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An easy-to-use procedure is presented for improving the ε-constraint method for computing
the efficient frontier of the portfolio selection problem endowed with additional cardinality and
semicontinuous variable constraints. The proposedmethod provides not only a numerical plotting
of the frontier but also an analytical description of it, including the explicit equations of the arcs
of parabola it comprises and the change points between them. This information is useful for
performing a sensitivity analysis as well as for providing additional criteria to the investor in
order to select an efficient portfolio. Computational results are provided to test the efficiency of the
algorithm and to illustrate its applications. The procedure has been implemented in Mathematica.

1. Introduction

The portfolio selection problem consists of finding an efficient portfolio in the sense of
obtaining a tradeoff between the expected return and the risk of the investment. Most
portfolio selection models are based on the original Markowitz model [1, 2], in which the
expected return of a given portfolio is measured by etx, where e is the vector of mean returns
of the assets and x contains the weight of each asset in the portfolio. On the other hand, the
risk is measured by xtVx, whereV is the covariancematrix. In general, thematrixV is positive
semidefinite, but we will assume that it is positive definite. This is the case if the returns of
the assets are linearly independent as random variables.

In these terms, the Markowitz model can be formulated as the following quadratic
programming problem, which we abbreviate as continuous variable problem (CP) as opposed



2 Journal of Applied Mathematics

to the formulation with semi continuous variables to be introduced later:

(CP)Min . xtVx

s.t. etx ≥ r,

1tx = 1,

x ≥ 0.

(1.1)

Here r is a minimum expected return specified by the investor. The portfolio selection
problem can be thought of in a more natural way as a biobjective problem: to minimize risk
and to maximize the expected return. Hence, an optimal portfolio selection must provide
an efficient portfolio, that is, a portfolio providing the maximum expected return for a given
admissible risk or—which is the same—the minimum risk for a given desired expected
return. The risk-return pairs of all the efficient portfolios form the so-called efficient frontier of
a given instance of the problem, and so the decision-support techniques designed to assist an
investor in selecting a portfolio consist of computing and analyzing the efficient frontier in
order to find the efficient portfolio best fitting the investor’s preferences about the trade-off
between acceptable risk and desired return.

The real world modern portfolio selection problems incorporate into the original
Markowitz model many different kinds of additional constraints, reflecting both market
conditions and further investor preferences (see, for instance, [3]). Here we address the
problem of dealing with the two kinds among these constraints which make the corre-
sponding model more involved from a computational point of view, namely, semicontinuous
variable constraints and cardinality constraints. The main feature of models incorporating
such constraints is that they are not quadratic (continuous) problems anymore, but become
mixed integer (binary) problems. As it will be shown, the efficient frontier of such problems
becomes more irregular and new specific computation techniques are required.

Moreover, these irregularities can make the optimal solution of the problem highly
sensitive to small variations of the parameters fixed by the investor which are always very
vague in nature. Cadenas et al. [4] deal with this issue by means of a fuzzy version of the
portfolio selection problem in the continuous variable case. The techniques developed in
the present paper make possible to apply those of [4] to the more general and complex
problems we are considering here, in which the sensitivity analysis of the solutions is even
more necessary. Sensitivity analysis on (continuous variable) quadratic problems has been
studied from different points of view. For the specific case of the portfolio selection problem,
the sensitivity on the estimations about expected returns and risk levels is dealt with, for
instance, in Goldfarb and Iyengar [5]. A general analysis of the optimal value function in
quadratic programming can be found in Hadigheh et al. [6]. See also Best and Grauer [7] for
the portfolio selection case.

2. On the Computation of the Efficient Frontier

It is well known [2, 6] that the efficient frontier of (CP) is a continuous curve comprising a
finite number of arcs of parabola. The usual way of determining it is the so-called ε-constraint
method (EC) (see [8]), which can be described as a two-stage procedure.
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(EC1) Calculate a sample of the efficient frontier, that is, solve the problem (CP) (or any
of its extensions described below) for a sufficiently large number of values of r,
ranging from theminimum to themaximumpossible return of an efficient portfolio,
which are calculated previously. So a “dotted” representation of the efficient frontier
is obtained.

(EC2) Interpolate the pairs (risk, return) by any standard interpolation technique to obtain
a continuous curve, or even a smooth one, depending on the specific interpolation
technique used.

This is what most commercial packages actually do (see [8] for a review of the current
software situation). Notice that what really matters is not just obtaining a picture of the
efficient frontier but knowing the efficient portfolio corresponding to each of its points. In
this way, the ε-constraint method also requires an interpolation of the efficient portfolios
calculated in EC1 stage, and this is usually done by linear (vectorial) interpolation, even if
the interpolation of EC2 has been nonlinear.

Although the ε-constraint method is themost extensively used procedure [8], it is clear
that it provides a limited knowledge of the efficient frontier. In order to take a well-founded
decision, it would be very useful to know the change points where an arc of parabola of the
efficient frontier joins the next one, since they correspond to different portfolio compositions
allowing a richer sensitivity analysis to be made than that provided by the Kuhn-Tucker
multipliers (if known) and offering the investor the possibility of choosing among portfolios
which are similar in risk and return but different in other characteristics (dividends, social
responsibility, etc.) that could be considered decisive when the differences on risk and return
are minimal.

In specific terms, an investor wishing for 4% of expected return would accept an
efficient portfolio providing just 3.999% if it had better characteristics than the efficient
portfolio corresponding to a return of 4%, for instance, if it had a substantially lower risk
or a composition that made it preferable for other reasons not reflected in the model because
of its secondary importance. This preferable alternative can exist if the initial choice of 4% is
near a change point of the efficient frontier.

That is why some attempts can be found in the literature to obtain techniques
for computing the exact efficient frontier, that is, for obtaining an analytical—instead of
numerical—representation of the frontier, providing the exact efficient portfolio for each risk
or return value, the equations of the arcs of parabola, the change points, the Kuhn-Tucker
multipliers, and so forth.Markowitz himself provides in [2] the so-called critical line algorithm,
a simplex-like procedure dealing with quadratic problems, which was distributed later in
an excel implementation called Optimizer, limited to problems with at most 248 variables
[9]. Later, Steuer et al. [8, 10, 11] proposed a completely different algorithm called MPQ
(multiparametric quadratic programming) and showed that it is evenmore powerful than the
previous method and can deal with very large instances of (CP). Finally, A. Niedermayer and
D. Niedermayer presented in [12] a revised version of the Markowitz algorithm, improving
MPQ.

However, all these exact methods are specifically designed for the problem (CP), but
when additional constraints are incorporated, the efficient frontier is no longer continuous,
and the set of possible risk-return pairs is not convex (see Figure 7 for a “typical” efficient
frontier in this context). No method is known for computing the exact efficient frontier of
such problems, and the ε-constraint method seems to be the only one available.
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Table 1: Comparison between the ε-constraint and the MPQ method (taken from [8]). The first column
contains the number of assets, the second one the average CPU-time in seconds for the ε-constraint method
calculating a 20-point sample of the efficient frontier (the numbers in italics being estimates), and the third
one contains the average CPU-time of the MPQ method calculating the exact efficient frontier.

n 200 400 600 800 1000 1200 1400 1600 1800
ε-constr 152.0 2069.3 24689 54853
MPQ 3.7 50.2 237.5 685.5 1108.2 2585.2 3223.5 5478.7 8351.8

Table 2: CPU-times (in seconds per point) of the EC1 stage of the ε-constraint method in the linear and
semicontinuous case as a function of the number of assets. The results are mean values obtained by
calculating ten 20-point samples corresponding to ten different sets of (real) data, except for the numbers
in italics, which have been obtained by solving a single instance of a single problem (computations have
been made with GAMS).

Number of assets 100 200 400 600 800 1000
Linear 0.24 0.96 13.27 61.30 172.3 388.2
SC 0.91 14.3 196 623

As Tables 1 and 2 (below) show, this method is useless in practice for large instances of
(CP), and a fortiori for large instances of the much more complex problem with the additional
constraints described. However, for medium-sized instances, the standard commercial
packages like GAMS [13] or LINGO [14] happen to be powerful enough to deal with the EC1
stage of the ε-constraint method in a few minutes (for instance, for a 100-asset sample, GAMS

takes about 7 minutes to calculate a 500-point sample). The purpose of this paper is to make
a proposal regarding the EC2 stage.

The point is that all the interpolation methods used to this end vary from the linear
interpolation (providing continuous nonsmooth curves) to other classical, relatively simple,
interpolation methods providing smooth curves (see [15]). The main disadvantage of these
methods is that they are good ways for approximating smooth curves by continuous or
smooth curves, but looking for a smooth curve is not a good idea when we know that the
true curve we are trying to capture is not even continuous.

More precisely, our proposal is an algorithm for calculating locally exact pieces of the
efficient frontier around each point in the sample calculated at the EC1 stage of the procedure.
It does provide a sequence of intervals together with the equations of the arcs of parabola
composing the efficient frontier in each interval, as well as a pair of vectors parametrizing the
corresponding efficient portfolio as a function of the expected return. It does not necessarily
obtain the exact efficient frontier, but it provides an analytical interpolation of a given sample
which is the best interpolation that can be obtained from it, in the sense that it is locally
exact, that is, it is exact in a neighbourhood of each point of the sample. Moreover, for small
problems it can be adapted to an enumeration algorithm providing the exact frontier.

3. The KTEF Procedure

Here we describe the kernel of the interpolation procedure that we propose as an alternative
for the EC2 stage in the ε-constraint method. It is applied to the following variant of (CP),
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where two vectors l and u of lower and upper bounds for the assets have been incorporated.
Hence, we have a continuous bounded variable problem (CBP):

(CBP) Min . xtVx

s.t. etx ≥ r

1tx = 1

l ≤ x ≤ u,

(3.1)

Since it is a continuous (quadratic) problem, its optimal solution could be obtained
theoretically by algebraically solving its Kuhn-Tucker conditions. In order to write them, we
need to introduce the Lagrangian function:

L = xtVx + λ
(
r − etx

)
+ μ
(
1 − 1tx

)
+ λt(l − x) + μt(u − x), (3.2)

where λ, μ are real numbers and λ, μ are vectors (λ, μ, λi and μi being the Kuhn-Tucker
multipliers of the problem). Then the Kuhn-Tucker conditions are:

primal feasibility: etx ≥ r, 1tx = 1, l ≤ x, x ≤ u,

dual feasibility: λ ≥ 0, λ ≥ 0, μ ≤ 0,

stationary point: 2Vx − λe − μ1 − λ − μ = 0,

complementary slackness: λ
(
r − etx

)
= 0, λi(li − xi) = 0, μi(ui − xi) = 0, ∀i.

(3.3)

We see that all of them are linear equalities or inequalities except for the complemen-
tary slackness ones. Each complementary slackness condition splits into two alternative linear
equations that, when combined, give rise to 2 ·4n systems of linear equations and inequalities,
where n is the number of assets considered (however, since the equations xi = li and xi = ui

cannot be satisfied simultaneously, they are immediately reduced to 2 · 3n).
That is why the explicit resolution of the Kuhn-Tucker conditions is not a viable

method, even for a small-sized problem of, for example, 10 variables, the amount of equation
systems to be solved being exponentially high. Consequently, this approach is not dealt with
in the literature except for very small instances of the problem (such as the two-asset case
[16]), or in the simplest case consisting of problem (CP) without the sign constraints, that is,
allowing short sales (see [17, 18]). One of themain ideas that we plan to exploit here is that if a
solution of the Kuhn-Tucker conditions for a given value of r is known (in our context, as the
result of the EC1 stage of the ε-constraint method), such a solution determines a specific case
of the complementary slackness conditions, and in turn a single system of linear equations
and inequalities that can be solved parametrically on r. The result is an exact piece of the
efficient frontier of (CBP).

We have called KTEF the algorithm that (partially) solves in this sense the Kuhn-Tucker
conditions to calculate a piece of the efficient frontier. In order to present it, we formulate
some preliminary considerations.

Let us call r− and r+ the minimum and the maximum expected return of an efficient
portfolio. For r > r+ the portfolio selection problem becomes infeasible, whereas for r < r−
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the optimal solution is the same as for r = r−. Hence, we can assume that r− ≤ r ≤ r+. Bearing
in mind that we are assuming the variance-covariance matrix V to be positive definite, we
know that for each level of return r− ≤ r ≤ r+ the problem has a unique optimal solution x
(with expected return exactly equal to r), which is its only Kuhn–Tucker point. This implies
that the first constraint in (3.1) is satisfied with an equality:

etx = r. (3.4)

Hence, when stating the Kuhn-Tucker conditions, we can take this equation as the first primal
feasibility condition and delete the first complementary slackness one.

For each variable xi, the pair of conditions λi(li − xi) = 0, μi(ui − xi) = 0 gives rise to
three possibilities:

xi = li, μi = 0, xi = ui, λi = 0, λi = μi = 0. (3.5)

Hence, in each case, the index set I = {1, . . . , n} splits into three disjoint subsets I =
L ∪U ∪N, where

L = {i ∈ I | xi = li}, U = {i ∈ I | xi = ui}, (3.6)

and N = I \ (L ∪U). Let us call one of these cases degenerate if it can provide a Kuhn-Tucker
point for at most one value of r (considered as a parameter of the model). Notice that every
case in which N contains at most one index is degenerate. Indeed, if N = ∅, the sets L and U
determine the whole portfolio x, so that r must be that determined by (3.4). If N = {i0}, the
value of xi0 is determined by equation

1tx = 1, (3.7)

and r is again determined by (3.4). Since the Kuhn-Tucker conditions cannot provide an
interpolation when the given case is degenerate, KTEF stops as soon as this situation is
detected, in particular if N contains less than two indices. Otherwise, from the sets L and
U, the KTEF procedure solves the Kuhn-Tucker conditions parametrically on r, that is, it
calculates two vectors g and h such that the optimal portfolio is

x = g + rh, (3.8)

for all r varying in a certain interval [rmin, rmix], also determined by KTEF. Moreover, it also
calculates the coefficients a, b, c such that the efficient frontier over the above-mentioned
interval is the arc of parabola described by the quadratic equation ar2 + br + c.
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Inputs V, e, l, u, L, U.
Step 1 SetN ′ = L ∪U,N = {1, . . . n} ∼ N ′, extract the vectors eN , eN ′

and the submatrices V0,W and Z (see (A.1) in the Appendix),
and the vector b of active bounds.

Step 2 If #(N) ≤ 1 the case is degenerate (STOP).
Step 3 Calculate the inverse matrix V−1

0 .
Step 4 Calculate A, B, C, D, E, F.
Step 5 Calculate λ0, λ1, μ0, μ1 according to (A.14).
Step 6 Calculate gN , hN according to (A.11), as well as

g = (gN,b), h = (hN, 0).
Step 7 Calculate λL0, λL1, μU0, μU1 according to (A.15).
Step 8 Define a set LB of lower bounds for r containing:

(i) (−EC +A +AF)/C,
(ii) (li − gi)/hi for i ∈ N provided that hi > 0,
(iii) (ui − gi)/hi for i ∈ N provided that hi < 0,
(iv) −λ0i/λ1i for i ∈ L provided that λ1i < 0, (where λ0 = (λL0, 0),

λ1 = (λL1, 0)),
(v) −μ0i/μ1i for i ∈ U provided that μ1i < 0 (where μ0 = (μU0, 0),

μ1 = (μU1, 0),
Step 9 Define rmin = max LB.
Step 10 Define a setUB of upper bounds for r containing:

(i) (li − gi)/hi for i ∈ N provided that hi < 0,
(ii) (ui − gi)/hi for i ∈ N provided that hi > 0,
(iii) −λ0i/λ1i for i ∈ L provided that λ1i < 0,
(iv) −μ0i/μ1i for i ∈ U provided that μ1i > 0,

Step 11 Define rmax = minUB.
Step 12 If rmin ≥ rmax the case is degenerate (STOP).
Step 13 Calculate a, b, c according to (A.19).

Outputs rmin, rmax, g, h, λ0, λ1, λL0, λL1, μU0, μU1, a, b, c.

Algorithm 1: The KTEF procedure.

See Algorithm 1 for the pseudocode of the KTEF-procedure. The details of the
calculations, together with the justification that it actually solves the Kuhn-Tucker conditions,
can be found in the Appendix. Notice that the output of the algorithm also contains the terms
λ0, λ1, λL0, λL1, μU0, μU1 which determine the Khun-Tucker multipliers. See the Appendix
for their specific meaning.

4. Computing the Efficient Frontier

In this section, we present a KTEF-based procedure, which we call KTEF-S (see Algorithm 2
for the pseudocode), for performing the second stage of the ε-constraint method (EC2)
for the portfolio selection problem endowed with semicontinuous variable and cardinality
constraints (additional linear constraints can also be included in our proposal without
modifying it essentially, but we will not consider it in practice for the sake of clarity).

Semicontinuous Variables

Portfolios with many small nonzero weights are usually considered unacceptable by many
investors and, on the other hand, the investor may also impose upper bounds for the sake of
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Inputs V̂, ê, l̂, û, {(xj ,yj)}kj=1.
For each j = 1, ...,k

(a) Let xj, ej, lj, uj be the vectors obtained from xj, ê, l̂, û, respectively, by deleting
the components corresponding to indexes i such that yji = 0.
(b) Calculate Lj and Uj from xj according to (3.6)

End
Eliminate the terms in the sequence {(xj ,yj)}kj=1 giving rise to repeated terms in the

sequence {(yj , Lj ,Uj)}kj=1.
For each j = 1, ...,k

(a) Let Vj be the submatrix of V̂ obtained by deleting the rows and columns for
which yji = 0.
(b) Call KTEF (Vj, ej, lj, uj, Lj ,Uj), which provides an interval [rmin j , rmax j]and
the coefficients (aj , bj , cj) of the equation of an arc of parabola.

on error (KTEF has stoped in a degenerate case) discard the point.
End
(i) Define the functions Rj(r) given by (4.3).
(ii) Let Points = {rmax j |j = 1, ..., k} ∪ {rmin}, where rmin is the minimum of all {rmin j}j .

For j = 1 to k − 1
For i = j + 1 to k

(a) Let Roots be the set of real roots of (4.4).
(b) Append to Points any r ∈ Roots satisfying (4.5).
(c) Let Roots be the set of real roots of (4.6)
(d) Append to Points any r ∈ Roots satisfying rmin j ≤ r ≤ rmax j .

Next i.
Next j.

(i) Order the vector Points and eliminate repeated entries.
(ii) Let ml = (Pointsl + Pointsl+1)/2 for each l.
(iii) Calculate the vector T such that Tl is the index j where minj Rj(ml) is attained.
(iv) Let Good = {T1}, let Change = {rmin T1}.
For i = 1 to the length of T

If Ti /= Ti+1 append toGood the index Ti+1 and append to Change
the value Pointsi+1

Next i.
(i) Append to Change the last point of Points.
(ii) Set (ai, bi, ci) = (agi , bgi , cgi) (where gi is a short forGoodi).
Outputs Change, {(ai, bi, ci)}mi=1.

Algorithm 2: The KTEF-S algorithm.

diversification. Since it would be absurd to force the portfolio to contain a minimum amount
of each possible asset, we need to declare each weight xi as a semicontinuous variable, that
is, allow it to take the value 0 or, in another case, to vary within a given interval [li, ui].

Cardinality Constraints

They appear as diversification constraints, introducing into the model an investor’s
preferences about how many assets an acceptable portfolio must contain, or even how many
assets it must contain from several fixed groups of assets.
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Semicontinuous variables can be incorporated into the model by means of auxiliary
binary variables, obtaining the following semicontinuous variable problem (SCP):

(SCP)Min . R = xtV̂x

s.t. êtx ≥ r

1tx = 1

l̂iyi ≤ xi ≤ ûiyi, 1 ≤ i ≤ n,

yi ∈ {0, 1}.

(4.1)

Here yi takes the value 1 if the ith asset appears in the portfolio and 0 otherwise.
We have added hats to the problem data in order to keep the notation of KTEF when called
later. The binary variables yi can also be used to incorporate the cardinality constraints. For
instance, we can impose

m ≤
n∑

i=1

yi ≤ M, (4.2)

where m and M are, respectively, a lower and an upper bound on the number of assets
composing the portfolio. Similarly, some bounds can be imposed on the number of assets
taken from a specific subset. Any such cardinality constraint (i.e., any condition on the binary
variables yi) can be added without altering our method at all.

The input of the KTEF-S algorithm is the output of the first stage of the ε-constraint
method (EC1), namely, a dotted sample {(xj ,yj)}kj=1 of the efficient frontier calculated by
means of any suitable procedure (for medium-sized problems, many commercial packages
like GAMS or LINGO can be used).

For each point (xj , yj), we apply KTEF to the instance Py of the problem (CBP) obtained
by removing the variables xi from (SCP) (with any set of additional cardinality constraints)
such that yi = 0. This provides an interval [rmin j , rmax j] and the coefficients (aj , bj , cj) of the
equation ajr

2 + bjr + cj of an arc of parabola, which is a piece of the exact efficient frontier of
the problem Py. In order to compare the arcs defined on the possibly overlapping intervals
[rmin j , rmax j], we extend them to the functions

Rj(r) =

⎧
⎪⎪⎨

⎪⎪⎩

ajr
2
min j + bjrmin j + cj if r < rmin j ,

ajr
2 + bjr + cj if rmin j ≤ r ≤ rmax j ,

K if rmax j < r,

(4.3)

where K is a large enough number (greater than any possible level of risk). Function Rj(r)
provides the lowest level of risk that we can find for a given level of return r from the fact
that we know that (xj ,yj) is an efficient portfolio for (SCP) (where R(r) = K means that we
cannot find any efficient portfolio from this fact). The best risk we can find for a given r is
R(r) = minjRj(r). The last part of the KTEF-S calculates the function R(r), which is the best
approximation to the efficient frontier that we can get from the sample.
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We want to calculate the function R(r) = minjRj(r) expressed as a sequence of lines
and arcs of parabola on a respective sequence of intervals. The extreme points of these
intervals (i.e., the points where the minimum of the functions Rj changes from being attained
at one index j0 to being attained at another one j1) can be of three different kinds.

(1) The intersection point of two arcs of parabola corresponding to two different
sample points, that is a point r satisfying

air
2 + bir + ci = ajr

2 + bjr + cj . (4.4)

Notice that it is also necessary for r to belong to the domains of both parabolas, that
is,

rmin i ≤ r ≤ rmax i, rmin j ≤ r ≤ rmax j . (4.5)

(2) The intersection point of an arc of parabola of an Rj(r) with the first constant piece
of another Rj ′(r), that is, a point r satisfying

ajr
2 + bjr + cj = aj ′r

2
min j ′ + bj ′rmin j ′ + cj ′ , (4.6)

with rmin j ≤ r ≤ rmax j , j /= j ′.

(3) The end point of an arc of parabola, that is, one of the points rmax j .

Figure 1 shows an example of each type of change point. The KTEF-S procedure
calculates the (finite) set Points of all points of type 1, 2, 3, so that the set of all change points
will be found as a subset of Points. For technical reasons, we also include the minimum rmin

of all rmin j . To select the subset Change of change points from the set Points, we order Points
= {p1, p2, . . . , ps} and calculate the middle points mk = (pk + pk+1)/2. Let tk be the index j
where the minimum minjRj(mk) is attained. Since mk < pk+1 < mk+1, if tk /= tk+1, there must
be a change point between mk and mk+1, which should be pk+1, since it is the only member
of Points in that interval. Hence the set Change can be obtained as the set of the points pk+1
such that tk /= tk+1. Notice that we never check if p1 really is a change point, but we clearly
have p1 = rmin, which cannot be a change point. We also define a set Good containing the
indexes tk+1 such that tk /= tk+1. Hence, if we enumerate the elements of Change as {r1, r2, . . .}
and those ofGood as {g1, g2, . . .}, we have that, for r ∈ ]ri, ri+1], theminimumR(r) = minjRj(r)
is attained at Rgi(r). The data corresponding to indexes outside Good can be dismissed.

The output of the procedure consists of the sequence {ri} of change points together
with the sequence {(ai, bi, ci)} of coefficients of parabola corresponding to the efficient frontier
over the interval ]ri, ri+1].

5. Applying the KTEF Procedure to the Continuous Case

Although there are more efficient methods for computing the efficient frontier of a linear
constrained (continuous) portfolio selection problem, it should be mentioned that in this case
KTEF provides an interesting alternative to the usual ε-constraint method (i.e., the two-stage
procedure described in the introduction) which also provides the exact efficient frontier.
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Figure 1: Types of change points.

Inputs V, e, l, u
uses H, R, KTEF

Set P = 0, J = {[rmin i, rmax i]}Pi=1 = an empty sequence,
S = ∅
Set r− = eH(V, e, l, u, 0), r+ = R(V, e, l, u)

(1) Set k = 1, a = r−.
While k ≤ P anda = rmin k do

k = k + 1, a = rmax k
Ifa < r+ then

If k > P then b = r+ else b = rmin k

r = (a + b)/2
else stop

(2) Set x = H(V, e, l, u, r)
Calculate L andU from x according to (3.6)
Call KTEF(V, e, l, u, L, U)

onerror (KTEF has stoped in a degenerate case)
set r = (a + r)/2go to (2)
Set S = S ∪ {ktef(V, e, l,u, L,U)}
Set P = P + 1
Set J = J ∪ {[rmin, rmax]} (rmin, rmax are part of the
output of KTEF). The new interval should be inserted
in the right place to preserve the increasing order of the
sequence J = {[rmin i, rmax i]}Ni=1

goto (1)
Output S

Algorithm 3: The KTEF-C algorithm.

The idea is that instead of first calculating a sample for an arbitrary sequence of
expected returns, the KTEF algorithm can guide the selection of the sample so that the number
of calls to the solver that calculates the sample points is reduced to the minimum necessary
to get the exact frontier.

Let us describe this procedure, whichwe have called KTEF-C, which applies KTEF to the
continuous case (see Algorithm 3 for the pseudocode). Besides calling the KTEF procedure,
it also uses a subroutine H whose inputs are the data V, e, l, u of the model together with a
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level of return r andwhose output is the efficient portfolio x for that r. As we havementioned,
the procedures implemented in the usual commercial standard optimization packages such
as GAMS or LINGO are widely used for sampling efficient frontiers and they are capable of
dealing with any reasonable problem.

At the beginning of the KTEF-C procedure, another subroutine R is called once in order
to calculate r+ as the maximum return that can be attained on the feasible set of (3.1)without
the first constraint.

The output of the KTEF-C algorithm is a set S containing a sequence of outputs of KTEF,
that is, of the form

(
rmin, rmax,g,h, λ0, λ1,λL0,λL1,μU0,μU1, a, b, c

)
, (5.1)

where the intervals [rmin, rmax] are almost disjoint (they have at most their endpoints in
common) and cover the whole interval [r−, r+] of the efficient frontier, the corresponding
vectors x = g+rh parametrize the efficient portfolios, and the parabolas ar2+br+c parametrize
the efficient frontier. The rest of the data parametrize the Kuhn-Tucker multipliers.

Notice that the loop starting in the line labeled (2) must end after a finite number
of iterations, since there is a finite number of possibilities for L and U and each degenerate
case corresponds to at most one value of r. Hence, there is just a finite number of possible
values for r giving rise to a degenerate case. In practice, the probability of choosing an r
corresponding to a degenerate case is very small, so that the error case will never hold.

Each time the main loop (starting in (1)) is executed, a new nondegenerate interval
[rmin, rmax] is found. Since the number of such nondegenerate intervals is finite (because the
number of nondegenerate possibilities for the sets L andU is also finite), the KTEF algorithm
always stops, and the number of iterations is exactly the number of nondegenerate intervals
composing the efficient frontier, that is, the least necessary number of iterations needed to
compute the whole efficient frontier.

Finally, we note that the non-degenerate intervals cover the whole interval [r−, r+],
since if C denotes the union of such intervals, then C is a closed subset of [r−, r+] whose
complementary set is finite, and hence closed. The connectedness of the interval implies that
C = [r−, r+], that is, that all the Kuhn-Tucker points appear in the non-degenerate cases. That
is why the degenerate cases can be disregarded.

6. Testing the Algorithms

In this section, we present some computational results in order to test the efficiency of our
proposed algorithms. We have used a database of historical data of 1000 assets taken from
the Russell 2000 stock market index [19]. The percentage of zero entries of all the covariance
matrices considered in our computational proofs oscillates between 10% and 18%, so they are
far from being sparse. The EC1 stage of the ε-constraint method has been handled with GAMS

and our algorithms for the EC2 stage have been implemented in Mathematica.
For the continuous case, it is well known (see Section 1) that there are much more

efficient procedures than ε-constraint. For instance, in Table 1 we reproduce a table from
[8] comparing the ε-constraint method with the MPQ method proposed by Steuer, Qi and
Hirschberger, which calculates the exact efficient frontier. We see that the CPU-times of
the MPQ method are substantially better and also that the ε-constraint method becomes
inviable for large instances of the problem. We also refer to (Table 12.1) in [12], where two
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Table 3: CPU-time in seconds per case processed by the KTEF-S algorithm. The results are mean values
obtained from ten 30-point samples corresponding to ten different sets of (real) data (computations have
been made withMathematica).

Number of assets 20 30 40 50 60 70 80 90 100 200
CPU-time 0.032 0.023 0.022 0.025 0.03 0.025 0.026 0.029 0.037 0.033

variants of the ε-constraint (one using the so-called “Wolfe-simplex algorithm” and a second
one using Matlab) are compared with MPQ, Markowitz’s critical line algorithm and the
improved version of the latter proposed by those authors. The largest case considered for the
ε-constraint method corresponds to a 500-asset instance and the reported Matlab CPU-time
is 141.6 seconds per point.

On the other hand, for the semicontinuous case no alternative is known, and the CPU-
times of solving mixed integer programs are much greater. Table 2 contains the mean CPU-
time per point we have obtained for some instances with a different number of assets in the
continuous and semicontinuous case. We have obtained better times than those of [8] for the
continuous case (but presumably the MPQ results would be similarly improved by a faster
computer and the CPU-times for MPQ in Table 1 are better than ours in any case). In the
semicontinuous case, the EC1 stage of the ε-constraint method becomes inviable for 600-asset
instances of the problem, and barely useful for 400-asset instances (for which a, say, 20-point
sample requires about three and a half hours of computations).

However, these considerations concern to the EC1 stage of the ε-constraint method
whereas our algorithms deal with the EC2 stage. Hence, once it is assumed that the ε-
constraint method is to be used (because of its simplicity in the continuous case or out
of necessity in the semicontinuous one), the only possible comparison would be with
the usual interpolation methods. These methods vary from the simple piecewise linear
interpolation (i.e., joining a given sequence of dots with straight lines) to methods that are a
bit more sophisticated, guaranteeing that the resulting curve will be differentiable (like spline
interpolation [15]). These methods are implemented in almost every commercial package,
their computational time is negligible, and it is even disregardedwhen computing CPU-times
of the ε-constraint method. Thus, it is obvious that our algorithms for interpolating a given
sample of the efficient frontier by means of the Kuhn-Tucker conditions will take necessarily
more time than the usual ones, which simply adjust small degree polynomials. Hence, we can
only test our algorithms in the sense of granting that, for those instances of the problem for
which the ε-constraint method is viable, the CPU-time added by our interpolation method is
acceptable in view of the advantages it provides.

In this way, Table 3 contains the CPU-time which needs the KTEF-S algorithm to
process one case (i.e., a given choice of sets L, U, and N) as a function of the number of
assets. We need to deal with “time per case” because several points of a given sample can
correspond to the same case, and hence even starting with equal length samples, the number
of processed cases may differ.

Our computations show that the CPU-time of KTEF-S depends polynomially
(quadratically, in fact) on the number of cases arising from the input sample. For instance,
Figure 2 shows that this function fits almost exactly its quadratic least square approximation
in a 50-asset example. We have observed the same almost exact fitting in all cases we have
checked. All the obtained parabolas have a very small second derivative. Table 4 shows some
equations of the interpolating parabolas we have obtained.
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Table 4: Some least-square approximation of the CPU-time (in seconds) of KTEF-S as a function of the
number of processed cases.

Number of assets Least-square quadratic approximation
20 0.056240 − 0.0101667n + 0.00111423n2

50 0.629131 − 0.0499573n + 0.00111115n2

100 0.051426 − 0.0008316n + 0.00088099n2

Table 5: Number of intervals (arcs of parabola)/portfolio compositions found from different samples for
several instances of (SCP).

assets Size of the sample
50 100 200 500 1000 3000 5000

30 15 10 19 13 20 13 21 13 22 13 27 14 30 14
30 23 15 37 20 51 22 62 25 67 26 73 26 80 26
50 29 17 37 18 46 20 49 22 51 22 58 23 61 23
50 39 26 59 27 73 28 89 29 97 30 103 32 105 32
50 33 17 42 19 52 23 63 25 65 25 69 25 70 25
88 31 17 47 20 61 24 77 28 84 28 96 29 100 30
100 33 25 44 29 57 33 63 35 65 35 72 36 89 36
100 20 15 23 17 27 18 33 20 34 21 36 21 38 21

Let us also remark that the CPU-time corresponding to the calls to KTEF is just a minor
percentage of the total CPU-time. For instance, from the 6.46 seconds used to process the 98
different cases generated from a 100-point sample in the instance used to generate Figure 2,
only 0.11 correspond to the calls to KTEF. The rest corresponds to the computation of the
change points.

7. Analysis of the Efficient Frontier

In this section, we present some examples illustrating the possibilities of analyzing the
efficient frontier provided by our algorithms. The main idea is that when the efficient frontier
is calculated by means of any of the usual interpolation methods, that is, mathematical
techniques for obtaining in the simplest way a continuous or even smooth curve from a
finite set of points, the only economical information contained in the result is a finite set
of efficient portfolios, since the interpolating arcs have no economical meaning. This suffices
to plot the frontier with enough accuracy so that an investor can choose a level of return
taking into account the corresponding risk level. On the other hand, the interpolations
made by means of our algorithms have a precise economical meaning since, starting from
a sufficiently large sample of the frontier, they provide the exact frontier, specifically, a
piecewise parametrization of the infinite set of efficient portfolios and in particular the change
points, that is, the return values where the composition of the efficient portfolio changes.

This leads to the question of howmany points are necessary in order to obtain the exact
efficient frontier. In the continuous case, the KTEF-C algorithm determines the exact number of
points that are needed, whereas in the semicontinuous case we cannot say anything a priori.
Table 5 contains the number of arcs of parabola and the number of portfolio compositions
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Figure 2:CPU-time in seconds taken by KTEF-S as a function of the number of processed cases for a 50-asset
instance, with its least-square quadratic approximation superimposed.

found from different samples for different instances of (SCP). We have checked 50 different
instances (they are taken from the database used in previous section, except for the 88-asset
case, which is considered in Example 7.1) of several sizes but, since there is no obvious way
of aggregating the results, we have opted for showing a few representative cases. Notice
that Table 5 shows that the complexity of the frontier is not proportional to the number of
assets.

In all the cases, we have considered the difference on the number of compositions
found from a 1000-point sample and that found from a 5000-point sample does not exceed
two additional cases. This means that in the frontier calculated in the first case, there are a
few (very small) intervals where a slightly better composition exists. It is clear that finding
these small corrections does not compensate the additional computational effort required
by the EC1 stage of the ε-constraint method (we note also that the number of intervals
found does not seem to stabilize, but this concerns to the set of constraints being active
for each return level, which is of minor interest for an investor) . Hence, our computational
results indicate that a 1000-point sample is a reasonable size, at least for 100-asset instances.
However, we must remark that, in practice, it is more convenient to draw a rough version of
the efficient frontier so that the investor can choose the particular zone where he or she would
invest, according to the tradeoff between risk and return he or she considers acceptable,
and then calculate a, say, 200- or 500-point sample of that particular zone, providing easily
a more accurate description of it that what we could obtain for the whole frontier from
a 5000-point sample. In this way, larger instances of SCP can be handled in a reasonable
time. In any case, the fact is that postprocessing the sample by using the KTEF-S procedure
instead of a typical interpolation offers many advantages with only a small additional CPU-
time. The most immediate one is obtained at the very first step of the algorithm, where the
sample is filtered to retain just one point for each Kuhn-Tucker complementary slackness
case. For instance, as Table 5 shows, a 1000-point sample is immediately reduced to a
subsample with less than 100 points without any loss of information at all, since the Kuhn-
Tucker conditions applied to the reduced sample provide a representation of the efficient
frontier which exactly interpolates all the removed points. Hence, our algorithm makes the
previously discussed convenience of working with medium-sized or large samples viable.
Moreover, our algorithm not only greatly simplifies the output of the standard ε-constraint
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Figure 3: The exact efficient frontier of a problem with 88 securities.

method, but in fact it also structures and analyzes it, providing a functional structured
efficient frontier, with exact values for the equations of the arcs of parabola, change points,
Kuhn-Tucker multipliers, and so forth. Let us illustrate these facts by means of two specific
examples.

Example 7.1. We have computed the efficient frontier of a portfolio selection problem with
88 assets. We have used monthly data over the period January 2001–December 2008 from
the Spanish Stock Exchange Interconnection System (SIBE) [20], which integrates the four
existing security exchanges in Barcelona, Bilbao, Madrid, and Valencia (for the experiment
we have used 88 assets that have quoted every month from January 2001 to December
2008. Specifically, the assets are the following: ABE, ABG, ACS, ACX, ADZ, AGS, ALB,
AMP, ANA, AND, ASA, AZK, BAY, BBVA, BDL, BES, BKT, BMA, BTO, BVA, CAF, CEP,
CPF, CPL, CUN, DGI, DIN, EAD, ECR, ELE, ENC, EVA, FAE, FCC, FER, FUN, GAM, GAS,
GCO, GUI, IBE, IBG, IDO, IDR, ITI, JAZ, LGT, MAP, MCM, MDF, MLX, MVC, NAT, NEA,
NHH, OHL, PAC, PAS, PAT, POP, PRS, PSG, PVA, RDM, REE, REP, RIO, SAN, SED, SNC,
SOL, SOS, SPS, STG, SYV, TEC, TEF, TST, TUB, TUD, UBS, UNF, UPL, URA, VID, VIS, ZEL,
ZOT).

Continuous Case

We have considered a continuous instance in which each weight is bounded in the interval
[0, 0.2]. Figure 3 shows the exact efficient frontier resulting. It comprises 32 arcs of parabola
over the intervals [0.00809875, 0.0237277] of expected returns and [0.000491689, 0.00209849]
of risk levels.

After applying our algorithm, not only do we have the picture of the efficient frontier
but also all the related data about the efficient portfolios and Kuhn-Tucker multipliers. This
information can be used to perform a sensitivity analysis of a given solution. For instance,
if we set a return level r = 0.01, the optimal portfolio contains the following 16 assets:
BBVA, BDL, CAF, CEP, CUN, IBE, POP, REE, RIO, SOS, STG, TEF, TST, UNF, UPL, and
ZEL. However, in Table 6, we see that this solution is only valid over a very small interval



Journal of Applied Mathematics 17

Table 6: Sensitivity analysis of an efficient portfolio.

Return Sensitivity interval Changes in the portfolio Efficient frontier
[0.87242, 0.937596] BBVA exits 2.39395r2 − 0.0380155r + 0.000642

0.9% [0.937596, 0.942124] IBG enters 2.11613r2 − 0.0328059r + 0.000617
[0.942124, 0.97665] MCM enters 3.17967r2 − 0.0528456r + 0.000712

0.99% [0.97665, 0.995887] AND enters 3.3637r2 − 0.0564403r + 0.000729
1% [0.995887. 1.000181] 3.63485r2 − 0.061841r + 0.000756
1.01% [1.00018, 1.01099] None 2.92292r2 − 0.0475998r + 0.000685
1.1% [1.01099, 1.12637] ITI enters 2.8056r2 − 0.0452276r + 0.000673
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Figure 4: Number of assets in the optimal portfolio.

of returns, namely [0.995887, 1.00018]. For r in this interval, the efficient portfolio is given by
the expression x = g + rh, where

g = {0.21428,−0.105007,−0.122125,−0.0503289, 0.2, 0.131733, 0.207833, 0.024451, 0.2,
−0.0202532, 0.0376479, 0.0820534, 0.0968558, 0.0419524, 0.0223051, 0.0386029},

h = {−13.816, 11.0731, 13.6804, 15.9865, 0,−9.47368,−18.3797, 2.93055,
0, 12.0842, 2.2981,−6.22358,−3.76073,−3.91436, 0.587565,−3.07234}.

(7.1)

For a return level r = 0.9%, the efficient portfolio differs from the original one in four
assets. This could be checked just by simply solving the problem for this value of r. However,
our additional computations allow us to trace the changes in the efficient portfolio as the
return decreases. This is shown in Table 6, where we see that assets AND, MCM, and IBG
enter the portfolio successively and that finally asset BBVA exits. On the other hand, the
number of assets in the efficient portfolio also grows if we increase the return level, but this is
just a local behavior, since, as Figure 4 shows, the number of assets globally decreases as the
return increases. Our method guarantees that the analysis is exact and we can see that there
are many unstable portfolios in the sense that a small change in r may produce a change in
the composition of the portfolio. This analysis can also be used to study the convenience of
introducing cardinality constraints into the model. Moreover, the equations parametrizing
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Figure 5: The whole efficient frontier of the problem and a zoom of a part of it.

the efficient frontier (also given in Table 6) provide a sensitivity analysis of the risk with
respect to the return level.

Semicontinuous Case

Next we deal with the same data, but considering semicontinuous variables in the range
[0.05, 0.2] and cardinality constraints specifying that the total number of assets in a portfolio
must vary within the range 5–10. We apply KTEF-S to equally spaced samples of the efficient
frontier. The number of intervals found is indicated in Table 5. Figure 5(a) shows the whole
efficient frontier calculated from a 600-point sample. The calculations from a 30-point sample
provide an almost equal picture, but the larger the sample, the more accurate is the structure
we obtain. For instance, Figure 5(b) shows an enlargement of the neighborhood of the return
value r = 0.0229. We see that the convexity and the continuity that the frontier shows on a
large scale fail when examined more closely, and these details are missed when considering
a smaller sample.

We note that the economic theory about the portfolio selection problem relies partially
on the continuity and convexity of the frontier, which is granted in the continuous case, but
fails in the semicontinuous one, and hence it is relevant to know to what extent it can fail in
the specific zone of the frontier where the investor intends to choose an efficient portfolio.
On the other hand, if there are different portfolio compositions with similar levels of risk
and return, an investor could prefer one of them for other reasons beyond these two values.
Hence, knowing the variation in portfolio structures along the frontier is also relevant to
making a sensitivity analysis of the problem.

Example 7.2. We now consider five assets from the historical data introduced by Markowitz
[2], namely, American Tobacco, AT&T, United States Steel, General Motors and Atcheson,
and Topeka & Santa Fe. We have established the bounds 0.1 ≤ xi ≤ 0.3.

Continuous Case

For this kind of small problem there is no need to call any optimization package. We can
apply KTEF to an enumeration of all possible cases for the sets L and U. More precisely, from
the 35 = 243 cases, many of them can be removed a priori since they are degenerate leaving
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Table 7: Non-degenerate cases.

L U [Rmin, Rmax] [Rmin, Rmax] Frontier equation
{4, 5} {2} [0.103289, 0.107478] [0.0400728, 0.0426276] 11.6675r2 − 1.84921r + 0.1066
{5} {1, 2} [0.107478, 0.113689] [0.0426276, 0.047546] 17.0478r2 − 2.97854r + 0.165827
{3, 5} {2} [0.113689, 0.115711] [0.047546, 0.0505051] 122.894r2 − 26.7285r + 1.49786
{3, 5} {4} [0.115711, 0.119233] [0.0505051, 0.057026] 27.5594r2 − 4.62357 + 0.216509
{3} {1, 4} [0.119233, 0.1236] [0.057026, 0.067734] 84.3641r2 − 18.0342 + 1.00793
{2, 3} {3} [0.1236, 0.124444] [0.067734, 0.0743335] 2171.02r2 − 530.695 + 32.495

Table 8: An optimal solution.

Risk/return Investment Nonnull multipliers
r = 0.11 x1 = x2 = 0.3 λ = 0.771973
R = 0.0444663 x3 = 0.159392 λ1 = −0.0032799

x4 = 0.140608 λ2 = −0.0369954
x5 = 0.1 μ5 = 0.00427664

just 131 cases. After applying the algorithm, only 6 provide a piece of the efficient frontier.
Figure 6 shows the efficient frontier of the problem in which the six intervals are highlighted
with dots. These are listed in Table 7 together with their corresponding sets L and U, as well
as the equation of the corresponding piece of the efficient frontier.

From these equations, we can calculate the derivative of the frontier or, alternatively,
notice that it is just the Kuhn-Tucker multiplier λ(r) associated with the return constraint,
which is also given by the algorithm. This derivative allows us in turn to study the
smoothness of the frontier. Figure 6 shows also the derivative in the present example, and
we see that it is discontinuous at all the points where the equation changes, which means that
the efficient frontier is not smooth at these points. For instance, the left and right derivatives
at the first change point are, respectively

R′−(0.107478) = 0.658789, R′
+(0.107478) = 0.685976. (7.2)

The difference between them is small, so the discontinuity could be difficult to detect
without an exact procedure. On the other hand, the jumps can also be large, as at the last
change point, where we have

R′−(0.1236) = 2.8206, R′
+(0.1236) = 5.98189. (7.3)

This means that starting from a return level near to r = 0.1236, the risk of the optimal
portfolio is especially sensitive to a small change in r.

The algorithm allows us to calculate the Kuhn-Tucker multipliers. For instance, Table 8
gives the optimal solution for a desired return r = 0.11. It contains the optimal values for the
variables xi as well as the minimum risk R = 0.0444663. The last row contains the (nontrivial)
multipliers, for example λ is the multiplier of the return constraint, that is, the ratio between
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Figure 6: The exact efficient frontier of a five-asset problem (a) and its derivative (b).
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Figure 7: (a) The true efficient frontier. (b) The true frontier and a standard approximation.

the increase in the minimum risk and the increase in the specified desired return. Notice that
the multiplier μ of the capital constraint is of no interest since the constant 1 on the right-hand
side cannot be modified.

Semicontinuous Case

We have considered semicontinuous variables with bounds l = (0.2, 0.3, 0.2, 0.3, 0.2), u =
(0.6, 0.6, 0.6, 0.6, 0.6) and the cardinality constraint (4.2) with m = 2, M = 5. Applying KTEF-S
to an equally spaced 20-point sample, we get the frontier shown in Figure 7(a). We know that
this is in fact the true frontier since we obtain the same result if we apply the exact algorithm
consisting of changing the first loop of KTEF-S by an enumeration of all the possibilities forV,
e, l, u, L,U. Figure 7(b) shows the true frontier together with a standard interpolation of the
sample, and we see that there are some remarkable differences. The frontier consists of 12 arcs
of parabola with 19 change points, such that the interval between two of them corresponds
to an arc or to a vertical line.
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8. Conclusions

Solving the Kuhn-Tucker conditions is a theoretical way of tackling the portfolio selection
problem which can be used in very restrictive cases in practice, since it gives rise to
nonacceptable exponential CPU-times. Our results show that, however, the Kuhn-Tucker
conditions can be efficiently used as an interpolation procedure for the final stage of the ε-
constraint method, since the CPU-times remain quadratic and, moreover, they turn out to be
very small when compared with the CPU-time needed for the first stage.

The interpolation algorithms proposed here are very simple conceptually, and they can
be implemented by short codes in any general purpose application like Mathematica, Matlab,
and so forth (the most complicated operation to perform is the computation of an inverse
matrix). This feature, together with the popularity of the ε-constraint method for graphing
efficient frontiers, makes our method competitive even with the existing alternatives for the
continuous case, since they require more complex implementations not easily available for
the economist user that is not a specialist in computation tasks, which, with the aid of our
proposal, can get much more than a graph with a relatively small additional CPU-time.

Moreover, our interpolation method has been shown to remain effective when applied
to problems with semicontinuous variable and cardinality constraints. For this kind of
problems, the ε-constraint is the only known applicable method, and it requires large samples
to provide faithful graphs of the frontier. We have shown that, by means of our nontrivial
interpolation method, large samples of about 1000 points of the efficient frontier are reduced
to a set of less than 100 intervals with its corresponding equations, containing even more
information than the original sample.

In general, our procedure provides a simple, structured, analytical expression for the
efficient frontier, which is easier to handle than the sample it is calculated from.

For small-sized problems, the analytical description of the frontier obtained with our
method is exact, whereas for medium-sized instances, we have shown that a 1000-point
sample of the whole frontier (or a proportionally reduced sample of a part of it) provides
a reasonable approximation of the exact frontier in the sense that larger samples provide very
few additional portfolio compositions (valid for very short intervals) that do not compensate
the additional computational effort.

In the continuous case, our method determines the minimal sample that is needed to
obtain the exact frontier.

For very small instances (with no more than seven or eight assets), it can be adapted
to an exact enumeration algorithm (not to be confused with KTEF-C or KTEF-S) that does not
require any sample of the efficient frontier. This can be useful for academic purposes.

We have illustrated by two examples the advantages and possibilities provided by our
proposal. In general, the computational results show that the shape of the efficient frontier is
different in small and medium-sized instances.

(i) For small-sized problems (notice that many private investors are interested
in selecting portfolios from a small-sized set of assets), although they are
computationally simple to handle, the shape of the efficient frontier can present
many irregularities (discontinuities and sudden changes of slope) which must be
taken into account since the risk of an efficient portfolio can be very sensitive to the
selected expected return. Hence, the information provided by our method could
make an investor move his or her choice to a safer or a more profitable one.
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(ii) As the number of assets increases, the efficient frontier becomes more regular at
a large scale, and hence its “microscopic” irregularities are not relevant. However,
very small changes in the selected expected return can alter the composition of
the corresponding optimal portfolio. In this case, our procedure provides the
investor with the intervals where each composition is efficient, so that he or she
can select according to additional preferences among several options practically
indistinguishable with respect to risk and return.

Appendix

Justification of the KTEF Procedure

Let us decompose an arbitrary vector v = (vN,vN ′), where vN is the vector consisting of the
components vi with i ∈ N and vN ′ consists of those with i ∈ L ∪ U. In particular, we have
x = (xN,b), where b is the vector of active bounds, that is, bi is li (resp., ui) if i ∈ L (resp.
i ∈ U). Similarly, we decompose

V =

(
V0 W

Wt Z

)

, (A.1)

whereV0 contains the rows and columns ofV corresponding to the indexes i ∈ N, Z contains
those corresponding to indexes i ∈ L∪U andW has the rows of those i ∈ N and the columns
of those i ∈ L ∪U. In these terms, (3.4) and (3.7) become

etNxN = r − etN ′b,

1tNxN = 1 − 1tN ′b.
(A.2)

Similarly, the stationary point conditions for indexes i ∈ N become

2V0xN + 2Wb − λeN − μ1N = 0. (A.3)

Solving this equation gives

xN =
λ

2
V−1

0 eN +
μ

2
V−1

0 1N −V−1
0 Wb. (A.4)

Premultiplying by etN and 1tN and using (A.2), we obtain, respectively,

Bλ +Aμ = r + E (A.5)

Aλ + Cμ = 1 + F, (A.6)
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where

A =
1
2
1tNV−1

0 eN =
1
2
etNV−1

0 1N,

B =
1
2
etNV−1

0 eN,

C =
1
2
1tNV−1

0 1N,

E = −etN ′b + etNV−1
0 Wb,

F = −1tN ′b + 1tNV−1
0 Wb.

(A.7)

Solving (A.5) and (A.6) gives

λ =
rC + EC −A −AF

D
, μ =

B + BF −Ar −AE

D
, (A.8)

where

D = BC −A2. (A.9)

Of course, this requiresD not to be 0. In this way, notice first that since V −1
0 is positive-

definite, B > 0 and C > 0. Also

(AeN − B1N)tV−1
0 (AeN − B1N) = BD. (A.10)

Hence, we will have D > 0 provided that AeN − B1N = 0. But clearly, AeN − B1N = 0
only if eN = e01 for a certain e0 ∈ R, and therefore (A.2) give e0(1 − 1tN ′b) = r − etN ′b.

Thus, we see that we are considering a degenerate case, since it can only provide a
Kuhn-Tucker point for at most one value of r (that given by the previous equation). Therefore,
we can assume that D > 0.

Incorporating (A.8) into (A.4), we obtain xN = gN + rhN , where

gN =
(
EC −A −AF

2D

)
V−1

0 eN +
(
B + BF −AE

2D

)
V−1

0 1N −V−1
0 Wb,

hN =
C

2D
V−1

0 eN − A

2D
V−1

0 1N.

(A.11)

Therefore, (3.8) is fulfilled taking g = (gN,b), h = (hN, 0). Moreover, decomposing λ =
(λL, 0) and μ = (μU, 0), where λL (resp., μU) denotes the part of λ (resp., μ) corresponding
to the indexes of L (resp. U), we can calculate λL and μU from the stationary point
conditions corresponding to the indexes in L and U, respectively,

λL = 2(Vx)L − λeL − μ1L,

μU = 2(Vx)U − λeU − μ1U.
(A.12)
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So we have obtained a unique point (x, λ, μ,λ,μ) satisfying the Kuhn-Tucker equalities
for the fixed case. However, it must also satisfy the inequalities to be a Kuhn-Tucker point. In
order to make these conditions explicit, let us show how the multipliers depend on r. From
(A.8) and incorporating (3.8) into (A.12), we obtain

λ = λ0 + rλ1, μ = μ0 + rμ1, λL = λL0 + rλL1, μU = μU0 + rμU1, (A.13)

where

λ0 =
EC −A −AF

D
, λ1 =

C

D
, μ0 =

B + BF −AE

D
, μ1 = −A

D
, (A.14)

λL0 = 2(Vg)L − λ0eL − μ01L,

λL1 = 2(Vh)L − λ1eL − μ11L,

μU0 = 2(Vg)U − λ0eU − μ01U,

μU1 = 2(Vh)U − λ1eU − μ11U.

(A.15)

The Kuhn-Tucker inequalities are

lN ≤ gN + rhN, gN + rhN ≤ uN,

λ0 + rλ1 ≥ 0, λL0 + rλL1 ≥ 0, μU0 + rμU1 ≤ 0.
(A.16)

Equivalently,

rhN ≥ lN − gN, rhN ≤ uN − gN,

r ≥ −EC +A +AF

C
, rλL1 ≥ − λL0, rμU1 ≤ − μU0.

(A.17)

These inequalities provide a finite set of lower and upper bounds for r, which in turn
determine a closed interval [rmin, rmax]. We conclude that the current case provides a Kuhn–
Tucker point just for rmin ≤ r ≤ rmax. If rmax ≤ rmin, we will again have a degenerate case.
Finally, the minimum risk for a given return within the interval [rmin, rmax] is given by

R(r) = (g + rh)tV
(
g + rh

)
= ar2 + br + c, (A.18)

where

a = htVh, b = 2gtVh, c = gtVg. (A.19)

The KTEF procedure consists of these calculations arranged as the algorithm described
before. Its inputs are the data of the model (3.1) together with the sets of indices L andU, and
it provides among its outputs a parametrization ar2 + br + c of a piece of the efficient frontier
of the problem together with the (possibly empty) interval [rmin, rmax] in which it is valid.
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