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We present a projection algorithm for finding a solution of a variational inclusion problem in a real
Hilbert space. Furthermore, we prove that the proposed iterative algorithm converges strongly to
a solution of the variational inclusion problem which also solves some variational inequality.

1. Introduction

Let H be a real Hilbert space. Let B : H — H be a single-valued nonlinear mapping and
R: H — 2H be a set-valued mapping. Now we concern the following variational inclusion,
which is to find a point x € H such that

0 € B(x) + R(x), (1.1)

where 0 is the zero vector in H. The set of solutions of problem (1.1) is denoted by I(B, R). If
H = R™, then problem (1.1) becomes the generalized equation introduced by Robinson [1]. If
B =0, then problem (1.1) becomes the inclusion problem introduced by Rockafellar [2]. It is
known that (1.1) provides a convenient framework for the unified study of optimal solutions
in many optimization-related areas including mathematical programming, complementarity,
variational inequalities, optimal control, mathematical economics, equilibria, game theory,
and so forth. Also various types of variational inclusions problems have been extended
and generalized. Recently, Zhang et al. [3] introduced a new iterative scheme for finding
a common element of the set of solutions to the problem (1.1) and the set of fixed points of
nonexpansive mappings in Hilbert spaces. Peng et al. [4] introduced another iterative scheme
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by the viscosity approximate method for finding a common element of the set of solutions
of a variational inclusion with set-valued maximal monotone mapping and inverse strongly
monotone mappings, the set of solutions of an equilibrium problem and the set of fixed points
of a nonexpansive mapping. For some related works, see [5-28] and the references therein.
Inspired and motivated by the works in the literature, in this paper, we present a
projection algorithm for finding a solution of a variational inclusion problem in a real Hilbert
space. Furthermore, we prove that the proposed iterative algorithm converges strongly to a
solution of the variational inclusion problem which also solves some variational inequality.

2. Preliminaries

Let H be a real Hilbert space with inner product (-,:) and norm || - ||. Let C be a nonempty
closed convex subset of H. Recall that a mapping B : C — C is said to be a-inverse strongly
monotone if there exists a constant & > 0 such that (Bx-By, x—y) > a||Bx—By|?, for all x,y €
C. A mapping A is strongly positive on H if there exists a constant y > 0 such that (Ax, x) >
ullx||? for all x € H.

For any x € H, there exists a unique nearest point in C, denoted by Pc(x), such that

llx = Pe(x)[| < ||lx -y

, forallyeC. (2.1)

Such a P is called the metric projection of H onto C. We know that Pc is nonexpansive.
Further, for x € H and x* € C,

*

x*=Pc(x) &= (x—x",x*-y)>0 forallyeC. (2.2)

A set-valued mapping T : H — 2H is called monotone if, for all x, y€H, f eTxand
g € Ty imply (x -y, f — g) > 0. A monotone mapping T : H — 2H is maximal if its graph
G(T) is not properly contained in the graph of any other monotone mapping. It is known that
a monotone mapping T is maximal if and only if, for (x, f) € Hx H, (x -y, f — g) > 0 for
every (y,g) € G(T) implies f € Tx.

Let the set-valued mapping R : H — 2H be maximal monotone. We define the
resolvent operator Jg ) associated with R and A as follows:

Jra=I+AR)(x), xeH, (2.3)

where \ is a positive number. It is worth mentioning that the resolvent operator Jr ) is single-
valued, nonexpansive, and 1-inverse strongly monotone, and that a solution of problem (1.1)
is a fixed point of the operator Jr (I — AB) for all A > 0, see for instance [29].

Lemma 2.1 (see [30]). Let R : H — 2H be a maximal monotone mapping and B: H — H be a
Lipschitz-continuous mapping. Then the mapping (R + B) : H — 2H is maximal monotone.

Lemma 2.2 (see [8]). Let {x,} and {y,} be bounded sequences in a Banach space X and let {f,} be
a sequence in [0,1] with 0 < liminf, _, B, <limsup, B, < 1. Suppose xps1 = (1= Pn)Yn + PnXn
for all integers n > 0 and limsup,, . _ (Y1 — Ynll = X041 — Xnll) < 0. Then, imy, . o5 ||y — x4l = 0.
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Lemma 2.3 (see [31]). Assume {a,} is a sequence of nonnegative real numbers such that a,.; <
(1 —yn)an + 64, where {y,} is a sequence in (0,1) and {6, ) is a sequence such that

(1) 221 fn = 0
(2) limsup, , _6,/yn <001 32 |6,] < c0.

Then lim,, _, na,, = 0.

3. Main Result

In this section, we will prove our main result. First, we give some assumptions on the
operators and the parameters. Subsequently, we introduce our iterative algorithm for finding
solutions of the variational inclusion (1.1). Finally, we will show that the proposed algorithm
has strong convergence.

In the sequel, we will assume that

(A1) Cis a nonempty closed convex subset of a real Hilbert space H;

(A2) A is a strongly positive bounded linear operator with coefficient 0 < p < 1, R :
H — 2" is a maximal monotone mapping and B : C — C is an a-inverse strongly
monotone mapping;

(A3) A > 01is a constant satisfying A < 2a.
Now we introduce the following iteration algorithm.

Algorithm 3.1. For given x, € C arbitrarily, compute the sequence {x,} as follows:
Xn+1 = (1 - ﬂn)xn + PnPc[(I = ayA)Jra(I = AB)x,], n >0, (3.1)

where {a,} and {f,} are two real sequences in [0, 1].
Now we study the strong convergence of the algorithm (3.1)
Theorem 3.2. Suppose that I(B, R) # 0. Assume the following conditions are satisfied:

(1) lim,, _, o, = 0;
(i) 3520 an = oo;

(iii) 0 < liminf, B, < limsup, | _f, <1

Then the sequence {x,} generated by (3.1) converges strongly to X € I(B,R) which solves the
following variational inequality:

(Ax,y-x)>0, YyelI(B,R). (3.2)
Proof. Take x* € I(B, R). It is clear that

Jra(x* = ABx®) = x*. (3.3)
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We divide our proofs into the following five steps:

(1) the sequence {x,} is bounded.

(2) l|xns1 = 2xnll — 0.

(3) |Bxn — Bx*|| — 0.

(4) limsup, , (AX,x, —X) >0 where X = Prpr)(I - A)(X).

5) x, — X.

Proof of (1.1). Since B is a-inverse strongly monotone, we have

|(T = AB)x = (I - AB)y||” < ||x - y||* + A(A - 2)|| Bx - By||".

(3.4)

It is clear that if 0 < A < 2a, then (I — AB) is nonexpansive. Set i, = Jri(x, — ABx,),n > 0. It

follows that

llyn = || = TR (30 = ABxy) — Jroa(x* = ABx")|
< |I(xy = ABxy) — (x* = ABx™)||

<l = x|
Since A is linear bounded self-adjoint operator on H, then
[All = sup{[{Au, u)| : u € H, [lu] =1}.

Observe that

(I -anA)u,u) =1-ay(Au,u)
21— oAl

20,

that is to say I — a, A is positive. It follows that

(I = anA)|| = sup{((I —anA)u,u) : u € H, ||u| =1}
=sup{l -—a,(Au,u) :uec H,|ul| =1}

<1-aup.

(3.5)

(3.6)

(3.7)

(3.8)
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From (3.1), we deduce that

[%ns1 = X[ = [| (1 = Bu)%n + BuPc [(I = anA)ya] - x|
< (1= Ba)llxn = 711+ Bl [(T = @ A) (yn = x7)] = @ Ax”|
< (1= Bu)llxn = %71+ (1= aupe) Ballyn = %7 || + cnfBull Ax”|
< (1= aupupt) 260 = x°[| + auful| Ax”|
lAx"| }

< maX{HxO ey, AX

Therefore, {x,} is bounded.

Proof of (3.1). Set z,, = Pc[(I — a,A)Jra(I — AB)x,] for all n > 0. Then, we have

120 = Zu1ll = | Pe [(I = @ A)ya] = Pe[( = an1 A)yna] |
<[ - anA)yn] = [(I = a1 A)yna] |
= [|(I = anA) (Yn = Yn-1) + (@n-1 = @) Ay ||
< ||(I - anA) (Yn = yaur) || + [ (@1 = ctn) Ay |

< (1= ) |yn = yna || + lan = ana ||| Ay |-
Note that

”yn —Yn ” = ”]R,)L(xn - /\an) - ]R,A(xnfl - /\anfl)”
< |[(xn = ABxy) = (xp-1 = ABxy-1)||

< loen = X1 |-
Substituting (3.11) into (3.10), we get
20 = znall < (1= anp) | = Xno1ll + lan — ana ||| Ayna])-

Therefore,

lim sup([|zn = zpall = [|Xn = X)) <0

n—oo
This together with Lemma 2.2 imply that

lim ||z, — x,|| = 0.
n—oo

(3.9)

(3.10)

(3.11)

(3.12)

(3.13)

(3.14)
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Hence,
nh_)rrolo”xnﬂ — x|l = nh_I:Igoﬁn“Zn — x|l = 0. (3.15)
O
Proof of (3.4). From (3.4), we get

[y = x* |1 = IR (20 = ABxy) = Jra(x* = ABx*)|
< ||(xn = ABxy) — (x* = ABx*)||? (3.16)

< [lxn = x*||* + A(A = 2a) || Bx,, — Bx*||*.
By (3.1), we obtain
%nar = 2|7 < (1= ) 20 = x"I + Bu | Pe [(T = auA) ] — x*||?
< (1= Bu)llacn = X+ Bu| - an Ay — x|
= (1= B = X1 + u([lym - * - Ay
= (1= pu)llxn = I+ Bu([lym = %" (1" = 2 (i = x°, Aya) + @3 | Ay )
< (1= )l = 1P + B (lym = 17 + @ (2l = [ Aall + [ Avall*) )
(

< (1 - ﬂn)“xn - x*”Z + ,Bn ”]/n - x*”2 + anM>/
(3.17)

where M > 0 is some constant satisfying sup,, {2|ly, — x*[|[| Ayl + [|Ayxl|*} < M. From (3.16)
and (3.17), we have

261 = x> < [|30 = 2" [ + A(A = 2a) B || By — Bx"||* + ot M. (3.18)
Thus,
A(Q2a = 1) ,||Bxy — Bx*|* < [|l2n — x*|* = || 2ps1 — x*|* + apM
(3.19)
< (loen = x| + 1xns1 = XDl X1 = Xnll + @M,
which imply that

lim [|Bx,, = Bx"|| = 0. (3.20)
O
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Proof of (3.10). Since Jr, is 1-inverse strongly monotone, we have

llyn = x*||” = [1Jr1 (xtn — ABx) — Jra (x* — ABx™)|12
< <xn - ABx;, — (x* = ABx"), Yn — x*>

1
= 5 (llen = 4By = (" = ABx) | + [lya = x°|”

—||2%n = ABx, — (x* = ABx*) = (yn — x¥)

)
< 5 (Hew =21+ [lym = 2 [1* = [l2n = ¥ = A(Bx = Bx)||*)

Nl—= N

(lw =21+ flym =" = [0 =
+20(Bxy = BX", x5 — ) — \2|| By - BX'|I%),
which implies that
=2 |1* < llx = 271 = |20 = | + 201 Bxa = B[] 60 = |
Substitute (3.22) into (3.17) to get
e = 2717 < v = 271 = Bl = yll” + 20 1Bt = B[] 20 = yal| + M.
Then we derive

2
ﬁ""x" - ]/n” < (len = x| + [|xcne1 = x* D241 = 2l

+ 2M||Bxy, — Bx*|||| 20 = y || + M.
So, we have
lim [, -y = 0.
We note that Py r)(I — A) is a contraction. As a matter of fact,

| Prs.ry(I - A)x = Pysry(I - A)y|| < ||(I-A)x - (I - A)y||
< |1 - Alll]x -y

<(-mlx-vl.

(3.21)

(3.22)

(3.23)

(3.24)

(3.25)

(3.26)
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for all x,y € H. Hence Py r)(I — A) has a unique fixed point, say X € I(B,R). That is X =
Py ry(I — A)(X). This implies that (AX,y — x) > 0 for all y € I(B, R). Next, we prove that

lim sup(AX, x, - X) > 0. (3.27)

n—oo
First, we note that there exists a subsequence {xy,,} of {x,} such that

limsup(AX, x, — X) = lim <A9~c, Xn; = 9~c> (3.28)
n— oo J—®

Since {xy, } is bounded, there exists a subsequence {x,, } of {x,} which converges weakly to
w. Without loss of generality, we can assume that x,, — w.

Next, we show that w € I(B, R). In fact, since B is a-inverse strongly monotone, B is
Lipschitz-continuous monotone mapping. It follows from Lemma 2.1 that R + B is maximal
monotone. Let (v, g) € G(R + B), thatis, g — Bv € R(v). Again since y,, = Jra(Xn, — ABx,_i),
we have x,,, — ABx,, € (I + AR)(yy,), thatis, (1/1)(xn, — Yu, — ABxy,) € R(yy,,). By virtue of the
maximal monotonicity of R + B, we have

<v - Yu,§ - Bo- %(xni — Yy, — .)Lani)> >0, (3.29)

and so

<U - y"lilg> 2 <U - y"i'Bv + %(x"i ~Yn — )LBx”i)>
1
= <v = Y, B — Byy, + Byy, — Bxy, + i (2, — yni)> (3.30)

1
2 <U - ynirByn,- - ani> + <U = Ynis X(‘xni - yni)>'
It follows from ||x, — y.|| — 0, |Bx, — By,|| — 0and y,, — w that

lim (v -y, g) = (v-w,g) 20. (3.31)

n; — oo

It follows from the maximal monotonicity of B + R that 8 € (R + B)(w), that is, w € I(B, R).
Therefore, w € I(B, R). It follows that

limsup(AX, x, — X) = lim <A5E,xnj - 9~c>
n—oo J—®

= (A%, w - %) (3.32)
> 0. O
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Proof of (3.11). First, we note that z,, = Pc[(I — a,A)y,], then for all x € C, we have (z, — (I -
anA)Yn, zn — x) < 0. Thus,

1z = ZI* = (20 — ¥, 20 - X)
=(z, - (I~ anA)yn +(I - “nA)yn -X,2, - X)
=(zn— (I = ayA)Yn, zn —X) + (I - 2y A) Yy — X, 2, — X)
< - anA) (yn — X) — a4 AX, 2, — X) (3.33)
= <(I_ “nA)(yn - %),Zn - %> + an<_A5C'/Zn _£>

< ”(I_ “"A)(y" - i)””Zn _i” +ap(—AX,z, — X)

1-a - - ~ ~
< M(nxn = FI + llzn - FI°) + an(-A%, 2, - %),
2
that is,
2 = FIP < (1= gt s = B> + -2 (~ AT, 2, - 5). (3.34)
= 1 +an# 7 .
So,
nt = FI2 < (1= )l = x| + ullzn — °I
< (1= B otn = I + (1 — g o — TP+ ~2P (A%, 2, — 5
- 1+a,pu
(3.35)
= (1= o) - 2P+ 2P (A% 2, - )
1+ anp ’

= (1= 6u)1%n = X*|I* + 6,00,

where 6, = a,fupu and 0, = (1/(1 + appu)p)(—AX, z, — X). It is easy to see that >,;"; 6, =
and limsup, _, o, <0. Hence, by Lemma 2.3, we conclude that the sequence {x,} converges
strongly to X. This completes the proof. O

4. Conclusion

The results proved in this paper may be extended for multivalued variational inclusions and
related optimization problems.
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