a) + α

∫
X

λ
(
y
)
Q
(
dy | x, a)}, (2.4)

x ∈ X.

Assumption 2.3. (a) The one-step reward function r is nonpositive, upper semicontinuous
(u.s.c), and sup-compact on K. (r is a sup-compact function if the set {a ∈ A(x) | r(x, a) ≥ γ}
is compact for every x ∈ X and γ ∈ R.)

(b) The transition law Q is strongly continuous.
(c) There exists a policy π such that v(π, x) > −∞, for each x ∈ X.

Definition 2.4. The value iteration (VI) functions are defined as follows:

vn(x) = sup
a∈A(x)

{
r(x, a) + α

∫
X

vn−1
(
y
)
Q
(
dy | x, a)}, (2.5)

for all x ∈ X and n = 1, 2, . . ., with v0(x) = 0.

The following theorem is well-known in the literature of MDPs (see, [1–4]). The proof
can be consulted in (see [3, page 46]).
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Theorem 2.5. Suppose that Assumption 2.3 holds. Then
(a) The optimal value function V is a solution of the OE (see Definition 2.2).
(b) There exists f ∈ F such that

V (x) = r
(
x, f(x)

)
+ α

∫
X

V
(
y
)
Q
(
dy | x, f(x)). (2.6)

(c) For every x ∈ X, vn(x) → V (x), when n → ∞.

Remark 2.6. Under Assumption 2.3, it is possible to demonstrate that for each n = 1, 2, . . .,
there exists a stationary policy fn ∈ F such that

vn(x) = r
(
x, fn(x)

)
+ α

∫
X

vn−1
(
y
)
Q
(
dy | x, fn(x)

)
, (2.7)

x ∈ X (see [3, page. 27, 28]).

3. Differentiability in MDPs

3.1. Notation and Preliminaries

Let X and Y be Euclidean spaces and consider the following notation: C2(X,Y ) denotes the
set of functions l : X → Y with a continuous second derivative (when X = Y , C2(X,Y ) will
be denoted by C2(X) and in some cases it will be written only as C2). Let Γ : X × Y → R be
a measurable function such that Γ ∈ C2(X × Y,R). Γx, and Γy denote the partial derivative of
Γ for x and y, respectively. The notations for the second partial derivatives of Γ are Γxx, Γxy,
Γyx and Γyy.

For any set C ⊂ X, a point x ∈ C is called an interior point of C if there exists an open
set U such that x ∈ U ⊂ C. The interior of C is the set of all interior points of C denoted by
int(C).

The set-value mapping Θ from X to Y is said to be

(a) nondecreasing, if x, z ∈ X with x < z then Θ(x) ⊆ Θ(z),

(b) convex, if x, z ∈ X and β ∈ [0, 1], then βa+(1−β)ã ∈ Θ(βx+(1−β)z), with a ∈ Θ(x)
and ã ∈ Θ(z).

Let Υ : K → R be a measurable function. Define υ : X → R by

υ(x) := sup
a∈Θ(x)

Υ
(
x, y

)
, (3.1)

x ∈ X.
The proof of the following lemma is similar to the proof of Theorem 1 in [16].

Lemma 3.1. Suppose that

(a) Υ ∈ C2(int(K);R), furthermore Υyy(x, ·) is negative definite, for every x ∈ X;

(b) for each x ∈ X, argmax Υ(x, y) ⊆ int(Θ(x)).
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Then there exists a function l : X → A such that υ(x) = Υ(x, l(x)), for every x ∈ X.
Moreover l ∈ C1(int(X);Y ) and Υ ∈ C2(int(X);R).

Remark 3.2. Observe that (a) implies that Λ(x, ·) is a strictly concave function, for each x ∈ X.
Then the maximizer l : X → A is unique.

The proof of the following lemma can be consulted in [19], Theorem 25.7, page 248.

Lemma 3.3. Let C ⊂ R
n be an open and convex set. Let g : C → R be a concave and differentiable

function, and {gn} be a sequence of differentiable, concave and real-valued functions on C, such that
gn(x) → g(x), when n → ∞, for all x ∈ C. Then

lim
n→∞

g ′
n(x) = g ′(x). (3.2)

3.2. An Envelope Formula in MDPs

Let (X,A, {A(x) | x ∈ X}, Q, r) be a fixed Markov control model. Throughout this section it is
assumed that Assumption 2.3 holds. Also, it is supposed that X ⊆ R

n and A ⊆ R
m are convex

sets with nonempty interiors and X is partially ordered. It is considered that the set-valued
mapping x → A(x) is nondecreasing and convex, and A(x) has nonempty interior, for each
x ∈ X. Also, it is assumed that the transition law Q is given by a difference equation:

xt+1 = L(F(xt, at), ξt), (3.3)

t = 0, 1, . . ., with a given initial state x0 = x ∈ X fixed, where {ξt} is a sequence of independent
and identically distributed (iid) random variables, independent of x0 = x ∈ X and taking
values in a Borel space S ⊂ R

k. Let ξ be a generic element of the sequence {ξt}. The density of
ξ is designated byΔ; L : X′ ×S → X is a measurable function, withX′ ⊂ R

m, and F : K → X′,
is a measurable function too.

Since Assumption 2.3 is assumed, then Theorem 2.5 yields. Therefore, the optimal
value function (see Definition 2.1) satisfies

V (x) = sup
a∈A(x)

{r(x, a) + αE[V (L(F(x, a), ξ))]}, (3.4)

and the VI functions (see Definition 2.4) satisfy

vn(x) = sup
a∈A(x)

{r(x, a) + αE[vn−1(L(F(x, a), ξ))]}, (3.5)

for each n = 1, 2, . . ., with v0(x) := 0. In addition, by Theorem 2.5, there exists the optimal
policy, which will be denoted by f . Furthermore, there exists the maximizer fn of vn for each
n = 1, 2, . . . (see Remark 2.6).

Let G : K → R be a function defined as

G(x, a) := r(x, a) + αH(x, a), (3.6)



6 Journal of Applied Mathematics

(x, a) ∈ K, where

H(x, a) := E[V (L(F(x, a), ξ))]. (3.7)

Define Gn : K → R by

Gn(x, a) := r(x, a) + αE[vn−1(L(F(x, a), ξ))], (3.8)

for each n = 1, 2, . . ., with v0(x) := 0 and (x, a) ∈ K.

Assumption 3.4. (a) r is a strictly concave function and r(·, a) is an increasing function on X
for each a ∈ A fixed;

(b) L(·, s) is a concave and increasing function, for each s ∈ S; F is a concave function,
F(·, a) is an increasing function on X, for each a ∈ A.

Lemma 3.5. Under Assumption 3.4, it results that vn is a strictly concave function and fn is unique,
for all n = 1, 2, . . .. Also, V is a strictly concave function and f is unique.

Proof. By Assumption 3.4(a), it suffices to prove Condition C1 (see [20, Lemma 6.2]), which
guarantees the result. Let Ψ : K × S → X be defined by

Ψ(x, a, s) := L(F(x, a), s). (3.9)

Then for each s ∈ S, the function Ψ(·, ·, s) is concave in K by Assumption 3.4(b).
Indeed, since F is a concave function, then

F
(
β(x, a) +

(
1 − β

)(
y, b

)) ≥ βF(x, a) +
(
1 − β

)
F
(
y, b

)
, (3.10)

(x, a), (y, b) ∈ K and β ∈ [0, 1]. Furthermore, it is known that L(·, s) is a concave and
increasing function, for each s ∈ S, then

L
(
F
(
β(x, a) +

(
1 − β

)(
y, b

))
, s
) ≥ βL(F(x, a), s) +

(
1 − β

)
L
(
F
(
y, b

)
, s
)
. (3.11)

From similar arguments, it can be shown that if x < y, then Ψ(x, a, s) ≤ Ψ(y, a, s), for
each s ∈ S and a ∈ A(y). Then the result follows.

Assumption 3.6. (a) r ∈ C2(int(K);R) and raa(x, ·) is negative definite for each x ∈ X;
(b) F ∈ C2(int(K);X′) and Fa(x, ·) is invertible, for each a ∈ A;
(c) L(·, s) ∈ C2(int(X′);X), for each s ∈ S. Besides, L(·, ·) has an inverse in the second

variable R, such that R(·, s) ∈ C2(int(X′ × X);S), and |detRs(·, s)| ∈ C2(int(X′);R), for all
s ∈ S, where, in this case, Rs denotes the derivative of R with respect to the second variable,
and the determinant of Rs is denoted as detRs;

(d) Δ ∈ C2(int(S);R) and the interchange between derivatives and integrals is valid
(see Remark 3.8).

Lemma 3.7. By Assumption 3.6 it results that H ∈ C2(int(K);X′), withH defined in (3.7).
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Proof. The proof is similar to the proof of Lemma 5 in [16]. Assumption 3.6 allows to express
the stochastic kernel (see (3.3)) in the following form: for each measurable subset B of X and
(x, a) ∈ K,

Q(B | (x, a)) = Pr(s ∈ S | L(F(x, a), s)) = Pr(s ∈ S | s(s ∈ R(F(x, a), B)) (3.12)

=
∫
R(F(x,a),B)

Δ(u)du. (3.13)

Then for the change of variable theorem, it results that

Q(B | (x, a)) =
∫
R(F(x,a),B)

Δ(R(F(x, a), u))|detRs(F(x, a), u)|du. (3.14)

It follows from (3.13) that H can be expressed as

H(x, a) =
∫
R(F(x,a),B)

V (u)Δ(R(F(x, a), u))|detRs(F(x, a), u)|du. (3.15)

Now, using Assumption 3.6, the result follows.

Remark 3.8. In Lemma 3.7, Assumption 3.6(d) was used to guarantee the differentiability of
the second order of the integral

∫
K(x, a, u)du, with respect to x or a, where

K(x, a, u) := V (u)Δ(R(F(x, a), u))|detRs(F(x, a), u)|, (3.16)

(F(x, a), u) ∈ int(X′ × X). This condition can be verified in practice when the derivatives
of K can be bounded in the following sense: for (F(x, a), u) ∈ int(X′ × X), |Kx(x, a, u)| ≤
k1(a, u),|Ka(x, a, u)| ≤ k2(x, u), |Kxx(x, a, u)| ≤ k3(a, u), |Kaa(x, a, u)| ≤ k4(a, u),
|Kxa(x, a, u)| ≤ k1(a, u), for some functions gi integrable with respect to u, for i = 1, . . . , 5
(see Remark 10 in [16]).

Assumption 3.9. (a) The optimal policy f satisfies that f(x) ∈ int(A(x)), for each x ∈ X;
(b) The sequence {fn} of the maximizers of the VI functions satisfies that fn(x) ∈

int(A(x)), for each x ∈ X and n = 1, 2, . . ..
Define W by

W(x, a) :=
[
rx − raF

−1
a Fx

]
(x, a), (3.17)

(x, a) ∈ K.

Remark 3.10. Assumption 3.9 evidently holds; if A(x) is open for every x ∈ X, then f(x)
(fn(x)) belongs to the interior of A(x), x ∈ X. Also, in some particular cases (see [8, 16]), the
interiority of f(x) (fn(x)) is guaranteed by the mean value theorem.
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Theorem 3.11. Under Assumptions 3.4, 3.6, and 3.9(a), it results that f ∈ C1(int(X);A), V ∈
C2(int(X);R) and for each x ∈ int(X),

V ′(x) = W
(
x, f(x)

)
, (3.18)

whereW is defined in (3.17).

Proof. Let x ∈ int(X) fixed. Note that Assumptions 3.4 and 3.6 imply that G ∈ C2(int(K);R)
where G is defined in (3.6). Indeed, since Assumptions 3.4(a) and 3.6(a) hold, it is known
that r ∈ C2(int(K);R) and raa(x, ·) is negative definite. Moreover, Lemma 3.5 implies
that H(x, a) = E[V (L(F(x, a), ξ))] is a concave function, and by Lemma 3.7, it follows
that H ∈ C2(int(K);R), obtaining that Haa(x, ·) is negative semidefinite (see [21, page
260]). Furthermore, by Assumption 3.9(a) and applying Lemma 3.1, it concludes that f ∈
C1(int(X);A) and V ∈ C2(int(X);R).

On the other hand, it is obtained that

Ga(x, a) = ra(x, a) + αE
[
V ′(L(F(x, a), ξ))L′(F(x, a), ξ)

]
Fa(x, a), (3.19)

for each a ∈ int(A(x)). Then, the first order condition and the invertibility of Fa (see
Assumption 3.6(b)) imply that Ga(x, f(x)) = 0, that is,

−raF−1
a

(
x, f(x)

)
= αE

[
V ′(L(F(x, f(x)), ξ))L′(F(x, f(x)), ξ)]. (3.20)

Moreover, since V satisfies (2.4) and f ∈ F is the optimal policy, then

V (x) = G
(
x, f(x)

)
. (3.21)

Using the fact that Ga(x, f(x)) = 0, it is possible to obtain the following envelope
formula:

V ′(x) = Gx

(
x, f(x)

)
+Ga

(
x, f(x)

)
f ′(x),

= Gx

(
x, f(x)

)
.

(3.22)

Equivalently,

V ′(x) = rx
(
x, f(x)

)
+ αE

[
V ′(L(F(x, f(x)), ξ))L′(F(x, f(x)), ξ)]Fx

(
x, f(x)

)
. (3.23)

Finally, substituting (3.20) in (3.23), it follows that

V ′(x) = W
(
x, f(x)

)
. (3.24)

Theorem 3.12. Under Assumptions 3.4, 3.6 and 3.9(b), it results that fn ∈ C1(int(X);A), vn ∈
C2(int(X);R), for each n = 1, 2, . . .. Furthermore,

v′
n(x) = W

(
x, fn(x)

)
, (3.25)

for each x ∈ int(X) and n = 2, 3, . . ..
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Proof. The proof will be made by induction. Let x ∈ int(X) be fixed. Since

v1(x) = max
a∈A(x)

G1(x, a), (3.26)

where G1 is defined in (3.8) and by Assumptions 3.4(a) and 3.6(a), it follows that G1 ∈
C2(int(K);R) and G1

aa(x, a) is negative definite. By Assumption 3.9(b), it yields that f1(x) ∈
int(A(x)), and applying Lemma 3.1, it follows that f1 ∈ C1(int(X);A), v1 ∈ C2(int(X);R).
Straightforward computations allow to obtain that

v′
1(x) = G1

x

(
x, f1(x)

)
. (3.27)

Moreover, by Lemma 3.5 it is known that v1 is strictly concave, then it is negative semidefinite
(see [21, page 260]).

Let n = 2, then

v2(x) = max
a∈A(x)

G2(x, a), (3.28)

where G2 is defined in (3.8).
Since r, L, F, v1 ∈ C2, then G2 ∈ C2 too. Moreover, Lemmas 3.5 and 3.7 imply that

H2(x, a) := E[v1(L(F(x, a), ξ))] (3.29)

is a concave function and H2 ∈ C2. It follows that H2
aa(x, ·) is negative semidefinite.

Consequently, G2
aa is negative definite. Now, since f2(x) ∈ int(A(x)) (see

Assumption 3.9(b)), applying again Lemma 3.1, it follows that f2 ∈ C1(int(X);A), v2 ∈
C2(int(X);R). Furthermore, the first order condition implies that G2

a(x, f2(x)) = 0. By the
invertibility of Fa (see Assumption 3.6(b)), it follows that

−raF−1
a

(
x, f2(x)

)
= αE

[
v′
1

(
L
(
F
(
x, f2(x)

)
, ξ
))
L′(F(x, f2(x)), ξ)]. (3.30)

On the other hand,

v′
2(x) = rx

(
x, f2(x)

)
+ αE

[
v′
1

(
L
(
F
(
x, f2(x)

)
, ξ
))
L′(F(x, f2(x)), ξ)]Fx

(
x, f2(x)

)
, (3.31)

and substituting (3.30) in (3.31), it is obtained that

v′
2(x) = W

(
x, f2(x)

)
, (3.32)

where W is defined in (3.17).
Now, suppose that vn−1 ∈ C2(int(X);R) with n > 2. Using arguments similar to the

case n = 2, it is possible to demonstrate that fn ∈ C1(int(X);A), vn ∈ C2(int(X);R) and

v′
n(x) = W

(
x, fn(x)

)
. (3.33)
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Assumption 3.13. For each x ∈ X, the function W(x, ·) has a continuous inverse function,
denoted by w.

Theorem 3.14. Under Assumptions 3.4, 3.6, 3.9 and 3.13, it follows that

fn(x) −→ f(x), (3.34)

when n → ∞, for each x ∈ int(X).

Proof. Let x ∈ int(X) fixed. It is known by Lemma 3.5 and Theorem 3.11 that the optimal
value function V is concave and differentiable on int(X). In addition, it is known that for
each n ∈ N, vn is a concave and differentiable function on int(X). Then from Lemma 3.3 it
follows that

v′
n(x) −→ V ′(x), (3.35)

when n goes to∞.
Now by Assumption 3.13, it concludes that for n = 2, 3, . . .,

fn(x) = w
(
x, v′

n(x)
)
,

f(x) = w
(
x, V ′(x)

)
,

(3.36)

where fn is a stationary policy of vn and f is the optimal policy. Finally, the convergence is
guaranteed by the continuity of w (see Assumption 3.13).

3.3. Euler Equation

Theorem 3.15. Under Assumptions 3.4, 3.6, 3.9, and 3.13 it follows that

v′
n(x) = rx

(
x,w

(
x, v′

n(x)
))

+ αE
[
v′
n−1

(
L
(
F
(
x,w

(
x, v′

n(x)
))
, ξ
))
L′(F(x,w(

x, v′
n(x)

))
, ξ
)]
Fx

(
x,w

(
x, v′

n(x)
))
,

(3.37)

for each x ∈ int(X) and n ∈ N, where w is the function given in Assumption 3.13.

Proof. Let x ∈ int(X) be fixed. By Lemma 3.5 and Theorem 3.12, it is known that vn ∈
C2(int(X);R) and it is a concave function. Now, from the first order condition and the
invertibility of Fa (see Assumption 3.6(b)), it follows that

−raF−1
a

(
x, fn(x)

)
= αE

[
v′
n−1

(
L
(
F
(
x, fn(x)

)
, ξ
))
L′(F(x, fn(x)), ξ)]. (3.38)

Since

v′
n(x) = W

(
x, fn(x)

)
, (3.39)



Journal of Applied Mathematics 11

and using the invertibility ofW(x, ·) (see Assumption 3.13), it follows that

fn(x) = w
(
x, v′

n(x)
)
. (3.40)

Finally, substituting (3.40) in (3.38), (3.37) is obtained.

Corollary 3.16. The optimal value function satisfies

V ′(x) = rx
(
x,w

(
x, V ′(x)

))
+ αE

[
V ′(L(F(x,w(

x, V ′(x)
))
, ξ
))
L′(F(x,w(

x, V ′(x)
))
, ξ
)]
Fx

(
x,w

(
x, V ′(x)

))
,

(3.41)

for each x ∈ int(X).

Proof. Let x ∈ int(X) be fixed. It is known that the VI functions satisfy the Euler equation
(3.37), so applying Lemma 3.3, it is obtained that

v′
n(x) −→ V ′(x), (3.42)

when n → ∞. Also from Assumption 3.13,w is a continuous function. Then, when n goes to
infinite in (3.37), it follows that the optimal value function satisfies (3.41).

4. A Linear-Quadratic Model

Consider that R
n = X = A = A(x), for each x ∈ X. The dynamic of the system is given by

xt+1 = Bxt + Cat + ξt, (4.1)

t = 1, 2, . . ., with x0 = x ∈ X given. B and C are invertible matrices of size n × n, {ξt} is
a sequence of iid column random vectors with values in R

n. Let ξ be a generic element of
the sequence {ξt}, assume that ξ has a density Δ with Δ ∈ C2, and E(ξ) equals vector zero.
Furthermore, it is assumed that if P is a symmetric negative definite matrix of size n × n,
then E[ξTPξ] is finite. In addition, it is assumed that the interchange between derivatives and
integrals is valid (see Remark 3.8). A particular case of this assumption can be found in [16,
page 315].

The reward function is given by

r(x, a) = xTQx + aTRa, (4.2)

where xT and aT denote the transpose of vectors x and a; Q and R are symmetric matrices of
size n × n, and both of them are negative definite.

Lemma 4.1. The linear quadratic model satisfies Assumption 2.3.
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Proof. Note that

Ox
γ :=

{
a ∈ A(x) | xTQx + aTRa ≥ γ

}
(4.3)

is a compact set, for each x ∈ X and γ ∈ R. Indeed, let x ∈ X and γ ∈ R. If any sequence
{an} of Ox

γ satisfies xTQx + aT
nRan → −∞, then there is a contradiction. Therefore Ox

γ is a
set bounded below. Moreover, since Q and R are negative definite, then Ox

γ is a set bounded
above. In addition, if {an} ⊂ Ox

γ so that an → a, then by the continuity of r, it follows that
r(x, a) ≥ γ , implying that Ox

γ is a closed set. Therefore, the reward function r is sup-compact.
Finally, note that r is a nonpositive and continuous function on K. So Assumption 2.3(a)
holds.

On the other hand, let U ∈ B(X), then

Q(U | xt = x, at = a) = Pr(xt+1 ∈ U | xt = x, at = a) =
∫
IU(Bx + Ca)Δ(s)ds, (4.4)

where IU denotes the indicator function ofU. Since the densityΔ is continuous, it is obtained
that the transition law Q is weakly continuous, that is, Assumption 2.3(b) holds.

Finally, let h ∈ F be defined as

h(x) = −C−1Bx, (4.5)

then the dynamic of the system is given by

xt = Bxt−1 + Ch(xt−1) + ξt−1 = ξt−1, (4.6)

for t = 1, 2, . . ., with x0 = x ∈ X.
It follows that

Eh
x

[
xT
t Qxt + h(xt)TRh(xt)

]
= E

[
ξTt Pξt

]
=: θ, (4.7)

where P := (Q + (C−1B)TR(C−1B)).
Since {ξt} is i.i.d, then

v(h, x) =
θ

1 − α
< ∞, (4.8)

where v is given by (2.1). Therefore, Assumption 2.3(c) holds.

Lemma 4.2. The linear quadratic problem satisfies Assumptions 3.4, 3.6, 3.9, and 3.13.

Proof. It is easy to obtain that r is a concave function and r ∈ C2, implying Assumptions 3.4(a)
and 3.6(a). Assumption 3.4(b) is satisfied using Condition C2 in [20]. Furthermore, observe
that

F(x, a) = Bxt + Cat, (4.9)

(x, a) ∈ K. Since C is an invertible matrix, then Assumption 3.6(b) holds.
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In addition, note that

L
(
y, s

)
= y + s, (4.10)

(y, s) ∈ X′ × S. Then it follows that L has an inverse R in the second variable, which is

R
(
y, u

)
= u − y. (4.11)

Therefore, Assumption 3.6(c) yields. Furthermore, since Δ ∈ C2, it results that
Assumption 3.6(d) holds. On the other hand, Assumption 3.9 is satisfied since A(x) = R

n for
each x ∈ X. Finally, it is obtained

W(x, a) = 2

(
Qx −

((
RC−1B

)T
)−1

a

)
, (4.12)

where W is defined in (3.17), implying that the inverse ofW(x, ·) is

w(x, z) =
((

RC−1B
)T

)−1(
Qx − 1

2
z

)
, (4.13)

which is a continuous function. Therefore, Assumption 3.13 is satisfied.

Lemma 4.3. VI functions for the linear quadratic problem satisfy

v′
n(x) = 2Knx, (4.14)

for each n = 1, 2, . . ., where

Kn = Q + αBT

(
Kn−1 −Kn−1C

(
R + CTKn−1C

)−1
CTKn−1

)
B, (4.15)

with K1 = Q.

Proof. Observe that the validity of Theorem 3.15 is guaranteed by Lemmas 4.1 and 4.2. Now,
since Q and R are negative definite, then

v1(x) = xTQx. (4.16)

By Theorem 3.15, it is known that v2(x) satisfies the Euler equation (3.37), and by
(4.13), it follows that

v′
2(x) = 2Qx + αBTE

[
v′
1

((
B + C

((
RC−1B

)T
)−1

Q

)
x − 1

2
C

((
RC−1B

)T
)−1

v′
2(x) + ξ

)]
.

(4.17)
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Since v′
1(x) = 2Qx and E(ξ) is equal to zero vector, then

v′
2(x) = 2

[
Q + αBTQ

(
B + C

((
RC−1B

)T
)−1

Q

)]
x − αBTQC

((
RC−1B

)T
)−1

v′
2(x), (4.18)

and by direct calculations, it is obtained that

v′
2(x) = 2K2x, (4.19)

where

K2 = Q + αBT

(
Q −QC

(
R + CTQC

)−1
CTQ

)
B. (4.20)

Now, suppose that v′
n(x) = 2Knx for n > 2, with Kn defined in (4.15). Then, by

Theorem 3.15 and (4.13), it is known that

v′
n+1(x) = 2Qx + αBTE

[
v′
n

((
B + C

((
RC−1B

)T
)−1

Q

)
x− 1

2
C

((
RC−1B

)T
)−1

v′
n+1(x)+ξ

)]
.

(4.21)

Then

v′
n+1(x) = 2

[
Q + αBTKn

(
B + C

((
RC−1B

)T
)−1

Q

)]
x − αBTKnC

((
RC−1B

)T
)−1

v′
n+1(x),

(4.22)

and using matrix algebra, it yields that

v′
n+1(x) = 2Kn+1x, (4.23)

where Kn+1 satisfies (4.15).

Lemma 4.4. The optimal policy for the linear quadratic problem is

f(x) = −α
(
R + CTKC

)−1
CTKBx, (4.24)

where K satisfies

K = Q + αBT

(
K −KC

(
R + CTKC

)−1
CTK

)
B. (4.25)
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Proof. Lemma 4.3 and (4.13) allow to obtain

fn(x) =
((

RC−1B
)T

)−1
(Q −Kn)x, (4.26)

for each n = 1, 2, . . . and x ∈ X. Moreover, the validity of Theorem 3.14 is guaranteed by
Lemma 4.2, that is, fn(x) → f(x), implying the convergence of the sequence {Kn} which,
according to its definition in (4.15), guarantees that its limit, denoted byK, must satisfy (4.25).
Finally using matrix algebra (4.24) is obtained.

5. Conclusion

In this paper a method to solve the optimal control problem is presented. This method
is based on the use of the Euler equation. The procedure proposed to solve the optimal
control problem is by means of an envelope formula and the use of the convergence of the
maximizers of values iteration functions to a stationary optimal policy. Future work aims to
study possible error bounds for approximating the maximizers toward the optimal policy.
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