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The purpose of this paper is to introduce a class of total quasi-φ-asymptotically nonexpansive-
nonself mappings and to study the strong convergence under a limit condition only in the
framework of Banach spaces. As an application, we utilize our results to study the approximation
problem of solution to a system of equilibrium problems. The results presented in the paper extend
and improve the corresponding results announced by some authors recently.

1. Introduction

Throughout this paper, we assume that E is a real Banach space, C is a nonempty closed and
convex subset of E, E∗ is the dual space of E, and J : E → 2E

∗
is the normalized duality

mapping defined by

J(x) =
{
f∗ ∈ E∗,

〈
x, f∗〉 = ‖x‖2 = ∥∥f∥∥2

}
, x ∈ E. (1.1)

Recall that a Banach space E is said to be strictly convex if ‖x + y‖/2 < 1 for all x, y ∈
U = {z ∈ E : ||z|| = 1} with x /=y. E is said to be uniformly convex, if for each ε ∈ (0, 2], there
exists δ > 0 such that ‖x +y‖/2 < 1− δ for all x, y ∈ U with ‖x −y‖ ≥ ε. E is said to be smooth,
if the limit

lim
t→ 0

∥∥x + ty
∥∥ − ‖x‖
t

(∗∗)
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exists for all x, y ∈ U. AndE is said to be uniformly smooth, if the above limit is exists uniformly
for x, y ∈ U.

In the sequel, we shall denote the fixed point set of a mapping T by F(T). When {xn}
is a sequence in E, then xn → x (xn ⇀ x) will denote strong (weak) convergence of the
sequence {xn} to x.

A mapping T : C → C is said to be nonexpansive, if

∥∥Tx − Ty
∥∥ ≤ ∥∥x − y

∥∥, ∀x, y ∈ C. (1.2)

Amapping T : C → C is said to be asymptotically nonexpansive if there exists a sequence
{kn} ⊂ [1,∞) such that

∥∥Tnx − Tny
∥∥ ≤ kn

∥∥x − y
∥∥, ∀x, y ∈ C. (1.3)

Recall that a subset C of E is said to be retract of E, if there exists a continuous mapping
P : E → C such that Px = x, for all x ∈ C.

It is well known that every nonempty closed and convex subset of a uniformly convex
Banach space is a retract of E. A mapping P : E → C is said to be a retraction, if P 2 = P . It
follows that if a mapping P is a retraction, then Py = y for all y in the range of P . A mapping
P : E → C is said to be a nonexpansive retraction, if it is nonexpansive and it is a retraction
from E to C.

In the sequel, we assume that E is a smooth, strictly convex, and reflexive Banach
space and C is a nonempty closed convex subset of E. Throughout this paper we assume that
φ : E × E → R+ is the Lyapunov function which is defined by

φ
(
x, y

)
= ‖x‖ − 2〈x, Jy〉 + ∥∥y∥∥2

, ∀x, y ∈ E. (1.4)

It is obvious from the definition of φ that

(‖x‖ − ∥∥y∥∥)2 ≤ φ
(
x, y

) ≤ (‖x‖ + ∥∥y∥∥)2, ∀x, y ∈ E, (1.5)

φ
(
x, J−1

(
λJy + (1 − λ)Jz

)) ≤ λφ
(
x, y

)
+ (1 − λ)φ(x, z), ∀x, y ∈ E. (1.6)

Following Alber [1], the generalized projection ΠC : E → C is defined by

ΠC(x) = arg inf
y∈C

φ
(
y, x

)
, ∀x ∈ E. (1.7)

Lemma 1.1 (see [1]). Let E be a smooth, strictly convex, and reflexive Banach space and C be a
nonempty closed convex subset of E. Then the following conclusions hold:

(1) φ(x,ΠCy) + φ(Πcy, y) ≤ φ(x, y) for all x ∈ C and y ∈ E;

(2) If x ∈ E and z ∈ C, then z = ΠCx ⇔ 〈z − y, Jx − Jz〉 ≥ 0, for all y ∈ C;

(3) For x, y ∈ E, φ(x, y) = 0 if and only if x = y.
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Remark 1.2. If E is a real Hilbert space H, then φ(x, y) = ||x − y||2 and ΠC = PC (the metric
projection of H onto C).

A mapping T : C → C is said to be closed, if for any sequence {xn} ⊂ C with xn → x
and Txn → y, then Tx = y.

Definition 1.3. Let P : E → C be the nonexpansive retraction.

(1) T : C → E is said to be quasi-φ-nonexpansive nonself mapping, if F(T)/= ∅ and

φ(u, Tx) ≤ φ(u, x), ∀x ∈ C, u ∈ F(T). (1.8)

(2) T : C → E is said to be quasi-φ-asymptotically nonexpansive nonself mapping, if
F(T)/= ∅ and there exists a real sequence {kn} ⊂ [1,∞)with kn → 1 such that

φ
(
u, T(PT)n−1x

)
≤ knφ(u, x), ∀x ∈ C, u ∈ F(T), n ≥ 1. (1.9)

(3) T : C → E is said to be total quasi-φ-asymptotically nonexpansive nonself mapping, if
F(T)/= ∅ and there exists nonnegative real sequence {νn}, {μn} with νn → 0, μn →
0 (as n → ∞) and a strictly increasing continuous function ρ : R+ → R+ with
ρ(0) = 0 such that for all x ∈ C, u ∈ F(T)

φ
(
u, T(PT)n−1x

)
≤ φ(u, x) + νnρ

(
φ(u, x)

)
+ μn, ∀n ≥ 1. (1.10)

(4) A countable family of nonself mappings {Ti} : C → E is said to be uniformly total
quasi-φ-asymptotically nonexpansive, if

⋂∞
i=1 F(Ti)/= ∅ and there exists nonnegative real

sequence {νn}, {μn} with νn → 0, μn → 0 (as n → ∞) and a strictly increasing
continuous function ρ : R+ → R+ with ρ(0) = 0 such that for each i ≥ 1 and all
x ∈ C, u ∈ ⋂∞

i=1 F(Ti)

φ
(
u, Ti(PTi)n−1x

)
≤ φ(u, x) + νnρ

(
φ(u, x)

)
+ μn, ∀n ≥ 1. (1.11)

Remark 1.4. From the definitions, it is easy to know that

(1) If T is a quasi-φ-nonexpansive nonself mapping, then it must be a quasi-φ-
asymptotically nonexpansive nonself mapping with {kn = 1}.

(2) Taking ρ(t) = t, t > 0, νn = (kn − 1) and μn = 0, then (1.9) can be rewritten as

φ
(
u, T(PT)n−1x

)
≤ φ(u, x) + νnρ

(
φ(u, x)

)
+ μn, ∀n ≥ 1, x ∈ C, u ∈ F(T). (1.12)

This implies that each quasi-φ-asymptotically nonexpansive nonself mapping must be a total
quasi-φ-asymptotically nonexpansive nonself mapping, but the converse is not true.
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A nonself mapping T : C → E is said to be uniformly L-Lipschitz continuous, if there
exists a constant L > 0 such that

∥∥∥T(PT)n−1x − T(PT)n−1y
∥∥∥ ≤ L

∥∥x − y
∥∥, ∀x, y ∈ C, n ≥ 1. (1.13)

Lemma 1.5 (see [2]). Let E be a smooth and uniformly convex Banach space and let {xn}, {yn}
be two sequences of E. If φ(xn, yn) → 0 (as n → ∞) and either {xn} or {yn} is bounded, then
||xn − yn|| → 0 (as n → ∞).

Lemma 1.6. Let E be a smooth, strictly convex, and reflexive Banach space and C be a nonempty
closed and convex subset E. Let T : C → E be a closed and total quasi-φ-asymptotically nonexpansive
nonself mapping with nonnegative real sequence {νn}, {μn} and a strictly increasing continuous
function ρ : R+ → R+ such that νn → 0, μn → 0 and ρ(0) = 0. Then the fixed point set F(T) is a
closed and convex subset of C.

Proof. Let {xn} be a sequence in F(T) such that xn → u (as n → ∞). Since Txn = xn → u, by
the closeness of T , we have u = Tu, that is, u ∈ F(T). This shows that F(T) is a closed set in C.

Next, we prove that F(T) is convex. For any x, y ∈ F(T), t ∈ (0, 1), putting q = tx+ (1−
t)y, we prove that q ∈ F(T). Indeed, let {un} be a sequence generated by

u1 = Tq, u2 = TPTq = TPu1, u3 = T(PT)2q = TPu2, . . . ,

un = T(PT)n−1q = TPun−1, . . . ,
(1.14)

we have

φ
(
q, un

)
=
∥∥q∥∥2 − 2

〈
q, Jun

〉
+ ‖un‖2

=
∥∥q∥∥2 − 2t〈x, Jun〉 − 2(1 − t)

〈
y, Jun

〉
+ ‖un‖2

=
∥∥q∥∥2 + tφ(x, un) + (1 − t)φ

(
y, un

) − t‖x‖2 − (1 − t)
∥∥y∥∥2

.

(1.15)

Since

tφ(x, un) + (1 − t)φ
(
y, un

)

≤ t
(
φ
(
x, q

)
+ νnρ

(
φ
(
x, q

))
+ μn

)
+ (1 − t)

(
φ
(
y, q

)
+ νnρ

(
φ
(
y, q

))
+ μn

)

= t
(
‖x‖2 − 2

〈
x, Jq

〉
+
∥∥q∥∥2 + νnρ

(
φ
(
x, q

))
+ μn

)

+ (1 − t)
(∥∥y∥∥2 − 2

〈
y, Jq

〉
+
∥∥q∥∥2 + νnρ

(
φ
(
y, q

))
+ μn

)

= t‖x‖2 + (1 − t)
∥∥y∥∥2 − ∥∥q∥∥2 + tνnρ

(
φ
(
x, q

))
+ (1 − t)νnρ

(
φ
(
y, q

))
+ μn.

(1.16)

Substituting (1.16) into (1.15), and simplifying we have

φ
(
q, un

) ≤ tνnρ
(
φ
(
x, q

))
+ (1 − t)νnρ

(
φ
(
y, q

))
+ μn −→ 0 (n −→ ∞). (1.17)

By Lemma 1.5, we have un → q (n → ∞). This implies that un+1 → q (n → ∞).
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Since un+1 = T(PT)nq = TPT(PT)n−1q = TPun and T is closed, we have q = TPq. Since
q ∈ C, Pq = q, thus q = Tq. this implies that F(T) is a convex set in C.

Concerning the strong and weak convergence of asymptotically nonexpansive
self or nonself mappings, relatively nonexpansive, quasi-φ-nonexpansive and quasi-φ-
asymptotically nonexpansive self or nonself mappings have been considered extensively by
several authors in the setting of Hilbert or Banach spaces (see e.g., [2–19]).

The purpose of this paper is to modify the Halpern andMann-type iteration algorithm
for a family of of total quasi-φ-asymptotically nonexpansive nonself mappings and to have
the strong convergence under removing F(T) is a convex set of condition and a limit
condition only in the framework of Banach spaces. As an application, we utilize our results
to study the approximation problem of solution to a system of equilibrium problems. The
results presented in the paper extend and improve the corresponding results of Chang et al.
[4–7], W. P. Guo and W. Guo [8], Hao et al. [9], Kamimura and Takahashi [10], Kiziltunc
and Temir [11], Nilsrakoo and Saejung [2], Pathak et al. [12], Qin et al. [13], Su et al. [14],
Thianwan [15], Wang et al. [16], Yıldırım and Özdemir [17], Yang and Xie [18], Zegeye et al.
[19], Kanjanasamranwong et al. [20], Saewan and Kumam [21–24] and Wattanawitoon and
Kumam [25].

2. Main Results

Theorem 2.1. Let E be a real uniformly convex and uniformly smooth Banach space, and C
be a nonempty closed convex subset E. Let Ti : C → E, i = 1, 2, . . . be a family of closed
and uniformly total quasi-φ-asymptotically nonexpansive nonself mappings with nonnegative real
sequence {νn}, {μn} and a strictly increasing continuous function ρ : R+ → R+ such that
νn → 0, μn → 0 and ρ(0) = 0, and for each i ≥ 1, Ti be uniformly Li-Lipschitz continuous.
Let {αn} be a sequence in [0, 1] and {βn} be a sequence in (0, 1) satisfying the following conditions:

(a) limn→∞αn = 0;

(b) 0 < lim infn→∞βn ≤ lim supn→∞βn < 1.

Let {xn} be a sequence generated by

x1 ∈ E chosen arbitrarily; C1 = C,

yn,i = J−1
[
αnJx1 + (1 − αn)

(
βnJxn +

(
1 − βn

)
JTi(PTi)n−1xn

)]
, i ≥ 1,

Cn+1 =

{
z ∈ Cn : sup

i≥1
φ
(
z, yn,i

) ≤ αnφ(z, x1) + (1 − αn)φ(z, xn) + θn

}
,

xn+1 = ΠCn+1x1, ∀n ≥ 1.

(2.1)

where θn = νnsupu∈Fρ(φ(u, xn)) + μn, for all n ≥ 1, F :=
⋂∞

i=1 F(Ti). If F is a nonempty-bounded
subset in C, then {xn} converges strongly toΠFx1.

Proof. We divide the proof of Theorem 2.1 into five steps.
(I) F and Cn, n ≥ 1 are closed and convex subset in C.
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In fact, it follows from Lemma 1.6 that F(Ti), i ≥ 1 is closed and convex subset of C.
Therefore F is a closed and convex subset in C.

Again by the assumption that C1 = C is closed and convex. Suppose that Cn is closed
and convex for some n ≥ 2. In view of the definition of φ we have that

Cn+1 =

{
z ∈ Cn : sup

i≥1
φ
(
z, yn,i

) ≤ αnφ(z, x1) + (1 − αn)φ(z, xn) + θn

}

=
⋂
i≥1

{
z ∈ Cn : φ

(
z, yn,i

) ≤ αnφ(z, x1) + (1 − αn)φ(z, xn) + θn
} ∩ Cn

=
⋂
i≥1

{
z ∈ Cn : 2αn〈z, Jx1〉 + 2(1 − αn)〈z, Jxn〉 − 2

〈
z, Jyn,i

〉

≤ αn‖x1‖2 + (1 − αn)‖xn‖2 −
∥∥yn,i

∥∥2 + θn
}
∩ Cn.

(2.2)

This implies that Cn+1 is closed and convex. The conclusion is proved.
(II) Now we prove that F ⊂ Cn, n ≥ 1.
In fact, it is obvious that F ⊂ C1 = C. Suppose that F ⊂ Cn for some n ≥ 2. Letting

wn,i = J−1
(
βnJxn +

(
1 − βn

)
JTi(PTi)n−1xn

)
, (2.3)

it follows from (1.6) that for any u ∈ F ⊂ Cn we have

φ
(
u, yn,i

)
= φ

(
u, J−1(αnJx1 + (1 − αn)Jwn,i)

)

≤ αnφ(u, x1) + (1 − αn)φ(u,wn,i),
(2.4)

φ(u,wn,i) = φ
(
u, J−1

(
βnJxn +

(
1 − βn

)
JTi(PTi)n−1xn

))

≤ βnφ(u, xn) +
(
1 − βn

)
φ
(
u, Ti(PTi)n−1xn

)

≤ βnφ(u, xn) +
(
1 − βn

){
φ(u, xn) + νnρ

(
φ(u, xn)

)
+ μn

}

= φ(u, xn) +
(
1 − βn

)(
νnρ

(
φ(u, xn)

)
+ μn

)

≤ φ(u, xn) + νnρ
(
φ(u, xn)

)
+ μn,

(2.5)

therefore we have

sup
i≥1

φ
(
u, yn,i

) ≤ αnφ(u, x1) + (1 − αn)
{
φ(u, xn) + νnρ

(
φ(u, xn)

)
+ μn

}

≤ αnφ(u, x1) + (1 − αn)φ(u, xn) + νnsup
u∈F

ρ
(
φ(u, xn)

)
+ μn

≤ αnφ(u, x1) + (1 − αn)φ(u, xn) + θn,

(2.6)
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where θn = νnsupu∈Fρ(φ(u, xn)) + μn. This shows that u ∈ Cn+1, and so F ⊂ Cn+1. The
conclusion is proved.

(III) Next we prove that {xn} is a Cauchy sequence in C.
In fact, since xn = ΠCnx1, from Lemma 1.1(2) we have

〈
xn − y, Jx1 − Jxn

〉 ≥ 0, ∀y ∈ Cn. (2.7)

Again since F ⊂ Cn, for all n ≥ 1, we have

〈xn − u, Jx1 − Jxn〉 ≥ 0, ∀u ∈ F. (2.8)

It follows from Lemma 1.1(1) that for each u ∈ F and for each n ≥ 1

φ(xn, x1) = φ(ΠCnx1, x1) ≤ φ(u, x1) − φ(u, xn) ≤ φ(u, x1). (2.9)

Therefore {φ(xn, x1)} is bounded. By virtue of (1.5), {xn} is also bounded.
Since xn = ΠCnx1 and xn+1 = ΠCn+1x1 ∈ Cn+1 ⊂ Cn, we have φ(xn, x1) ≤ φ(xn+1, x1),

for all n ≥ 1. This implies that {φ(xn, x1)} is nondecreasing. Hence the limit limn→∞φ(xn, x1)
exists. By the construction of Cn, for any positive integer m ≥ n, we have Cm ⊂ Cn and
xm = ΠCmx1 ∈ Cn. This shows that

φ(xm, xn) = φ(xm,ΠCnx1) ≤ φ(xm, x1) − φ(xn, x1) −→ 0, as n,m −→ ∞. (2.10)

It follows from Lemma 1.5 that limm,n→∞||xm − xn|| = 0. Hence {xn} is a Cauchy sequence
in C. Since C is a nonempty closed subset of Banach space E, it is complete, without loss of
generality, we can assume that xn → x∗ (n → ∞).

By the assumption, it is easy to see that

lim
n→∞

θn = lim
n→∞

(
νn sup

u∈F
ρ
(
φ(u, xn)

)
+ μn

)
= 0. (2.11)

(IV) Now we prove that x∗ ∈ F.
In fact, since xn+1 ∈ Cn+1 and αn → 0, it follows from (2.1) and (2.11) that

sup
i≥1

φ
(
xn+1, yn,i

) ≤ αnφ(xn+1, x1) + (1 − αn)φ(xn+1, xn) + θn −→ 0 (as n −→ ∞). (2.12)

Since xn → x∗, by virtue of Lemma 1.5 for each i ≥ 1,we have

lim
n→∞

yn,i = x∗. (2.13)

Since {xn} is bounded, {Ti}∞i=1 is uniformly total quasi-φ-asymptotically nonexpansive nonself
mappings with nonnegative real sequence {νn}, {μn} and a strictly increasing continuous
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function ρ : R+ → R+ such that νn → 0, μn → 0, and ρ(0) = 0, for any given u ∈ F, we
have

φ
(
u, Ti(PTi)n−1xn

)
≤ φ(u, xn) + νnρ

(
φ(u, xn)

)
+ μn. (2.14)

This implies that {Ti(PTi)n−1xn} is uniformly bounded. Since

‖wn,i‖ =
∥∥∥J−1

(
βnJxn +

(
1 − βn

)
JTi(PTi)n−1xn

)∥∥∥

≤ βn‖xn‖ +
(
1 − βn

)∥∥∥Ti‖PTi‖n−1xn

∥∥∥

≤ ‖xn‖ +
∥∥∥Ti(PTi)n−1xn

∥∥∥.

(2.15)

This implies that {wn,i} is also uniformly bounded.
Since αn → 0, from (2.1), for each i ≥ 1 we have

lim
n→∞

∥∥Jyn,i − Jwn,i

∥∥ = lim
n→∞

αn‖Jx1 − Jwn,i‖ = 0. (2.16)

Since J−1 is uniformly continuous on each bounded subset of E∗, it follows from (2.13) and
(2.16) that

lim
n→∞

wn,i = x∗ for each i ≥ 1. (2.17)

Since J is uniformly continuous on each bounded subset of E, we have

0 = lim
n→∞

‖Jwn,i − Jx∗‖

= lim
n→∞

∥∥∥βnJxn +
(
1 − βn

)
JTi(PTi)n−1xn − Jx∗

∥∥∥

= lim
n→∞

∥∥∥βn(Jxn − Jx∗) +
(
1 − βn

)(
JTi(PTi)n−1xn − Jx∗

)∥∥∥

= lim
n→∞

(
1 − βn

)∥∥∥JTi(PTi)n−1xn − Jx∗
∥∥∥.

(2.18)

By condition (b), we have that

lim
n→∞

∥∥∥JTi(PTi)n−1xn − Jx∗
∥∥∥ = 0. (2.19)

Since J is uniformly continuous, this shows that limn→∞Ti(PTi)
n−1xn = x∗ uniformly in i ≥ 1.
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Again by the assumptions that for each i ≥ 1, Ti is uniformly Li-Lipschitz continuous,
thus we have

∥∥∥Ti(PTi)nxn − Ti(PTi)n−1xn

∥∥∥

≤ ∥∥Ti(PTi)nxn − Ti(PTi)nxn+1
∥∥ +

∥∥Ti(PTi)nxn+1 − xn+1
∥∥

+ ‖xn+1 − xn‖ +
∥∥∥xn − Ti(PTi)n−1xn

∥∥∥

≤ (Li + 1)‖xn − xn+1‖ +
∥∥Ti(PTi)nxn+1 − xn+1

∥∥ +
∥∥∥xn − Ti(PTi)n−1xn

∥∥∥.

(2.20)

Since limn→∞Ti(PTi)
n−1xn = x∗ and xn → x∗, these together with (2.20) imply that

limn→∞||Ti(PTi)nxn − Ti(PTi)
n−1xn|| = 0 and limn→∞Ti(PTi)

nxn = x∗, that is,

lim
n→∞

TiP(PTi)n−1xn = x∗. (2.21)

In view continuity of TiP , it yields that TiPx∗ = x∗. Since x∗ ∈ C, Px∗ = x∗. This shows that
Tx∗ = x∗. By the arbitrariness of i ≥ 1, we have x∗ ∈ F.

(V) Finally we prove that xn → x∗ = ΠFx1.
Let w = ΠFx1. Since w ∈ F ⊂ Cn and xn = ΠCnx1, we have φ(xn, x1) ≤ φ(w,x1), for all

n ≥ 1. This implies that

φ(x∗, x1) = lim
n→∞

φ(xn, x1) ≤ φ(w,x1). (2.22)

In view of the definition of ΠFx1, from (2.22) we have x∗ = w. Therefore xn → x∗ = ΠFx1.
This completes the proof of Theorem 2.1.

Theorem 2.2. Let E, C, {αn}, {βn} be the same as in Theorem 2.1. Let Ti : C → E, i = 1, 2, . . . be a
family of closed and uniformly quasi-φ-asymptotically nonexpansive nonself mappings with sequence
{kn} ⊂ [1,∞), kn → 1, and for each i ≥ 1, Ti be uniformly Li-Lipschitz continuous. Let {xn} be a
sequence generated by

x1 ∈ E chosen arbitrarily; C1 = C,

yn,i = J−1
[
αnJx1 + (1 − αn)

(
βnJxn +

(
1 − βn

)
JTi(PTi)n−1xn

)]
, i ≥ 1,

Cn+1 =

{
z ∈ Cn : sup

i≥1
φ
(
z, yn,i

) ≤ αnφ(z, x1) + (1 − αn)φ(z, xn) + θn

}
,

xn+1 = ΠCn+1x1, ∀n ≥ 1,

(2.23)

where θn = (kn − 1)supu∈Fφ(u, xn), F :=
⋂∞

i=1 F(Ti). If F is a nonempty bounded subset in C, then
{xn} converges strongly toΠFx1.

Proof. By Remark 1.4 Ti : C → E, i = 1, 2, . . . be a family of closed and uniformly quasi-
φ-asymptotically nonexpansive nonself mappings that it is a family of closed and uniformly
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total quasi-φ-asymptotically nonexpansive nonself mappings with taking ρ(t) = t, t > 0,
νn = (kn − 1) and μn = 0. Therefore all conditions in Theorem 2.1 are satisfied. By the similar
methods as given in the proof of Theorem 2.1, we can prove that the sequence {xn} defined
by (2.23) converges strongly to ΠFx1.

Theorem 2.3. Let E, C, {αn}, {βn} be the same as in Theorem 2.2. Let Ti : C → E, i = 1, 2, . . . be a
family of quasi-φ-nonexpansive nonself mappings such that F :=

⋂∞
i=1 F(Ti)/= ∅ and for each i ≥ 1, Ti

be uniformly Li-Lipschitz continuous. Let {xn} be a sequence generated by

x1 ∈ E chosen arbitrarily; C1 = C,

yn,i = J−1
[
αnJx1 + (1 − αn)

(
βnJxn +

(
1 − βn

)
JTixn

)]
, i ≥ 1,

Cn+1 =

{
z ∈ Cn : sup

i≥1
φ
(
z, yn,i

) ≤ αnφ(z, x1) + (1 − αn)φ(z, xn)

}
,

xn+1 = ΠCn+1x1, ∀n ≥ 1.

(2.24)

Then {xn} converges strongly toΠFx1.

Proof. By Remark 1.4 Ti : C → E, i = 1, 2, . . . be a family of quasi-φ-nonexpansive nonself
mappings that it is a family of uniformly quasi-φ-asymptotically nonexpansive nonself
mappings with sequence {kn} = {1}. Hence θn = (kn − 1)supu∈Fφ(u, xn) = 0 Therefore
all conditions in Theorem 2.2 are satisfied. By the similar methods, we can prove that the
sequence {xn} defined by (2.24) converges strongly to ΠFx1.

3. Application and Example

In this section we utilize the results presented in Section 2 to prove a strong convergence
theorem concerning maximal monotone operators in Hilbert spaces.

Let E be a real Hilbert space and let A be a maximal monotone operator from E to E.
For each r > 0, we can define a single valued mapping JAr : E → E by JAr = (I + rA)−1 and
such a mapping JAr is called the resolvent of A. It is easy to prove that JAr is a nonexpansive
mapping and A−1(0) = F(JAr ) for all r > 0. Therefore it is a uniformly 1-Lipschitz continuous
and quasi-φ-nonexpansive mapping. Hence for each p ∈ F(JAr ) and w ∈ E, we have

φ
(
p, JAr w

)
≤ φ

(
p,w

)
, (3.1)

and F(JAr ) = A−1(0). These show that all conditions in Theorem 2.3 are satisfied. Hence from
Theorem 2.3 we have the following.
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Theorem 3.1. Let E be a real Hilbert space. Let A1, A2 be two maximal monotone operators from E
to E such that F = A−1

1 (0) ∩A−1
2 (0)/= ∅. Let JA1

r and JA2
r be the resolvent of A1 and A2, respectively,

where r > 0. Let {αn}, {βn} be the same as in Theorem 2.3 and {xn} be the sequence defined by

x1 ∈ E chosen arbitrarily; C1 = E,

yn,i = J−1
[
αnJx1 + (1 − αn)

(
βnJxn +

(
1 − βn

)
JJAi

r xn

)]
, i = 1, 2,

Cn+1 =
{
z ∈ Cn : max

i=1,2
φ
(
z, yn,i

) ≤ αnφ(z, x1) + (1 − αn)φ(z, xn)
}
,

xn+1 = PCn+1x1, ∀n ≥ 1,

(3.2)

where PC is the metric projection from H onto the subset C ⊂ H. Then the sequence {xn} defined by
(3.2) converges strongly to PFx1.
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