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The convergence of the Gaussian mixture extended-target probability hypothesis density (GM-
EPHD) filter and its extended Kalman (EK) filtering approximation in mildly nonlinear condition,
namely, the EK-GM-EPHD filter, is studied here. This paper proves that both the GM-EPHD filter
and the EK-GM-EPHD filter converge uniformly to the true EPHD filter. The significance of this
paper is in theory to present the convergence results of the GM-EPHD and EK-GM-EPHD filters
and the conditions under which the two filters satisfy uniform convergence.

1. Introduction

The problem of extended-target tracking (ETT) [1, 2] arises because of the sensor resolution
capacities [3], the high density of targets, the sensor-to-target geometry, and so forth. For
targets in near field of a high-resolution sensor, the sensor is able to receive more than one
measurement (observation, or detection) at each time from different corner reflectors of a
single target. In this case, the target is no longer known as a point object, which at most
causes one detection at each time. It is called extended target. ETT is very valuable for many
real applications [4, 5], such as ground or littoral surveillance, robotics, and autonomous
weapons.

The ETT problem has attracted great interest in recent years. Some approaches [6, 7]
have been proposed for tracking a known and fixed number of the extended targets without
clutter. Nevertheless, for the problem of tracking an unknown and varying number of the
extended targets in clutter, most of the association-based approaches [8], such as nearest
neighbor, joint probabilistic data association, and multiple hypothesis tracking, would no
longer be applicable straightforwardly owing to their underlying assumption of point objects.
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Recently, the random-finite-set- (RFS-) based tracking approaches [9] have attracted
extensive attention because of their lots of merits. The probability hypothesis density (PHD)
[10] filter, developed by Mahler for tracking multiple point targets in clutter, has been shown
to be computationally tractable alternative to full multitarget filter in the RFS framework. The
sequential Monte Carlo (SMC) implementation for the PHD filter was devised by Vo et al.
[11]. Then, Vo and Ma [12] devised the Gaussian mixture (GM) implementation for the PHD
filter under the linear, Gaussian assumption on target dynamics, birth process, and sensor
model. Actually the original intention of the PHD filter devised by Clark and Godsill is to
address nonconventional tracking problems, that is, tracking in high target density, tracking
closely spaced targets, and detecting targets of interest in a dense clutter background [13]. So
it is especially suitable for the ETT problem.

Given the Poisson likelihoodmodel for the extended target [14], Mahler developed the
theoretically rigorous PHD filter for the ETT problem in 2009 [15]. Under the linear, Gaussian
assumption, the GM implementation for the extended-target PHD (EPHD) filter was
proposed by Granström et al. [16], in 2010. Similar to the point-target GM-PHD filter, the GM-
EPHDfilter can also be extended to accommodate mildly nonlinear target dynamics using the
extended Kalman (EK) filtering [17] approximation. The extension is called EK-GM-EPHD
filter. Experimental results showed the EK-GM-EPHD filter was capable of tracking multiple
humans, each of which gave rise to, on average, 10 measurements at each scan and was
therefore treated as an extended target, using a SICK LMS laser range sensor [16].

Although the GM-EPHD and EK-GM-EPHD filters have been successfully used for
many real-world problems, there have been no results showing the convergence for the two
filters. The convergence results on point-target particle-PHD and GM-PHD filters [18, 19]
do not apply directly for the GM-EPHD and EK-GM-EPHD filters because of the significant
difference between the measurement update steps of the PHD and EPHD filters. Therefore,
to ensure the more successful and extensive applications of the EPHD filter to “real-life”
problems, it is necessary to answer the following question: do the GM-EPHD and EK-GM-
EPHD filters converge asymptotically toward the optimal filter and in what sense?

The answer can actually be derived from Propositions 3.2 and 3.3 in this paper.
Proposition 3.2 demonstrates the uniform convergence [20–22] of the errors for the
measurement update step of the GM-EPHD filter. In other words, given simple sufficient
conditions, the approximation error of the measurement-updated EPHD by a sum of
Gaussians is proved to converge to zero as the number of Gaussians in the mixture tends
to infinity. In addition, the uniform convergence results for the measurement update step of
the EK-GM-EPHD filter are derived from Proposition 3.3.

2. EPHD and GM-EPHD Filters

At time k, let xk be the state vector of a single extended target, and zk a single measurement
vector received by sensor. Multiple extended-target states and sensor measurements can,
respectively, be represented as finite sets Xk = {xi,k}nki=1 and Zk = {zi,k}mk

i=1, where nk and mk

denote the number of the extended targets and sensor measurements, respectively. A Poisson
model is used to describe the likelihood function for the extended target according to Gilholm
et al. [14]:

lZk(xk) = e
−γ(xk)

∏

zk∈Zk

γ(xk)φzk(xk), (2.1)
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where φzk(xk) denotes the single-measurement single-target likelihood density; γ(xk) denotes
the expected number of measurements arising from an extended target.

The clutter is modeled as a Poisson RFS with the intensity κk(zk) = λkck(zk), where λk
is the average clutter number per scan and ck(zk) is the density of clutter spatial distribution.

Given the Poisson likelihood model for the extended targets, Mahler derived the
EPHD filter using finite-set statistics [15, 23]. The prediction equations of the EPHD filter
are identical to those of the point-target PHD filter [10]. The EPHD measurement update
equations are

υk(xk) =

⎛
⎝1 − pD,k(xk) + e−γ(xk)pD,k(xk) +

∑

℘k∠Zk

ω℘k

∑

Wk∈℘k

ηWk(xk)
dWk

⎞
⎠υk|k−1(xk), (2.2)

ηWk(xk) = pD,k(xk)e
−γ(xk)

∏

zk∈Wk

γ(xk)φzk(xk)
λkck(zk)

, (2.3)

ω℘k =

∏
Wk∈℘kdWk∑

℘′
k
∠Zk

∏
W ′

k
∈℘′

k
dW ′

k

; dWk = δ|Wk |,1 +
〈
υk|k−1, ηWk

〉
, (2.4)

where pD,k(xk) denotes the probability that the set of observations from the extended target
will be detected at time k; ℘k∠Zk denotes that ℘k partitions set Zk [15], for example, let
Z = {z1, z2, z3}, then the partitions of Z are ℘1 = {{z1, z2, z3}}, ℘2 = {{z1}, {z2}, {z3}}, ℘3 =
{{z1, z2}, {z3}}, ℘4 = {{z1, z3}, {z2}}, and ℘5 = {{z1}, {z2, z3}}; |Wk| denotes the cardinality of
the setWk; δ|Wk |,1 = 1 if |Wk| = 1, and δ|Wk |,1 = 0 otherwise; the notation 〈·, ·〉 is the usual inner
product. The measure in 〈·, ·〉 of (2.4) is continuous, it defines the integral inner product

〈
υk|k−1, ηWk

〉
=
∫
υk|k−1(xk)ηWk(xk)dxk. (2.5)

By making the same six assumptions that are made in [12] and the additional
assumption that γ(xk) can be approximated as functions of the mean of the individual
Gaussian components, Granström et al. proposed the GM-EPHD filter [16]. At time k, let
υ
Jk|k−1
k|k−1 denote the GM approximation to the predicted EPHD υk|k−1 with Jk|k−1 Gaussian

components, and υ
Jk
k the GM approximation to the measurement-updated EPHD υk with

Jk Gaussian components. The prediction equations of the GM-EPHD filter are identical to
those of point-target GM-PHD filter [12]. The GM-EPHDmeasurement update equations are
as follows.

Let the predicted EPHD be a GM of the form

υ
Jk|k−1
k|k−1(xk) =

Jk|k−1∑

i=1

w
(i)
k|k−1N

(
xk | m(i)

k|k−1,P
(i)
k|k−1

)
, (2.6)

where N(·|m,P) denotes the density of Gaussian distribution with the mean m and
covariance P.

Then, the measurement-updated EPHD is a GM given by
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υ
Jk
k (xk) = υ

ND,Jk|k−1
k (xk) +

∑

℘k∠Zk

∑

Wk∈℘k
υ
D,Jk|k−1
k (xk,Wk), (2.7)

where υND,Jk|k−1
k

(xk) denotes the Gaussian components handling no detections,

υ
ND,Jk|k−1
k (xk) =

Jk|k−1∑

j=1

w
(j)
k N

(
xk | m(j)

k|k−1,P
(j)
k|k−1

)
,

w
(j)
k

=
(
1 −

(
1 − e−γ(m

(j)
k|k−1)

)
pD,k

)
w

(j)
k|k−1,

m(j)
k = m(j)

k|k−1; P(j)
k = P(j)

k|k−1,

(2.8)

and υD,Jk|k−1
k

(xk,Wk) denotes the Gaussian components handling detected targets

υ
D,Jk|k−1
k (xk,Wk) =

Jk|k−1∑

j=1

w
(j)
k
N
(
xk | m(j)

k
,P(j)

k

)
, (2.9)

w
(j)
k = ωJk|k−1

℘k

ηWk

(
m(j)

k|k−1
)

d
Jk|k−1
Wk

w
(j)
k|k−1, (2.10)

ω
Jk|k−1
℘k

=

∏
Wk∈℘kd

Jk|k−1
Wk

∑
℘′
k
∠Zk

∏
W ′

k
∈℘′

k
d
Jk|k−1
W ′

k

; d
Jk|k−1
Wk

= δ|Wk |,1 +
〈
υ
Jk|k−1
k|k−1, ηWk

〉
, (2.11)

ηWk

(
m(j)

k|k−1
)
= pD,ke

−γ(m(j)
k|k−1)

∏

zk∈Wk

γ
(
m(j)

k|k−1
)
φzk

(
m(j)

k|k−1
)

λkck(zk)
, (2.12)

φzk

(
m(j)

k|k−1
)
= N

(
zk | Hkm

(j)
k|k−1,Rk +HkP

(j)
k|k−1H

T
k

)
, (2.13)

K(j)
k = P(j)

k|k−1H
T

k

(
HkP

(j)
k|k−1H

T

k + Rk

)−1
, (2.14)

m(j)
k = m(j)

k|k−1 +K(j)
k

⎛
⎜⎝

⎡
⎢⎣

z1
...

z|Wk |

⎤
⎥⎦ −Hkm

(j)
k|k−1

⎞
⎟⎠; P(j)

k =
(
I −K(j)

k Hk

)
P(j)
k|k−1, (2.15)

Hk =

⎡
⎢⎣
Hk

...
Hk

⎤
⎥⎦

⎫
⎪⎬

⎪⎭
|Wk|; Rk = blkdiag

⎛
⎜⎝

|Wk |︷ ︸︸ ︷
Rk, . . . ,Rk

⎞
⎟⎠, (2.16)

where I denotes the identity matrix; pD,k has been assumed to be state independent; Hk

and Rk denote the observation matrix and the observation noise covariance, respectively;
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blkdiag(·) denotes block diagonal matrix, the measure in 〈·, ·〉 of (2.11) is discrete, and it
defines the summation inner product

〈
υ
Jk|k−1
k|k−1, ηWk

〉
=

Jk|k−1∑

l=1

ηWk

(
m(l)

k|k−1
)
w

(l)
k|k−1. (2.17)

3. Convergence of the GM-EPHD and EK-GM-EPHD Filters

The convergence properties and corresponding proof of the initialization step, prediction
step, and pruning and merging step for the GM-EPHD filter are identical to those for
point-target GM-PHD filter [19]. The main difficulty and greatest challenge is to prove the
convergence for the measurement update step of the filter.

In order to derive the convergence results of the measurement update step for the
GM-EPHD filter, the following lemma is first presented.

Consider the following assumptions.

B1: After the prediction step at time k, υJk|k−1
k|k−1 converges uniformly to υk|k−1. In other

words, for any given εk|k−1 > 0 and any bounded measurable function ϕ ∈ B(Rd),
where B(Rd) is the set of bounded Borel measurable functions on R

d, there is a
positive integer J such that

∣∣∣
〈
υ
Jk|k−1
k|k−1 − υk|k−1, ϕ

〉∣∣∣ ≤ εk|k−1
∥∥ϕ

∥∥
∞, (3.1)

for Jk|k−1 ≥ J , where ‖ · ‖∞ denotes ∞-norm. ‖ϕ‖∞ � sup(|ϕ|), sup(·) denotes the
supremum.

B2: The clutter intensity κk(zk) = λkck(zk) is known a priori.

B3: γ(xk) ∈ Cb(Rd), where Cb(Rd) denotes the set of the continuous bounded functions
on R

d.

Lemma 3.1. Given a partition ℘k = {W1,k,W2,k, . . . ,Wn,k} and suppose that assumptions B1–B3
hold, then

∣∣∣∣∣
∏

i=1,...,n

d
Jk|k−1
Wi,k

−
∏

i=1,...,n

dWi,k

∣∣∣∣∣ ≤ εk|k−1
∑

j=1,...,n

∥∥∥ηWj,k

∥∥∥
∞

∏

i=1,...,n;i /= j

(
d
Jk|k−1
Wi,k

+ dWi,k

)
. (3.2)

The proof of Lemma 3.1 can be found in Appendix A.
The uniform convergence of the measurement-updated GM-EPHD is now established

by Proposition 3.2.

Proposition 3.2. After the measurement update step of the GM-EPHD filter, there exists a real
number ak, dependent on the number of measurements such that

∣∣∣
〈
υ
Jk
k − υk, ϕ

〉∣∣∣ ≤ akεk|k−1
∥∥ϕ

∥∥
∞, (3.3)

where ak is defined by (B.10).
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The proof of the Proposition 3.2 can be found in Appendix B.
Proposition 3.2 shows that the error for the GM-EPHD corrector converges uniformly

to the true EPHD corrector at each stage of the algorithm and the corresponding error bound
is also provided. The error tends to zero as the number of Gaussians in the mixture tends to
infinity. However, from (B.10), it can be seen that the error bound for the GM-EPHD corrector
depends on the number of all partitions of the measurement set. It is quickly realized that as
the size of the measurement set increases, the number of possible partitions grows very large.
Therefore, the number of Gaussians in the mixture to ensure the asymptotic convergence of
the error to a given bound would grow very quickly with the increase of the measurement
number.

Now turn to the convergence for the EK-GM-EPHD filter, which is the nonlinear
extension of the GM-EPHD filter. Due to the nonlinearity of the extended-target state and
observation processes, the EPHD can no longer be represented as a GM. However, the
EK-GM-EPHD filter can be adapted to accommodate models with mild nonlinearities. The
convergence property and corresponding proof of the prediction step for the EK-GM-EPHD
filter are identical to those for point-target EK-GM-PHD filter [19]. We now establish the
conditions for uniform convergence of the measurement update step for the EK-GM-EPHD
filter.

Proposition 3.3. Suppose that the predicted EK-EPHD is given by the sum of Gaussians

υ
EK,Jk|k−1
k|k−1 (xk) =

Jk|k−1∑

i=1

w
(i)
k|k−1N

(
xk | m(i)

k|k−1,P
(i)
k|k−1

)
, (3.4)

and the φzk(xk) in (2.1) is given by the nonlinear single-measurement single-target equation zk =
hk(xk,vk), where hk is known nonlinear functions and vk is zero-mean Gaussian measurement noise
with covariance Rk, then the measurement-updated EK-EPHD approaches the Gaussian sum

υk(xk) → υ
EK,Jk
k (xk) = υ

ND,EK,Jk|k−1
k (xk) +

∑

℘k∠Zk

∑

Wk∈℘k
υ
D,EK,Jk|k−1
k (xk,Wk), (3.5)

uniformly in xk and Zk as P
(i)
k|k−1 → 0 for i = 1, . . . , Jk|k−1, and where

υ
ND,EK,Jk|k−1
k (xk) =

Jk|k−1∑

i=1

(
1 − pD,k + e−γ(m

(i)
k|k−1)pD,k

)
w

(i)
k|k−1N

(
xk | m(i)

k|k−1,P
(i)
k|k−1

)
, (3.6)

υ
D,EK,Jk|k−1
k (xk,Wk) =

Jk|k−1∑

i=1

ω
EK,Jk|k−1
℘k

ηEKWk

(
m(i)

k|k−1
)

d
EK,Jk|k−1
Wk

w
(i)
k|k−1N

(
xk | m(i)

k
,P(i)

k

)
, (3.7)

ω
EK,Jk|k−1
℘k

=

∏
Wk∈℘kd

EK,Jk|k−1
Wk∑

℘′
k
∠Zk

∏
W ′

k
∈℘′

k
dEK
W ′

k

; d
EK,Jk|k−1
Wk

= δ|Wk |,1 +
Jk|k−1∑

i=1

w
(i)
k|k−1η

EK
Wk

(
m(i)

k|k−1
)
, (3.8)
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ηEKWk

(
m(i)

k|k−1
)
= pD,ke

−γ(m(i)
k|k−1)

×
∏

zk∈Wk

γ
(
m(i)

k|k−1
)
N
(
zk | hk

(
m(i)

k|k−1, 0
)
,U(i)

k Rk

(
U(i)
k

)T
+H(i)

k P(i)
k|k−1

(
H(i)
k

)T)

λkck(zk)
,

(3.9)

H(i)
k

=
∂hk(xk, 0)

∂xk

∣∣∣∣
xk=m

(i)
k|k−1

; U(i)
k

=
∂hk

(
m(i)n

k|k−1,vk
)

∂vk

∣∣∣∣∣∣∣
vk=0

, (3.10)

K(i)
k = P(i)

k|k−1
(
H

(i)
k

)T(
H

(i)
k P(i)

k|k−1
(
H

(i)
k

)T
+U

(i)
k Rk

(
U

(i)
k

)T)−1
, (3.11)

m(i)
k

= m(i)
k|k−1 +K(i)

k

⎛
⎜⎜⎜⎝

⎡
⎢⎣

z1
...

z|Wk |

⎤
⎥⎦ −

⎡
⎢⎢⎢⎣

h
(
m(i)

k|k−1, 0
)

...
h
(
m(i)

k|k−1, 0
)

⎤
⎥⎥⎥⎦

⎞
⎟⎟⎟⎠;P(i)

k
=
(
I −K(i)

k
H

(i)
k

)
P(i)
k|k−1, (3.12)

H
(i)
k =

⎡
⎢⎢⎣

H(i)
k
...

H(i)
k

⎤
⎥⎥⎦

⎫
⎪⎪⎬

⎪⎪⎭
|Wk|; U

(i)
k =

⎡
⎢⎢⎣

U(i)
k
...

U(i)
k

⎤
⎥⎥⎦

⎫
⎪⎪⎬

⎪⎪⎭
|Wk|, (3.13)

The proof of Proposition 3.3 can be found in Appendix C.
From Propositions 3.2 and 3.3, we can obtain that the EK-GM-EPHD corrector

uniformly converges to the true EPHD corrector in xk and Zk under the assumptions that
P(i)
k|k−1 → 0 for i = 1, . . . , Jk|k−1 and the number of Gaussians in the mixture tends to

infinity. These assumptions may be too restrictive or be unrealistic for practical problems,
although the EK-GM-EPHDfilter have demonstrated its potential for real-world applications.
However, Propositions 3.2 and 3.3 give further theoretical justification for the use of the GM-
EPHD and EK-GM-EPHD filters in ETT problem.

4. Simulations

Here we briefly describe the application of the convergence results for the GM-EPHD and
EK-GM-EPHD filters to the linear and nonlinear ETT examples.

Example 4.1 (GM-EPHD filter to linear ETT problem). Consider a two-dimensional scenario
with an unknown and time varying number of the extended targets observed over the region
[−1000, 1000]× [−1000, 1000] (in m) for a period of T = 45 time steps. The sampling interval is
Δt = 1s. At time k, the actual number of the existing extended targets is nk and the state of the
ith target is xi,k = [xi,k, yi,k, ẋi,k, ẏi,k, ẍi,k, ÿi,k]

T (i = 1, . . . , nk). Assume that the process noise
� i,k of the ith extended target is independent and identically distributed (IID) zero-mean
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Gaussian white noise with the covariance matrixQi,k. Then the Markovian transition density
of xi,k could be modeled as

fk|k−1(xi,k | xi,k−1) = N(xi,k | Φi,kxi,k−1,Qi,k), (4.1)

where Φi,k is discrete-time evolution matrix. Here Φi,k and Qi,k are given by the constant
acceleration model [24], as

Φi,k =

⎡
⎢⎢⎣
1 Δt

Δt2

2
1 Δt

1

⎤
⎥⎥⎦ ⊗ I2; Qi,k = σ2

�

⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎣

Δt4

4
Δt3

2
Δt2

2

Δt3

2
Δt2

2
Δt

Δt2

2
Δt 1

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎦

⊗ I2; I2 =
[
1

1

]
, (4.2)

where “⊗” denotes the Kronecker product. The parameter σ� is the instantaneous standard
deviation of the acceleration, given by σ� = 0.05m/s2.

Note that the objective of this paper is to focus on the convergence analysis for the GM-
EPHD and EK-GM-EPHD filters, rather than the simulation of the extended-target motions.
Therefore, although the proposed evolutions for the extended targets seem to be uncritical
and oversimplifying, they will have little effect on the intention of the paper. Readers could
be referred to [25] for further discussion on the extended-target motion models. The models
proposed in [25] can also be accommodated within the EPHD filter straightforwardly.

At time k, the x-coordinate and y-coordinate measurements of the extended targets are
generated by a sensor located at [0, 0]T . The measurement noise vk is IID zero-mean Gaussian
white noise with covariance matrix Rk = diag(σ2

x, σ
2
y), where diag(·) denotes the diagonal

matrix, σx and σy are, respectively, standard deviations of the x-coordinate and y-coordinate
measurements. In this simulation, they are given as σx = σy = 25m. The single-measurement
single-target likelihood density φzk(xi,k) is

φzk(xi,k) = N(zk | Hkxi,k,Rk), (4.3)

where

Hk =
[
1 0 0 0 0 0
0 1 0 0 0 0

]
. (4.4)

The detection probability of the sensor is pD,k(xk) = 0.95.
In this simulation, it is assumed that the effect of the shape for each extended target

is much smaller than that of the measurement noise. Hence, the shape estimation is not
considered here.

At time k, the number of the measurements arising from the ith extended target
satisfies Poisson distribution with the mean γ(xi,k). In this simulation, it is given as γ(xi,k) = 3
(i = 1, . . . , nk).
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Figure 1: The true trajectories for extended targets and sensor location.

The clutter is modeled as a Poisson RFS with the intensity κk(zk) = λkck(zk). In this
example, the actual clutter density is ck(zk) = U(zk). It means that the clutter is uniformly
distributed over the observation region.

Figure 1 shows the true trajectories for extended targets and sensor location.

In Figure 1, “Δ” denotes the sensor location, “©” denotes the locations at which the
extended targets are born, “�” denotes the locations at which the extended targets die, and
“+” denotes the measurements generated by the extended targets. Extended target 1 is born
at 1 s and dies at 25 s. Extended target 2 is born at 1 s and dies at 30 s. Extended target 3 is
born at 10 s and dies at 35 s. Extended target 4 is born at 20s and dies at 45 s.

The intensity of the extended-target birth at time k is modeled as

βk(xk) = λβfβ
(
xk | ψβ

)
, (4.5)

where λβ is the average number of the extended-target birth per scan, fβ(xk|ψβ) is the
probability density of the new born extended-target state, and ψβ is the set of the density
parameters. In this example, they are taken as λβ = 0.05, fβ(xk|ψβ) = π1

βN(xk|μ1
β,Σ

1
β) +

π2
βN(xk|μ2

β,Σ
2
β), where ψβ = {π1

β , π
2
β ,μ

1
β,μ

2
β,Σ

1
β,Σ

2
β}, π1

β = π2
β = 0.5, μ1

β = [−600, 750, 0, 0, 0, 0]T ,
μ2
β
= [−650,−800, 0, 0, 0, 0]T , and Σ1

β = Σ2
β = diag(400, 400, 100, 100, 9, 9).

The GM-EPHD filter is used to estimate the number and states of the extended targets
in the linear ETT problem. We now conduct Monte Carlo (MC) simulation experiments on
the same clutter intensity and target trajectories but with independently generated clutter
and target-generated measurements in each trial. Via comparing the tracking performance
of the GM-EPHD filter in the various number Jk of Gaussians in the mixture and in various
clutter rate λk, the convergence results for the algorithm can be verified to a great extent. For
convenience, we assume Jk = J and λk = λ at each time step. Assumptions B2–B3 are satisfied
in this example. So, the GM-EPHD filter uniformly converges to the ground truth.

The standard deviation of the estimated cardinality distribution and the optimal
subpattern assignment (OSPA) multitarget miss distance [26] of order p = 2 with cutoff
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Table 1: Time averaged standard deviation of the estimated cardinality distribution and time averaged
OSPA (m) from the GM-EPHD filter in various J given λ = 50.

Gaussian number J in the mixture 50 100 300 500 700
Time averaged standard deviation of
the estimated cardinality distribution
from the GM-EPHD filter

2.12 1.39 0.97 0.71 0.58

OSPA (m) from the GM-EPHD filter 83.5 58.7 49.6 43.1 39.5

Table 2: Time averaged standard deviation of the estimated cardinality distribution and time averaged
OSPA (m) from the GM-EPHD filter in various λ given J = 700.

Clutter rate λ 50 100 200 300 400
Time averaged standard deviation of
the estimated cardinality distribution
from the GM-EPHD filter

0.58 0.70 0.95 1.23 1.48

OSPA (m) from the GM-EPHD filter 39.5 42.9 49.0 56.1 61.7

c = 100m, which jointly captures differences in cardinality and individual elements between
two finite sets, are used to evaluate the performance of the method. Given the clutter rate
λ = 50, Table 1 shows the time averaged standard deviation of the estimated cardinality
distribution and the time averaged OSPA from the GM-EPHD filter in various J via 200MC
simulation experiments.

Table 1 shows that both the standard deviation of the estimated cardinality distribu-
tion and OSPA decrease with the increase of the Gaussian number J in the mixture. This
phenomenon can be reasonably explained by the convergence results derived in this paper.
First, according to Proposition 3.2, the error of the GM-EPHD decreases as J increases; then,
the more precise estimates of the multitarget number and states can be derived from the more
precise GM-EPHD, which eventually leads to the results presented in Table 1.

Given J = 700, Table 2 shows the time averaged standard deviation of the
estimated cardinality distribution and the time averaged OSPA from the GM-EPHD filter
in various clutter rate λ via 200MC simulation experiments. Obviously, the number of the
measurements collected at each time step increases with the increase of λ.

From Table 2, it can be seen that the errors of the multitarget number and state
estimates from the GM-EPHD filter grow significantly with the increase of λ. A reasonable
explanation for this is that the partition operation included in (B.10) leads that the
error bound of the GM-EPHD corrector grows very quickly with the increase of the
measurement number. Therefore, Table 2 consists with the convergence results established
by Proposition 3.2, too.

Example 4.2 (EK-GM-EPHD filter to nonlinear ETT problem). The experiment settings are the
same as those of Example 4.1 except the single-measurement single-target likelihood density
φzk(xi,k). The range rk and bearing θk measurements of the extended targets are generated
with the noise covariance matrix Rk = diag(σ2

r , σ
2
θ
), where σr and σθ are, respectively,

standard deviations of the range and bearing measurements. In this simulation, they are
given as σr = 25m and σθ = 0.025 rad. The φzk(xi,k) becomes

φzk(xi,k) = N(zk | hk(xi,k),Rk), (4.6)
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Table 3: Time averaged standard deviation of the estimated cardinality distribution and time averaged
OSPA (m) from the EK-GM-EPHD filter in various J given λ = 50.

Gaussian number J in the mixture 50 100 300 500 700
Time averaged standard deviation of
the estimated cardinality distribution
from the EK-GM-EPHD filter

3.15 2.29 1.77 1.21 0.76

OSPA (m) from the EK-GM-EPHD filter 93.2 86.7 75.3 54.6 43.9

Table 4: Time averaged standard deviation of the estimated cardinality distribution and time averaged
OSPA (m) from the EK-GM-EPHD filter in various λ given J = 700.

Clutter rate λ 50 100 200 300 400
Time averaged standard deviation of
the estimated cardinality distribution
from the EK-GM-EPHD filter

0.76 0.92 1.29 1.61 1.92

OSPA (m) from the EK-GM-EPHD filter 43.9 48.1 55.8 67.8 79.5

where

hk(xi,k) =
[√

x2
i,k

+ y2
i,k arctan

yi,k
xi,k

]T
. (4.7)

The EK-GM-EPHD filter is used to estimate the number and states of the extended
targets in the nonlinear ETT problem. Given λ = 50, Table 3 shows the time averaged standard
deviation of the estimated cardinality distribution and the time averaged OSPA from the EK-
GM-EPHD filter in various J via 200MC simulation experiments while, given J = 700, Table 4
shows the time averaged standard deviation of the estimated cardinality distribution and
the time averaged OSPA from the EK-GM-EPHD filter in various λ via 200MC simulation
experiments.

As expected, Tables 3 and 4, respectively, show that the errors of the multitarget
number and state estimates from the EK-GM-EPHD filter decrease with the increase of J
and increase with the increase of λ. These consist with the convergence results established by
Propositions 3.2 and 3.3. In addition, comparing Tables 1 and 2 with Tables 3 and 4, it can be
seen that the errors from the EK-GM-EPHD filter are obviously larger than the errors from the
GM-EPHD filter given the same J and λ. The additional errors from the EK-GM-EPHD filter
are caused by the reason that the condition P(i)

k|k−1 → 0 for i = 1, . . . , Jk|k−1 in Proposition 3.3 is
very difficult to approach in this example.

5. Conclusions and Future Work

This paper shows that the recently proposed GM-EPHD filter converges uniformly to the true
EPHD filter as the number of Gaussians in the mixture tends to infinity. Proofs of uniform
convergence are also derived for the EK-GM-EPHD filter. Since the GM-EPHD corrector
equations involve with the partition operation that grows very quickly with the increase
of the measurement number, the future work is focused on studying the computationally
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tractable approximation for it and providing the convergence results and error bounds for
the approximate GM-EPHD corrector.

Appendices

A. Proof of Lemma 3.1

We have known that γ(xk) ∈ Cb(Rd), φzk(xk) = N(zk|Hkxk,Rk) ∈ Cb(Rd), λkck(zk) is known
a priori and 0 ≤ pD,k ≤ 1 according to assumptions A1–A6 in [12] and assumptions B1–B3.
So, from (2.3) we get ηWk(xk) ∈ Cb(Rd). In addition, by (2.4) and (2.11) and the definition of
∞-norm, we have dWk ≥ 0, dJk|k−1Wk

≥ 0, and ‖ηWk‖∞ ≥ 0 because of the facts that υk|k−1(xk) ≥ 0,

υ
Jk|k−1
k|k−1(xk) ≥ 0 and ηWk(xk) ≥ 0.

For the initial induction step, assume n = 1. In this case, from (3.1) we get

∣∣∣dJk|k−1W1,k
− dW1,k

∣∣∣ =
∣∣∣
〈
υ
Jk|k−1
k|k−1, ηW1,k
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k|k−1 − υk|k−1, ηW1,k

〉∣∣∣ ≤ εk|k−1
∥∥ηW1,k

∥∥
∞.

(A.1)

In the case of n = 2, by the triangle inequality and (A.1), we have
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(A.2)

Since εk|k−1 > 0, dWk ≥ 0, dJk|k−1Wk
≥ 0 and ‖ηWk‖∞ ≥ 0, (A.2) becomes

∣∣∣dJk|k−1W1,k
d
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))
.

(A.3)
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Assume that we have established (3.2) for i = 1, . . . , n. We are to establish (3.2) for
i = 1, . . . , n + 1. Using the triangle inequality and (A.1), we get
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Since εk|k−1 > 0, dWk ≥ 0, dJk|k−1Wk
≥ 0 and ‖ηWk‖∞ ≥ 0, (A.4) becomes
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and this closes the inductive step. This completes the proof.
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B. Proof of Proposition 3.2

By the EPHD corrector equations, (2.2), and the triangle inequality, we get
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By (3.1), the second term in the summation of (B.1) is
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Using the triangle inequality, the first term in the summation of (B.1) is
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Using the triangle inequality again for the term |ωJk|k−1
℘k

−ω℘k | in the numerator of (B.3),
we get
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Using Lemma 3.1, we get

∣∣∣∣∣∣

∏

Wk∈℘k
dWk −

∏

Wk∈℘k
d
Jk|k−1
Wk

∣∣∣∣∣∣
≤ εk|k−1

∑

Wk∈℘k

∥∥ηWk

∥∥
∞

∏

Vk∈℘k−Wk

(
dVk + d

Jk|k−1
Vk

)
, (B.5)

where ℘k −Wk denotes the complement ofWk in ℘k.
Then, (B.4) can be rewritten as

∣∣∣ωJk|k−1
℘k

−ω℘k

∣∣∣ ≤ εk|k−1ρk, (B.6)

where

ρk =

∑
Wk∈℘k

∥∥ηWk

∥∥
∞
∏

Vk∈℘k−Wk

(
dVk + d

Jk|k−1
Vk

)

∑
℘′
k
∠Zk

∏
W ′

k
∈℘′

k
d
Jk|k−1
W ′

+
ω℘k

∑
℘′
k
∠Zk

∑
W ′

k
∈℘′

k

∥∥∥ηW ′
k

∥∥∥
∞
∏

V ′
k
∈℘′

k
−W ′

k

(
dV ′

k
+ dJk|k−1

V ′
k

)

∑
℘′
k
∠Zk

∏
W ′

k
∈℘′

k
d
Jk|k−1
W ′

.

(B.7)

Substitute (A.1) and (B.6) into (B.3),

∣∣∣∣∣∣∣

ω
Jk|k−1
℘k

〈
υ
Jk|k−1
k|k−1, ϕηWk

〉

d
Jk
Wk

−
ω℘k

〈
υ
Jk|k−1
k|k−1, ϕηWk

〉

dWk

∣∣∣∣∣∣∣
≤ εk|k−1

∥∥ϕ
∥∥
∞
(
ω
Jk|k−1
℘k

∥∥ηWk

∥∥
∞ + dJk|k−1Wk

ρk
)

dWk

. (B.8)

Substituting (3.1), (B.2), and (B.8) into (B.1), we have

∣∣∣
〈
υ
Jk|k−1
k

− υk, ϕ
〉∣∣∣ ≤ εk|k−1

∥∥ϕ
∥∥
∞

⎛
⎝∥∥1 − pD,k + e−γpD,k

∥∥
∞

+
∑

℘k∠Zk

∑

Wk∈℘k

⎛
⎝
ω
Jk|k−1
℘k

∥∥ηWk

∥∥
∞ + dJk|k−1Wk

ρk

dWk

+ω℘k

∥∥ηWk

∥∥
∞

dWk

⎞
⎠
⎞
⎠.

(B.9)

So that Proposition 3.2 is proved with

ak =
∥∥1 − pD,k + e−γpD,k

∥∥
∞ +

∑

℘k∠Zk

∑

Wk∈℘k

ω
Jk|k−1
℘k

∥∥ηWk

∥∥
∞ + dJk|k−1Wk

ρk +ω℘k

∥∥ηWk

∥∥
∞

dWk

. (B.10)

This completes the proof.
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C. Proof of Proposition 3.3

Clearly, by the EPHD corrector equations, (2.2)–(2.4), and the predicted EK-EPHD, (3.4), we
obtain that the υND,EK,Jk|k−1

k (xk) in (3.5) is a Gaussian sum presented by (3.6). Now turn to the

υ
D,EK,Jk|k−1
k

(xk,Wk) in (3.5). From (2.2), we get

υ
D,EK,Jk|k−1
k (xk,Wk) = ω

Jk|k−1
℘k

ηWk(xk)

d
Jk|k−1
Wk

υ
EK,Jk|k−1
k|k−1 (xk). (C.1)

Consider the term ηWk(xk)υ
EK,Jk|k−1
k|k−1 (xk) in (C.1). Using the predicted EK-EPHD, (3.4),

ηWk(xk)υ
EK,Jk|k−1
k|k−1 (xk) = pD,ke−γ(xk)

∏

zk∈Wk

γ(xk)φzk(xk)
λkck(zk)

Jk|k−1∑

i=1

w
(i)
k|k−1N

(
xk | m(i)

k|k−1,P
(i)
k|k−1

)
. (C.2)

And by the result for the EK Gaussian sum filter [17], we get

ηWk(xk)υ
EK,Jk|k−1
k|k−1 (xk)

−→
Jk|k−1∑

i=1

w
(i)
k|k−1pD,ke

−γ(m(i)
k|k−1)

×
∏

zk∈Wk

γ
(
m(i)

k|k−1
)
N
(
zk | hk

(
m(i)

k|k−1, 0
)
,U(i)

k
Rk

(
U(i)
k

)T
+H(i)

k
P(i)
k|k−1

(
H(i)
k

)T)

λkck(zk)

×N
(
xk | m(i)

k
,P(i)

k

)

=
Jk|k−1∑

i=1

w
(i)
k|k−1η

EK
Wk

(
m(i)

k|k−1
)
N
(
xk | m(i)

k
,P(i)

k

)
,

(C.3)

uniformly as P(i)
k|k−1 → 0 for all i = 1, . . . , Jk|k−1, and ηEKWk

(m(i)
k|k−1), H

(i)
k
, U(i)

k
, m(i)

k
, P(i)

k
are given

by (3.9)–(3.13), respectively.
Now consider the terms ωJk|k−1

℘k
and dJk|k−1Wk

in (C.1). First, using the predicted EK-EPHD,

(3.4), the inner product 〈υEK,Jk|k−1
k|k−1 , ηWk〉 is given by

〈
υ
EK,Jk|k−1
k|k−1 , ηWk

〉
=
∫
ηWk(xk)υ

EK,Jk|k−1
k|k−1 (xk)dxk

= pD,k

∫
e−γ(xk)

∏

zk∈Wk

γ(xk)φzk(xk)
λkck(zk)

Jk|k−1∑

i=1

w
(i)
k|k−1N

(
xk | m(i)

k|k−1,P
(i)
k|k−1

)
dxk.

(C.4)
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And by the result for the EK Gaussian sum filter [17], we get

〈
υ
EK,Jk|k−1
k|k−1 , ηWk

〉

−→
∫ Jk|k−1∑

i=1

w
(i)
k|k−1pD,ke

−γ(xk)

×
∏

zk∈Wk

γ
(
m(i)

k|k−1
)
N
(
zk | hk

(
m(i)

k|k−1, 0
)
,U(i)

k
Rk

(
U(i)
k

)T
+H(i)

k
P(i)
k|k−1

(
H(i)
k

)T)

λkck(zk)

×N
(
xkm

(i)
k
,P(i)

k

)
dxk,

(C.5)

uniformly as P(i)
k|k−1 → 0 for all i = 1, . . . , Jk|k−1.

Changing the order of the summation and integral, (C.5) is equal to

〈
υ
EK,Jk|k−1
k|k−1 , ηWk

〉

−→
Jk|k−1∑

i=1

∫
w

(i)
k|k−1pD,ke

−γ(m(i)
k|k−1)

×
∏

zk∈Wk

γ
(
m(i)

k|k−1
)
N
(
zk | hk

(
m(i)

k|k−1, 0
)
,U(i)

k Rk

(
U(i)
k

)T
+H(i)

k P(i)
k|k−1

(
H(i)
k

)T)

λkck(zk)

×N
(
xk | m(i)

k ,P
(i)
k

)
dxk

=
Jk|k−1∑

i=1

w
(i)
k|k−1η

EK
Wk

(
m(i)

k|k−1
)∫

N
(
xk | m(i)

k
,P(i)

k

)
dxk

=
Jk|k−1∑

i=1

w
(i)
k|k−1η

EK
Wk

(
m(i)

k|k−1
)
.

(C.6)

Then, the expressions of ωEK,Jk|k−1
Wk

and d
EK,Jk|k−1
Wk

(see (3.8)) are derived by (2.4) and
(C.6).

Finally, (3.7) is obtained by substituting (3.8) and (C.3) into (C.1). This completes the
proof.
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