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With the help of the variable substitution and applying the fixed point theorem, we derive
the sufficient conditions which guarantee the existence of the positive almost periodic solutions
for a class of Lotka-Volterra type system. The main results improve and generalize the former
corresponding results.

1. Introduction

Denote x(t) = (x1(t), x2(t), ..., x,(£)), xr = (X141, X021, -+ -, X)), Xit(8) = x;(t +s) (i=1,2,...,n),
s € [-7,0], 7 is a positive constant or T = +oo, the norm of a bounded continuous function
space C([-7,0], R") is defined as ||}|| = maxse[-r,0]|P(s)|, where |p| = max{|pi|, i=1,2,...,n},
C([-7,0],R,) = {¢ € C([-7,0],R) : for all O € [-7,0], ¢$(O) > 0}.

We call an almost periodic function is positive if and only if each component has its
positive infimum. Denote AP(R") = {x(t) € R" : x(t) is a continuous almost periodic function
on R"}, AP(R)={x(t) € R : x(t) is a continuous almost periodic function on R}, T,f(t) = g(t)
refers tolim, o, f(t + a,) = g(t), where & = {a,}, {a,} is a sequence of real numbers,
T(f,e)={T:|f(t+7)-f(t)| <&t € R}, for more almost periodic monographs, see references
[1,2].

In [3], Teng first studied the existence of the almost periodic solutions for the following
scalar equation:

% =u(a(t) - p(t)u, (1.1)
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wheret € R,u € R,and a(t), p(t) € AP(R), then based on (1.1) and combined Schauder fixed
point theorem, he studied the existence of the almost periodic solution for a class of Lotka-
Volterra system

d)Zt(t) = xi(t) (ai(t) = bi()xi(t) - it x)), (=12,...,m), (12

where a;(t), b;(t) are continuous almost periodic functions, f;(t, ) is a continuous almost pe-
riodic function in ¢ uniformly with respect to ¢ € C([-7,0],R"), and fi(t,0) = 0 (i =
1,2,...,n). The author of [4] inherited in the method and ideas in [3], and promoted its
conclusions to the following system with feedback control

da;it(t) = x;(t) (ai(t) = bi()xi(t) — fi(t, xi, up)),

du;(t)
dt

(1.3)

= —c;(H)u;(t) + hi(t, xi),

where u;(t) is the control variable, i =1,2,...,n.
The authors of [5] used transformation techniques and fixed point theorem and stud-
ied a time-delay system with feedback control which is much wider then the system (1.3),

dazt(t) = x;(t) (ai(t) — bi()xi(t) — fi(t, xt, ur)),

du;(t)
dt

(1.4)

= —c,-(t)ui(t) + hi(tl Xt)-

In the case of non-Lipschitz condition, they gave a sufficient condition of the existence of the
almost periodic solutions for the system (1.4).

However, in the real world, the competition between species is not always shown by
the linear relationship, while shown by a certain degree of nonlinearity, therefore, studying
the following system becomes more realistic and necessary, over this paper, we study the sys-
tem which is more extensive than the system (1.4) as follows:

d);i:f) = x; () (a;i(t) = bi(t)x]"(t) — fi(t, x1, 1)), )
dl;ft) = —ci(t)ui(t) + hi(t, xt); )

where u;(t) is the control variable, «; is a positive constant, i = 1,2,...,n, by using Schauder’s
fixed point theorem, we get the sufficient conditions of the existence of the almost periodic
solution for the system (1.5), and by using the contraction mapping principle, we give the
conclusion of the existence of a unique almost periodic solution for the system (1.5) in the
one-dimensional case, some new results are obtained.
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2. Some Related Lemmas

Lemma 2.1 (see [6]). For the equation

% = a(t)x(t) + b(t), (2.1)

where a(t),b(t) € AP(R) and are continuous, if Re m(a(t)) #0, then (2.1) exists a unique almost
periodic solution 1(t), mod(r) C mod (a,b), and 3(t) can be written as follows

t
el:a®dp(s)ds,  Re m(a(t)) <0,

n=4"" (22)
-j elia®dtp(s)ds, Re m(a(t)) >0,
t
where m(a(t)) = limr_, ., 1/T J'OT a(t)dt, Re m(a(t)) is the real part of m(a(t)).
Lemma 2.2 (see [2]). Suppose f(t), g(t) € AP(R), then the following conditions are equivalent.
(1) mod(f) > mod(g);
(2) forany e >0, 36 > 0, such that T(f,6) Cc T(g,¢€);

(4
(5

)
)
(3) Taf exists which implies T,g exists (any sense);
) Tof = f, implies T,g = g (any sense);

)

Tof = f,implies there is &' C a, so that Ty g = g (any sense).

Consider the equation

% = x(t)[a(t) - b(t)x*(t)], (2.3)

where a > 0, a(t), b(t) € AP(R) and are continuous on R.

Lemma 2.3. If (2.3) satisfies one of the following conditions

1) m(a(t)) >0, mb(t) >0, b(t) >0
(2) m(a(t)) <0, mb(t)) <0, b(t) <0,

then (2.3) exists a unique positive almost periodic solution ¢(t), and mod (¢) C mod(a, b).
Proof. Let x™*(t) = u(t), then (2.3) can be changed as follows:

dl;it) = —aa(tyu(t) + ab(t), (2.4)
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by the condition m(a(t)) > 0, « > 0, we have Re m(-aa(t)) < 0, also by the condition
m(b(t)) > 0, b(t) > 0, according to Lemma 2.1, it follows that (2.4) exists a unique positive
almost periodic solution #(t), and 7(t) can be written as follows:

t t
n(t) = aJ‘ e )2ty gy g, (2.5)

Next, we prove that mod(7) C mod(a, b). If there is a sequence f' such that Tga(t) =
a(t), Tpb(t) = b(t) are convergent uniformly on R, then there exists a sequence ff C ff' such
that Tyr(t) = {(t) is convergent uniformly on R, and {(t) is also an almost periodic solution of
(2.4), by the uniqueness of the almost periodic solution of (2.4), we can get Tgn(t) = 7n(t), by
Lemma 2.2, it follows mod(#) C mod(a, b). Since x~%(t) = u(t), (2.3) exists a unique positive
almost periodic solution ¢(t), and it can be written as follows

-1/a
$(b) = [a f t el “<T>dfb(s>ds] : 26)

by (2.6), we can easily get mod (¢) C mod (a,b).
If the condition (2) holds, similarly, we can prove that (2.3) exists a unique positive
almost periodic solution ¢(t), it can be written as follows

-1/a

and mod (¢) € mod(a, b). This is the end of the proof of Lemma 2.3. O

Lemma 2.4 (see [2]). Suppose that an almost periodic sequence { f,(t)} is convergent uniformly on
any compact set of R, f(t) is an almost periodic function, and mod(f,) C mod(f) (n = 1,2,...),
then { f,(t)} is convergent uniformly on R.

3. The Conclusion of the N-dimentional System
Consider the following equation

B - 2o b 0], (3.1)

where a; > 0, a;(t), bi(t) € AP(R), i=1,2,...,n.
By Lemma 2.3, it follows if one of the following conditions holds

(A1) m(ai(t)) >0, m(bi(t)) >0, b;(t) >0
(Az) m(a;(t)) <0, m(bi(t)) <0, b;(t) <0,
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then (3.1) exists a unique positive almost periodic solution x°(t) = (x?(t), xg(t), o, X0(1), we
can easily get if (A1) holds, then

¢ . —1/{1,'
x0(t) = [a,-f e ls “f(T)dTbi(s)ds] , (3.2)
if (Az) holds, then

+00 . -1/a;
x(t) = [—aif e’“"fs“f(T)dTbi(s)ds] . (3.3)

t

Now, consider (1.5), suppose

(B1) ai(t), bi(t), ci(t) are continuous almost periodic functions, f,(t, ¢, ¢) is continuous
for all variables, and is almost periodic in t uniformly with respect to (¢, ¢) €
C([-7,0],R") x C([-7,0], R"), h;(t, ¢) is continuous for all variables, and is almost
periodic in ¢ uniformly with respect to ¢ € C([-7,0], R");

(Bo) hi(t,¢) >0, forall ¢;>0,teR (i=1,2,...,n);
(By) hi(t,¢) <0, forall ¢;>0,t€R (i=1,2,...,n);
(B3) m(ai(t)) >0, m(bi(t)) >0, bi(t) >0, m(ci(t)) >0 (i =1,2,...,n);
(B3) m(ai(t)) <0, m(bi(t)) <0, bi(t) <0, m(ci(t)) <0 (i=1,2,...,n).
Following the front of the x°(t) defined, suppose that (By), (B), (Bs) or (By), (B),
(B3) hold, and denoted the unique positive almost periodic solution of the following equation

du;(t)
dt

= —ci(Bu(t) + hi(,x7), (3.4)
by u(t) = (ud(t), ud(t), ..., ud(t)), where

t
f el:caMdrp, (s, x0)ds,  Re m(ci(t)) >0,
ud(t) = “fw (3.5)
—J‘ eﬁ(‘c"(T))dThi(s, x%)ds, Re m(ci(t)) <O0.
t

For any (¢, ¢) € C([-7,0], R") x C([-T,0], R"), we define

Fi(t, ¢, ¢) = (ar1(t) =bi()P(0) = fi(t, §, ¢), ..., an(t) = bu(t) P (0) = fult, b, ),
Hi(t,¢,¢) = (1)1 (0) + hi(t, $), ..., —cu(t) s (0) + h(t, §)) (3.6)

Xq = {(4>(t),<.v(t)) € AP(R™) :mod (¢,¢) C mod (Fl,Hl)},
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then X is a Banach space with the model of [[(¢(t), ¢s())|| = sup,.x(I¢(t)| + |¢s(t)]), construct
a bounded closed convex set G; as follows:

Gi={ (b g) €X1:0 < () <x0), 0 <gut) <ul(t)}. (3.7)

A

(By) For any (¢,¢) € Grand t € R, 0 < fi(t,¢r, ) < fi(t, 20, u0), 0 < hy(t, )
hi (t,x)), m(a;(t) - fi (t,x},u)) >0, (i=1,2,...,n)

(B_4) FOI' any (¢/(P) € Gl andt € R/ 0 2 fi(t/(i)t/lpt) 2 fi(t/x?/u?)r O = hi(t/d)t)
hi(t,xV), m(a;(t) - fi(t, x),ud)) <0, (i=1,2,...,n).

IN

\Y
v

Theorem 3.1. If (By), (B,), (B3), (Bs) or (B1), (B2), (Bs), (By) hold, then (1.5) exists at least a
positive almost periodic solution in Gy.

Proof. 1f (B1), (Bz), (B3) hold, for any (¢, ¢) € Gy, consider the following equation

dﬁt(t) = xi(t) (ai(t) = fi(t, g, g) —bi(D)x[ (1)), (i=1,2,...,m) (3.8)

by the condition (Bs), it follows m(a;(t) — fi(t, ¢+, ¢5r)) > 0, by Lemma 2.3, it follows that (3.8)
exists a unique positive almost periodic solution Zp,, (t) = (Zgy, (£), Zgy, (), - .-, Zpy, (1)), and
it can be written as follows

t . -1/a;
Zgyi(t) = I:aij e—aiL(ai(T)fi(T,‘i)-r,q"r))dTbi(S)dS] , (i=1,2,...,n), (3.9)

and mod (Zyi(t)) C mod (a;(t) - fi(t, ¢, ¢1), bi(t)), since fi(T, P, ¢r) —ai(T) > —a;i(T), thus by
(3.2) and (3.9), we can get 0 < Zpi(t) < x?(t), i=1,2,...,n, on the other hand, since mod
(ai(t) = fi(t, §s, ¢t), bi(t)) C mod (Fy), it follows mod (Zy(t)) C mod (F1),.

Consider the following equation

% = —ci(Hui(t) + hi(t, ¢r), (3.10)

by Lemma 2.1, (3.10) exists a unique positive almost periodic solution

and it can be written as follows:

t t
Vgi(t) = f el:CaMdth, (5,6 )ds, Re m(ci(t)) >0, (3.12)

—0o0
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also by the condition 0 < h;(t, ¢¢) < hi(t, x?), (i=1,2,...,n), the first formula of (3.5) and
(3.12), we have 0 < Vyi(t) < u?(t), and mod (Vy;(t)) € mod(ci(t), hi(t, ¢:)), also mod
(ci(t), hi(t,¢+)) C mod(Hy), thus mod(Vy;i(t)) C mod(H;), therefore, we can get mod
(Zpy, Vy) C mod (F1, Hy), hence we can define

P:Gi— G,  P(g,¢)=(Zpy Vp)- (3.13)

Now we are committed to prove the continuity of P in G;. Suppose { (¢, ¢*) C G},
and when k — oo, (¢*, ¢¥) — (¢, ) € Gy, define S = {¢*, ¢*} U{(¢, ¢)}, then S is a compact
set of Xj, since m(a;(t) — fi(7, xg,ug)) >0,i=1,2,...,n, there exist the positive numbers
A and H, such that when t > s,e @ l@@O-firadu)dr < oA i = 1,2 . . n, similarly,

since m(c;(t)) > 0, i = 1,2,...,n, there exist the positive numbers y and I, such that when

t u(s—t
t>s, elsamdr < 1o ¢ ), for any (¢, ¢) € Gy, it follows 0 < fi(t, ¢r, ¢t) < fi(t, x?,u?).
Therefore, by the mean value theorem

| o [ (@D~ fi kb)) _ p-ai [(ai(r)~fi(z.prigpr))dT

e’

of (1 tt08) -t )

(3.14)

< o (@i (D)~fiTxdul))dr

a; J:(fl'(T,(i)lT(,l[fq]-() —fi(Tr(i’Tf‘PT))dT
< (t-9)||ai(fi(t 98 ¢F) - it g gn) ) [, £z, i=1,20m

Where,

¢ < maX{—fxi f(m(T) - fi<71¢’§/ wf))d% —a; E(ai(T) - fi(7, ¢z, 4’7))017}

S

t (3.15)
< _aif (ai(T) - f,~<7-,xg,u2>)d7'.

Also by the mean value theorem, we can obtain the following;:

|R(#¢*) - B(o9)|
| <Z¢k4,k,-(t) = Zpyi(t), Vgri(t) = Vipi (t)> n

H B [Z¢k¢ki(t)]_m - [Zwi(t)]_ui

aigi—ui—l

(3.16)

Vi (F) = Vi () ||,

where, ¢; is between the positive almost periodic function Zgk;(t) and Zpy(t), thus

0< &< xp(h). (3.17)
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By (3.9), (3.12), and (3.14), it follows that

[zopa0] " - 2] ™

aigi—a,’—l

1 t
= f (e—m- [o@i(@)-fiadhyb)dr _ -a fi(a,-w)—fi(n@,%))dr) bi(s)ds
i -0

1 t
g—ai—l J‘
i -

< =

< 22 || (R0®)" |t 5: (e 9 6F) - fite. g

Vi (t) — V¢i(t)|

t t
J efs(‘ci(T))dThi<s,¢’§>ds—J el:CadTp, (s, ¢ )ds

—o0

< e S @D~ fir gk yk)dr _ pai [[(ai(0)~fi(zdrpr))dr

|bi(s)|ds

<

< f ef§<-ff<T>>dT|hi (s, ¢’;) — hi(s, §s) |ds

< i”h(b(ﬁ) —hi(t, §r) ”

thus we have

|7:(#5 %) - P90 < 52| ()™ [t (e 5 ) - st )|

(3.19)
+ i”hi(t, o)~ it ).

Hence

|P(9%6%) - )| < 3| (20) " | natioon | (5 ) - £ o9

(3.20)
+ é”h(t,(ﬁf) - h(t,d)t)”.

In addition, taking into account that f(t, ¢, ), h(t,¢$) are continuous uniformly on R x S,
when k — o, it follows || (£, ¢, ¢) = £(t, e, g)ll — O, [IR(t, $) = h(t, )| — O, thus when

k — oo, we have
||P<¢k' ¢*) - P(dw)” —0, (3.21)

therefore, P is continuous. O
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Then to prove P is relatively compact in G;. By the boundedness of G; and (3.8),
(3.10), we can obtain that there exists a positive number A such that ||[d(P(¢,y))/dt|| <
A, for all (¢, ) € Gy, thus P(Gy) is uniformly bounded and equicontinuous on R, by the
theorem of Ascoli-arzela, for any sequence {(¢¥,¢¥)} in G, there exist a subsequences (also
denoted by {(¢,¢¥)}) such that {(¢k,¢¥)} is convergent uniformly in any compact set of
R, also combined with Lemma 2.4, {(&F,Z¥)} is convergent uniformly on R, that is to say
P is relatively compact in G;. According to Schauder's fixed point theorem, P exists as a
fixed point in Gy, that is to say (1.5) exists at least a positive almost periodic solution in G;.
Similarly, when (B;), (Bz), (Bs), (Bs) hold, we can prove that (1.5) exists at least a positive
almost periodic solution in G;.

Remark 3.2. When a; = 1, then (1.5) turns into (1.4), obviously, Theorem 3.1 is the gener-
alization of Theorems 2.1 and 2.2 in [5];

Remark 3.3. In Theorem 2.2 of [5], it requires the condition fi(t,0,0) = 0, in this paper, we do
not require f;(¢,0,0) = 0, this can be seen in the weak conditions we get the similar results,
thus Theorem 3.1 extends the results of Theorem 2.2 of the paper [5].

4. The Conclusions Of The One-dimentional System

Here we will discuss the system (1.5) in the one-dimensional case

dx(t)

= x(0)(al®) = b)) - f(t,x,u),
du(t) (4.1)
T = —c(t)u(t) + h(t, x;),

where a > 0, t € R, a(t), b(t), c(t) are continuous almost periodic functions, f (¢, ¢, ¢) is
almost periodic in t uniformly with respect to (¢, ¢) € C([-7,0],R.) x C([-7,0], R;), and
f (£,0,0) =0, h(t, ) is almost periodic in f uniformly with respect to ¢ € C([-7,0], R,), and
h(t,0) = 0. For convenience, we introduce the following notations. For a continuous bounded
function f(t), denote f; = infier f(t), fm = sup,cg f(1),

(C1) ar; >0, bL >0, cp >0

(C2) f(t, ¢, ) 20, h(t,$) >0 for $ >0, g >0and t € R;

(C3) If(t,x1,y1) = f(t,x2, ¥2)| < Li(|x1 — x2| + [y1 — v2l), |h(t, x1) = h(t, x2)| < Lalx1 —x2
fort € Rx1, x2,y1,Y2 € Ry, L1, L, are positive constants;

(C4) Ll)fl/(xaL ﬂl/[Hl +L1/aL pl/a +L1y2/aL +L2/0£CL pl/vwl +L1y1/aL < 1, Where, [5 =
min{by/am(@?+a+1) , [br/ay (@ +a+ D], y1 = (by+aar (B+ap”/))/
ar,y2 = ap.

In the next paper, we suppose that initial values (x(0),u(0)) of system (4.1) satisfy

x(0) >0, u(@) > 0, 0 € [-7,0], for the solution (x(t), u(t)) of the system (4.1), we only
consider its positive initial value, that is to say

x(0) >0, u(0) > 0. (4.2)
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It is not difficult for us to see the solution (x(t), u(t)) of (4.1) with the positive initial value is
always positive.

Theorem 4.1. If (C1), (C2), (C3), (C4) hold, then (4.1) exists a unique positive almost periodic
solution.

Proof. Let y(t) = 1/x*(t), then (4.1) can be changed into the following equation:

WO _ _aaltyyt) + ab(t) + ay Oty u),
a (43)
t;(t ) _ —c(Hu(t) + h(t,y;”“>.

For (¢, ¢) € C([-7,0], R;) x C([-7,0], R,), define

F(t ¢ ¢) = -a(h)p(0) +b(t) + f (£, ¢)$(0),
H(t, ¢, ¢) = —c(t)yp(0) + h(t, ¢-1/a>, (4.4)
X = {(4’/(}’) € AP<R2> Pp<P<y, 0<g <y, mod(p,¢)C mod(F,H)},

then X is a Banach space with the model of ||, || = sup, s (lgr(t)| + g (t)]), for all (¢, ¢) € X,
consider the following equation:

d
Zit) =—aa(t)y(t) + ab(t) + ad(t) f <t, (j);l/“,(l;t), (4.5)

by Lemma 2.1, it follows that (4.5) exists a unique positive almost periodic solution Zg(t), it
can be written as follows:

t

Zpg®) =a [ e o) 1 gs) (5,54, (+6)
similar to the proof of Lemma 2.3 we can obtain

mod (Zy,) C mod (a(t),b(t) + f<t, ¢;1/“,qf)¢(t)) ¢ mod (F), (4.7)
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in addition,
t

Zgy () > “J oall a(mdr (bL _ |¢(s)||f(s,¢;”“, %>

)ds

- aﬁ p-alia()dr (bL - |¢(s)|)f<5, $:V/e, q}s> ~ £(5,0,0) Dds

; t (4.8)
> aJ e 100 (b — 11| ¢(s)| (|¢57%] + Il ) ) ds
Jbe-nLi(FV"+y)
> i .

Note that the condition (C4) holds, thus we have L; < zxaLﬁ“(l/ @)/ 11, hence
bL_ Laay 1+1/u/ | —1/a+a
Zow(ty 2 21 B (B p)
am
_ 1+1/a(pn-1/a
. by —aarp (p +ap) (4.9)
am
~ b - leﬁ _ aZaLﬁ2+(1/a)

am

Note that § = min{by /ap(a®+a+1), [by/an(a®+a+1)]" V), if 0 < by / (ap(a®+a+1)) <1,
then g = by /apn(a® + a + 1), thus we can get

bL —aarp- a2aL 2+(1/a)
Zpy(t) 2 2 o P
. by — aamp - a*amp (4.10)
> an

=B,

if by /ap(a® +a+1) > 1, then p = [br/ap(a® + a +1)]7/ @V, therefore

Zd)qj(t) S b — aaLﬂ L_zlzzaLﬂZJr(l/a)
N bL _ ocaMﬂ2+(1/”‘) _ aZaMﬂer(l/a)
- am (4.11)
Capm(@+a+1)
> p.

No matter what 0 < by /am(a® + a+1) <1orbp/ap(a® + a+1) > 1, we always have

Zgy () > B, (4.12)
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Also we have
t

zw(t)gaf e b2 (1b(s)| + | ()| £ (5, 45/ )

)ds

- aft e—aI;a<T>dT<|b(s)| + |(i)(s)||f<sl¢;l/a,qjs> —f(S,0,0)|>ds

t t
<af e (o) 4 [pOIL (|67 + ge]))ds
w0 (977 < el
N ar, (413)
b LB 4 )
< L
_ butyaa e/ (B + )
< .
by +aar V(B + ap)
= ”
= Yl'
Consider the following equation:
du(t 1/a
%= —c(tyu(t) + (1, $;"). (4.14)

By Lemma 2.1 we can see that (4.14) has a unique positive almost periodic solution Vy(t), it
can be written as follows

t t
V() = J e-MT)dTh(s, ¢V “>ds. (4.15)

—0o0

Similar to the proof of Lemma 2.3, we can get

mod (Vy(t)) € mod <c(t),h<t, ¢t_1/“>> C mod (H),
h(S, 4)5—1/41)

h(s,$:7) - h(s,0)|ds (4.16)

ds

t

V¢(t) < J' e—f; c(t)dr

t
_ f e fi c(t)dr
-0

t
<L, J‘ e j; c(r)dr
—Qo0

L -1/a
L
cL

(p;l/a ds
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Note that the condition (Cy) holds, it follows that L, < acy f*(1/®, hence
ac 1+1/a -1/
V¢(t) < % =af=y. (4.17)

Now, define a mapping
T(¢, ) (1) = (Ti(¢, ) (), T2 (¢, ) (1) = (Zgy (1), V3 (8))- (4.18)

From the above discussion we can see T(¢,¢)(t) € X, thus T : X — X, for given any
(91, 41), (2, ¢2) € X, we have

IT(¢1, 1) = T (2, 452) ||
= [(T1(¢1, ¢1) = Ti (2, 42), To(d1, 1) = T2 (2, 42)) ||
= || (Z‘i’l(]ﬁ (t) - Z¢zl[fz (t)/V¢1 (t) - V¢z (t)) ”

= sup<
teR

+

a j e Oy (5)f (5,410 g1s) = 2(5) f (5,45 s ) | ds

f "l (s d1/<) = (s, ¢2') | ds )

< sup <a [ e (g )] £ (5,47 1) £ (54520 )
+|£ (5,952 4:) [191() = g (9)] ) ds

+It e—j;c(r)dr h<sl¢;sl/a> _ h(s, 2—51/“> ds>

gsup<aft e‘”ﬁa(T)dT<L1|¢1(S)|”4’1_51/“_ Esl/a

teR )
+L1<‘gb;sl/“ + |qr23|>|¢1(5) - ¢2(S)|>d5
AR ds>~

(4.19)

+ |‘P1s-4’2s|]

t
+L, f e J'i c(r)dr
)

2s
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By the mean value theorem (where ¢ of the following formula is between ¢15 and ¢»s), the
above formula can be changed as follows:

1T (1, 91) =T (g2, ¢2) |
<sup <a ft e—aﬁ a(t)dr (Ll |c]>1(s)| H%é(—l/a)—l

teR

10~ el + e g

+Ly <|¢£§ .

Lyl ) 1(5) - $2(5)])

t
+L, J. e J’; c(r)dr lé(—l/a)—l
o a

™ —¢zS|ds>

t . 1
<sup <aJ‘ ealiatndr <L1)’1 [;ﬁfl/u*l | P15 — Pos| + |1 — <P2s|]

teR

L (B 12) [(5) - a(5)| ) s

t
_f 1 10
+L2f e jsc(T)dT;ﬂ( 1/a) 1|¢1s —¢25|d5> (4.20)

1
ar

1
< (L 2B g = gl + Lan o - g

+14 (ﬁ(*l/“) + Y2> [|$1(t) = Pa(t) ”)
+ %inﬂ(_l/“)_l |p1e — Pl
= <aiLLm %ﬂ*““ - aiLLlpf““ - aiLLlyz + %L%p“”““) ll¢1 - ¢l
1
+ a—LL1Y1||‘P1 — ¢l
< <aiLL1Y1 %ﬂ(_l/“)‘l + aiLLlﬂ_l/a + aiLLle + %inﬂ(_l/“)_l + aiLLlYl)

|| (¢1, 1) = (P2, 92)

7

notice that the condition (C4) holds, it follows

1T (¢, 1) =T (P2, g2) || < [| (D1, 951) = (2, 9p2)

, (4.21)

by (4.21), T is a contraction mapping, thus T exists a unique fixed point in X, this fixed point is
the only positive almost periodic solution (¢*(t), u*(t)) of (4.3),and f < ¢*(t) <y1, 0 <u*(t) <
Y2. note that y(t) = 1/x%(t), x(t) = u™/* (t), thus (4.1) exists a positive almost periodic solu-
tion (¢*(t), u*(t)), and 1/()’11/“ ) <g* (1) <1/BY*, 0<u* (t) <y, This completes the proof
of Theorem 4.1. O
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