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The concept of an interval-valued capacity is motivated by the goal to generalize a capacity, and it
can be used for representing an uncertain capacity. In this paper, we define the discrete interval-
valued capacities, a measure of the entropy of a discrete interval-valued capacity, and, Choquet
integral with respect to a discrete interval-valued capacity. In particular, we discuss the Choquet
integral as an interval-valued aggregation operator and discuss an application of them.

1. Introduction

Let (X,Ω) be a measurable space. A capacity (or a fuzzy measure) on X is a nonnegative
monotone set function μ : Ω → �

+
= [0,∞] with μ(∅) = 0. Many researchers have been

studying a discrete capacity in many topics such as capacity functionals of random sets (see
[1–5]) and entropy-like measures (see [6–9]).

The Choquet integral with respect to a capacity of a nonnegative measurable function
f is given by

Cμ

(
f
)
= (C)

∫
fdμ =

∫∞

0
μf(α)dα, (1.1)

where μf(α) = μ({x ∈ X | f(x) > α}) and the integral on the right-hand side is an ordinary
one. If we takeN = {1, 2, . . . , n} and f : N → �

+ by f(i) = xi for all i ∈ N, then we have

Cμ

(
f
)
=

n∑

i=1

xπ(i)
[
μ
(
Aπ(i)

) − μ
(
Aπ(i+1)

)]
, (1.2)
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where π is a permutation on {1, 2, . . . , n} such that xπ(1) ≤ xπ(2) ≤ · · · ≤ xπ(n) and Aπ(i) =
{π(i), . . . , π(n)} and Aπ(n+1) = ∅ (see [1–4, 6, 9, 10]). Note that if we put xπ(0) = 0 and
Aπ(n+1) = ∅, then we obtain the following formula:

Cμ

(
f
)
=

n−1∑

i=0

(
xπ(i+1) − xπ(i)

)
μ
(
Aπ(i+1)

)
. (1.3)

By using interval-valued functions to express uncertain functions, we have studied
the Choquet integral with respect to a capacity of an interval-valued function which is able
to better handle the representation of decision making and information theory (see [10–
16]). During the last decade, it has been suggested to use intervals in order to represent
uncertainty in the area of decision theory and information theory, for example, calculation of
economic uncertainty [8], theory of interval probability as a unifying concept for uncertainty
[17], and the Choquet integral of uncertain functions [3, 12–16, 18]. Recently, Xu et al. [19–
24] have been studying the application of the Choquet integral with uncertain and fuzzy
information.

The main idea of this paper is to use the concept of an interval-valued capacity in
the entropy-like measure which is an aggregation defined by the discrete interval-valued
capacities. In Section 2, we introduce the Choquet integral with respect to an interval-
valued capacity and discuss some of its properties. In Section 3, we investigate the interval-
valued weighted arithmetic mean, the interval-valued Shannon entropy, the interval-valued
weighted averaging operator, and an interval-valued measure of the entropy of an interval-
valued capacity. In Section 4, we give the problem of evaluating students as an examplewhere
interval-valued weights and some suitable interval-valued capacity are used in practical
situation. In Section 5, we give a brief summary results and some conclusions.

2. The Choquet Integral with Respect to a Discrete
Interval-Valued Capacity

Throughout this paper, I(�+) is the set of all closed intervals in �+ = [0,∞), that is,

I(�+ ) = {[a1, a2] | a1, a2 ∈ �+ , a1 ≤ a2}. (2.1)

For any a ∈ �+ , we define a = [a, a]. Obviously, a ∈ I(�+) (see [13–15]).

Definition 2.1. If a = [a1, a2], b = [b1, b2] ∈ I(�+), and k ∈ �
+ , then one defines arithmetic,

minimum, order, and inclusion operations as follows:

(1) a + b = [a1 + b1, a2 + b2],

(2) ka = [ka1, ka2],

(3) ab = [a1b1, a2b2],

(4) a ∧ b = [a1 ∧ b1, a2 ∧ b2],

(5) a ∨ b = [a1 ∨ b1, a2 ∨ b2],

(6) a ≤ b if and only if a1 ≤ b1 and a2 ≤ b2,
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(7) a < b if and only if a ≤ b and a/= b,

(8) a ⊂ b if and only if b1 ≤ a1 and a2 ≤ b2.

Let U be a countably infinite set as the universe of discourse and P(U) the power set
of U. We propose an interval-valued capacity and discuss some of its properties.

Definition 2.2. (1) An interval-valued set function μ = [μl, μr] : P(U) → I(�
+
) is said to be a

discrete interval-valued capacity onU if it satisfies the following conditions:

(i) μ(∅) = 0,

(ii) μ(S) ≤ μ(T), whenever S, T ∈ P(U) and S ⊂ T .

(2) A set D(∈ P(U)) is said to be a carrier (or support) of an interval-valued capacity
μ if μ(S) = μ(D ∩ S) for all S ∈ P(U).

(3)An interval-valued capacity μwith nonempty finite carrierD(∈ P(U)) is said to be
normalized if μ(D) = 1.

For any integer k ≥ 1, the set {1, . . . , k} will simply be denoted by [k] and I([0, 1]) =
{[a1, a2] | a1, a2 ∈ [0, 1] and a1 ≤ a2}. For the sake of convenience, we will henceforth
assume that D = N is the n-element set [n]. We denote by IVC the set of interval-valued
capacities with a nonempty finite carrier on U and by IVCN the set of normalized interval-
valued capacities havingN ⊂ U as a nonempty finite carrier.

Definition 2.3. (1) An interval-valued capacity μ ∈ IVCN is said to be additive if μ(S ∪ T) =
μ(S) + μ(T) for all disjoint subsets S, T ⊂ N.

(2) μ ∈ IVCN is said to be cardinality based if for all T ⊂ N, μ(T) depends only on the
cardinality of T ; that is, there exists μ0, μ1, . . . , μn ∈ I([0, 1]) such that μ(T) = μt = [μlt, μrt] for
all T ⊂ N such that |T | = t, where |T | is the cardinality of T .

In [6, p. 135], there is only one normalized capacity μ∗
N with a nonempty finite carrier

N which is both additive and cardinality based, and in this case, μ∗
N is given by μ∗

N(T) = t/n
for all T ⊂ N such that |T | = t. Thus we can obtain the following theorem.

Theorem 2.4. If μ ∈ IVCN is both additive and cardinality based, then μ(T) = [t/n, t/n], for all
T ⊂ N with |T | = t.

Theorem 2.4 implies that if a discrete interval-valued normalized capacity μ is both
additive and cardinality based, then it is a discrete real-valued capacity (or a real-valued
monotone set function). By Definition 2.3, we can easily obtain the following theorem.

Theorem 2.5. (1) An interval-valued set function μ = [μl, μr] is a discrete interval-valued capacity
if and only if μl and μr are discrete capacities.

(2) A set N(⊂ U) is a carrier of μ = [μl, μr] if and only if N is a carrier of both μl and μr .

(3) μ = [μl, μr] is normalized if and only if μl and μr are normalized.

(4) μ = [μl, μr] is additive if and only if μl and μr are additive.

(5) μ = [μl, μr] is cardinality based if and only if μl and μr are cardinality based.
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By using formula (1.3) of the Choquet integral and a discrete interval-valued capacity
with a nonempty finite carrier N, we will define the Choquet integral with respect to a
discrete interval-valued capacity.

Definition 2.6. Let x : N → �
+ be a function such that x(i) = xi for all i ∈ N and μ a discrete

interval-valued capacity with a nonempty finite carrierN. The Choquet integral with respect
to μ of x is defined by

Cμ

(
f
)
=

n−1∑

i=0

(
xπ(i+1) − xπ(i)

)
μ
(
Aπ(i+1)

)
, (2.2)

where π is a permutation on N such that xπ(0) = 0 ≤ xπ(1) ≤ xπ(2) ≤ · · · ≤ xπ(n) and Aπ(i) =
{π(i), . . . , π(n)} and Aπ(n+1) = ∅.

By (2.2), we can easily obtain the following basic property of Cμ.

Theorem 2.7. If μ ∈ IVCN , then one has

Cμ(x) =
[Cμl(x),Cμr(x)

]
, (2.3)

where a function x : N → �
+ by x(i) = xi for all i ∈ N.

From the right-hand side of (2.2), we note that

n∑

i=0

(
xπ(i+1) − xπ(i)

)
μ
(
Aπ(i+1)

)
/=

n∑

i=1

xπ(i)
(
μ
(
Aπ(i+1)

) − μ
(
Aπ(i)

))
, (2.4)

in general. Because of this note, we consider a new difference operation � defined by

[a, b] � [c, d] =

{
[a − c, b − d] if 0 ≤ a − c ≤ b − d,

0 if otherwise,
(2.5)

where a, b, c, d ∈ �+ . From this difference operation, we can easily see that [ka, kb]�[kc, kd] =
k([a, b]� [c, d]) for all k, a, b, c, d ∈ �+ . We denote by IVC1

N(x) the set of normalized interval-
valued capacities μ = [μl, μr] with a nonempty finite carrier N satisfying the following
condition:

μl

(
Aπ(i)

) − μl

(
Aπ(i+1)

) ≤ μr

(
Aπ(i)

) − μr

(
Aπ(i+1)

)
, (2.6)

for all i ∈ N and where π is a permutation on {1, 2, . . . , n} such that xπ(1) ≤ xπ(2) ≤ · · · ≤ xπ(n)

and Aπ(i) = {π(i), . . . , π(n)} and Aπ(n+1) = ∅. We remark that IVC1
N(x) ⊂ IVCN and that if

μ ∈ IVC1
N(x), then we have

μ
(
Aπ(i)

) � μ
(
Aπ(i+1)

)
=
[
μl

(
Aπ(i)

) − μl

(
Aπ(i+1)

)
, μr

(
Aπ(i)

) − μr

(
Aπ(i+1)

)]
. (2.7)

By Theorem 2.7 and (1.2), (2.5), and (2.7), we derive the following theorem.
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Theorem 2.8. If there exists function x : N → �
+ by x(i) = xi for all i ∈ N and μ ∈ IVC1

N(x),
then one has

Cμ(x) =
n∑

i=1

xπ(i)
(
μ
(
Aπ(i)

) � μ
(
Aπ(i+1)

))
, (2.8)

where π is a permutation on N such that xπ(1) ≤ xπ(2) ≤ · · · ≤ xπ(n) and Aπ(i) = {π(i), . . . , π(n)}
and Aπ(n+1) = ∅.

Proof. By Theorem 2.7 and the definition (1.2) and the difference (2.5) operation, we have

Cμ(x) =
[Cμl(x),Cμr (x)

]

=

[
n∑

i=1

xπ(i)
(
μl

(
Aπ(i)

) − μl

(
Aπ(i+1)

))
,

n∑

i=1

xπ(i)
(
μr

(
Aπ(i)

) − μr

(
Aπ(i+1)

))
]

=
n∑

i=1

xπ(i)
[
μl

(
Aπ(i)

) − μl

(
Aπ(i+1)

)
, μr

(
Aπ(i)

) − μr

(
Aπ(i+1)

)]

=
n∑

i=1

xπ(i)
[
μl

(
Aπ(i)

)
, μr

(
Aπ(i)

)] � [
μl
(
Aπ(i+1)

)
, μr

(
Aπ(i+1)

)]

=
n∑

i=1

xπ(i)
(
μ
(
Aπ(i)

) � μ
(
Aπ(i+1)

))
.

(2.9)

3. The Choquet Integral as an Interval-Valued Aggregation Operator

In this section, we define the interval-valued weighted arithmetic mean (IWAM), which is
the concept of a generalized aggregation (or an uncertain aggregation), as follows:

IWAMw(x) =
n∑

i=1

wixi, (3.1)

where wi = [wli, wri], 0 ≤ wli ≤ wri ≤ 1 for all i ∈ N,
∑n

i=1 wli ≤
∑n

i=1 wri = 1, and x : N → �
+

by x(i) = xi for all i ∈ N is a function such that x1, . . . , xn represent the arguments. We denote
by x = (x1, . . . , xn) an n-dimensional vector in (�+)n.

Note that the arguments x1, . . . , xn that are used in such an interval-valued aggregation
process strongly depend upon the interval-valued (or uncertain) weight vector w =
(w1, . . . , wn) ∈ (I([0, 1]))n. Then the interval-valued Shannon-entropy HS of w defined on
N is given by

HS(w) =
n∑

i=1

h(wi), (3.2)
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where h(wi) = [h(wli), h(wri)] for 0 ≤ wli ≤ wri ≤ 1 for all i ∈ N, and

h(w) =

{
−w lnw if 0 < w ≤ 1,
0 if w = 0,

(3.3)

for all w ∈ [0, 1]. Then it means a measure of dispersion associated to the interval-valued
weight vector of the interval-valued weighted arithmetic mean IWAMw. We also easily see
that

HS(w) = [HS(wl),HS(wr)], (3.4)

where w = [wl,wr].
Now, we define the following interval-valued (or uncertain) orderedweight averaging

(IOWA) operator.

Definition 3.1. Let w = (w1, . . . , wn) ∈ (I([0, 1]))n be an interval-valued weight vector such
that wi = [wli, wri], 0 ≤ wli ≤ wri ≤ 1 for all i ∈ N, and

∑n
i=1 wli ≤

∑n
i=1 wri = 1. The interval-

valued ordered weighted averaging (IOWA) operator on (�+ )n is defined by

IOWAw(x) =
n∑

i=1

wixπ(i), (3.5)

where x = (x1, . . . , xn) ∈ (�+ )n and π is a permutation onN such that 0 ≤ xπ(1) ≤ xπ(2) ≤ · · · ≤
xπ(n).

From Definition 3.1, we have

IOWAw(x) =

[
n∑

i=1

wlixπ(i),
n∑

i=1

wrixπ(i)

]

. (3.6)

By (3.5) and (3.6), we obtain that if s ∈ {l, r} and we write ws = (ws1, . . . , wsn), then OWAws

is an ordered weighted averaging operator associated to a weight vector ws, proposed by
Yager [18]. Remark that if wli = wri = wi for all i ∈ N and we write w = (w1, . . . , wn),
then IWAMw(x) =

∑n
i=1 wixi is the weight arithmetic mean (WAM), HS(w) =

∑n
i=1 h(wi) is

the Shannon entropy of w, and IOWAw(x) =
∑n

i=1 wixπ(i) is the ordered weighted averaging
(OWA) operator (see [3, 5]).

Theorem 3.2. (1) If one takeswl = wr = (1/n, . . . , 1/n), thenHS(w) = lnn is maximum.
(2) If one takeswli = 1 andwrj = 1 for some i, j ∈ N, then H(w) = 0 is minimum.

Proof. (1)HS(w) = [
∑n

i=1(−wl1 lnwli),
∑n

i=1(−wri lnwri)] = [lnn, lnn] = lnn.

(2)HS(w) = [
∑n

k=1 h(wlk),
∑n

k=1 h(wrk)] = [h(wli), h(wrj)] = [0, 0] = 0.



Journal of Applied Mathematics 7

From Theorem 3.2, the interval-valued measure of dispersion can be normalized into

1
lnn

HS(w) =
1

lnn

n∑

i=1

h(wi), (3.7)

so that it ranges in I([0, 1]). Finally, we will define the interval-valued entropy of an interval-
valued capacity which is the generalization of the entropy proposed by Marichal [3] as
follows:

HM

(
μ
)
=
∑

i∈N

∑

T⊂N\{i}
pth

(
μ(T ∪ {i}) − μ(T)

)
, (3.8)

where μ is a capacity on N, |T | = t is the cardinality of T , the coefficients pt(|T | = t) are
nonnegative, and

∑
T⊂N\{i} pt = 1.

Definition 3.3. The interval-valued entropy of an interval-valued capacity μ is defined by

HM

(
μ
)
=
∑

i∈N

∑

T⊂N\{i}
pth

(
μ(T ∪ {i}) � μ(T)

)
, (3.9)

where � is the same operation in (2.5), the coefficients pt(|T | = t) are nonnegative,
∑

T⊂N\{i} pt = 1, and h is the same function in (3.3).

From Definition 3.3, if we take μl = μr = μ, then HM(μ) = HM(μ). We consider the
following assumption of μ = [μl, μr]:

∑

T⊂N\{i}
pth

(
μl(T ∪ {i}) − μl(T)

) ≤
∑

T⊂N\{i}
pth

(
μr(T ∪ {i}) − μr(T)

)
, ∀i ∈ N, (3.10)

and let IVC2
N = {μ ∈ IVCN | μ satisfy assumption (3.10)}.

Theorem 3.4. If μ = [μl, μr] ∈ IVC2
N , then one has

HM

(
μ
)
=
[
HM

(
μl

)
,HM

(
μr

)]
. (3.11)

Proof. By Definition 3.3, we can directly calculateHM(μ) as follows:

HM

(
μ
)
=
∑

i∈N

∑

T⊂N\{i}
pth

(
μ(T ∪ {i}) � μ(T)

)

=
∑

i∈N

∑

T⊂N\{i}
pth

([
μl(T ∪ {i}) − μl(T), μr(T ∪ {i}) − μr(T)

])



8 Journal of Applied Mathematics

=
∑

i∈N

∑

T⊂N\{i}
pt
[
h
(
μl(T ∪ {i}) − μl(T)

)
, h
(
μr(T ∪ {i}) − μr(T)

)]

=

⎡

⎣
∑

i∈N

∑

T⊂N\{i}
pth

(
μl(T ∪ {i}) − μl(T)

)
,
∑

i∈N

∑

T⊂N\{i}
pth

(
μr(T ∪ {i}) − μr(T)

)
⎤

⎦

=
[
HM

(
μl

)
,HM

(
μr

)]
.

(3.12)

From Theorem 3.4, we can see that if we take μ = [μl, μr] ∈ IVCN such thatHM(μr) <
HM(μl), thenHM(μ) is not defined. Thus, the Assumption (3.10) of μ is a sufficient condition
for defining the interval-valued entropy HM(μ) of an interval-valued capacity μ. We also
suggest that that HM(μ) is interpreted as an interval-valued measure of dispersion for Cμ a
sum over i ∈ N of an average value of h(μ(T ∪ {i}) � μ(T))(T ⊂ N \ {i}) as follows: for all
i ∈ N,

(
μ
(
Aπ(i)

) � μ
(
Aπ(i+1)

))
=

∑

T⊂N\{i}
pth

(
μ(T ∪ {i}) � μ(T)

)
. (3.13)

Theorem 3.5. If x = (x1, . . . , xn) and μ ∈ IVC1
N(x), then μ ∈ IVC2

N .

Proof. Let x = (x1, . . . , xn) ∈ (�+)n and π be a permutation on N such that 0 ≤ xπ(1) ≤ xπ(2) ≤
· · · ≤ xπ(n). Since μ ∈ IVC1

N(x), we get μl(Aπ(i)) − μl(Aπ(i+1)) ≤ μr(Aπ(i)) − μr(Aπ(i+1)) for all
i ∈ N. Thus, by (3.13),

∑

T⊂N\{i}
pth

(
μl(T ∪ {i}) − μl(T)

)
= μl

(
Aπ(i)

) − μl

(
Aπ(i+1)

)

≤ μr

(
Aπ(i)

) − μr

(
Aπ(i+1)

)

=
∑

T⊂N\{i}
pth

(
μr(T ∪ {i}) − μr(T)

)
.

(3.14)

This implies HM(μl) ≤ HM(μr). Therefore μ ∈ IVC2
N .

Theorem 3.6. If x = (x1, . . . , xn), μ ∈ IVC1
N(x), and Cμ = IOWAw, then one has HM(μ) =

HS(w), that is,

HM

(
μ
)
=

n∑

i=1

h
(
μ
(
Aπ(i)

) � μ
(
Aπ(i+1)

))
, (3.15)

where � is the same operation in (2.3), h is the same function in (2.8), and x = (x1, . . . , xn) ∈ (�+)n,
and π is a permutation on N such that 0 ≤ xπ(1) ≤ xπ(2) ≤ · · · ≤ xπ(n)
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Table 1

Student Mathematics (M) Physics (P) Literature (L) IWAMw

a 18 16 10 [9.75, 16.25]

b 10 12 18 [7.75, 11.75]

c 14 15 15 [9.13, 14.50]

Proof. Since Cμ = IOWAw, wi = μ(Aπ(i)) � μ(Aπ(i+1)). By (3.13), we get

HM

(
μ
)
=
∑

i∈N

∑

T⊂N\{i}
pth

(
μ(T ∪ {i}) � μ(T)

)

=
n∑

i=1

h
(
μ
(
Aπ(i)

) � μ
(
Aπ(i+1)

))

=
n∑

i=1

h(w) = HS(w).

(3.16)

4. Applications

In this section, we consider the problem of evaluating students in a high school with respect
to three subjects: mathematics (M), physics (P), and literature (L), proposed by Marichal
[3]. Suppose that the school is more scientifically than literary from somewhat oriented to
extremely oriented, so that interval-valued weights could be, for example, wM = [1/4, 1/2],
wP = [1/4, 3/8], and wL = [1/8, 1/8], respectively. We note that w = (wM, wP, wL) and
IWAMw(x) = [WAMwl(x),WAMwr (x)] for all x ∈ {a, b, c}.

If we take w = [wl,wr], then wl = (1/4, 1/4, 1/8) and wr = (1/2, 3/8, 1/8). Then the
interval-valued weighted arithmetic mean will give the results for three students a, b, and c
(marks are given on a scale from 0 to 20) (see Table 1).

We note that IWAMw(a) > IWAMw(c) > IWAMw(b). The total interval-valued weight
is from rather well distributed to quite well distributed over three subjects since we have

1
lnn

HS(w) = [0.868, 0.887]. (4.1)

We consider the α-mean evaluation Eα of IWAMwl as follows:

Eα(x) = αWAMwl(x) + (1 − α)WAMwr (x) (4.2)

for all α ∈ [0, 1] and x ∈ {a, b, c}. The α-mean evaluation Eα implies that we can interpret
the difference of the degree of favor for students. Indeed, if α = 0, that is, if the school
is more scientifically than literary extremely oriented, then the school wants to favor more
student c as E0(a) − E0(c) = 1.75; if α = 1, that is, if the school is more scientifically than
literary somewhat oriented, then the school wants to favor more student c as E1(a) − E1(c) =
0.575.
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Table 2

Student Mathematics (M) Physics (P) Literature (L) Cμ (student)
a 18 16 10 [7.80, 14.60]
b 10 12 18 [6.85, 12.25]
c 14 15 15 [8.15, 14.75]

Now, if the school wants to favor somewhat well-equilibrated over extremely well
equilibrated students without weak points, then student c should be considered better than
student a, who has a severe weakness in literature. Unfortunately, no interval-valued vector
(wM, wP, wL) satisfying wM > wP > wL is able to favor student c. Indeed, it is possible that

IWAMw(14, 15, 15) > IWAMw(18, 16, 10)⇐⇒ wL > wM. (4.3)

The reason of this problem is that much importance is given to mathematics and
physics, which present some overlap effect since, usually, students from little good to rather
good at mathematics are also from little good to rather good at physics (and vice versa),
so that the interval-valued evaluation is overestimated (resp., underestimated) for students
from little good to rather good (resp., from little bad to rather bad) at mathematics and/or
physics.

This problem can be overcome by using a suitable interval-valued capacity μ and the
Choquet integral Cμ as follows.

(i) Since scientific subjects are more important than literature, the following interval-
valued weights can be put on subjects taken individually: μ({M}) = [0.25, 0.5], μ({P}) =
[0.25, 0.375] and μ({L}) = [0.125, 0.125]. Note that the initial interval-valued ratio of interval-
valued weight ([2, 4], [2, 3], [1, 1]) is kept unchanged.

(ii) Since mathematics and physics overlap, the interval-valued weight attributed to
the pair {M,P} should be less than the sum of the interval-valued weight of mathematics and
physics: μ({M,P}) = [0.3, 0.6].

(iii) Since students equally good at scientific subjects and literature must be favored,
the interval-valued weight attributed to the pair {L,M} should be greater than the sum
of individual interval-valued weights (the same for physics and literature): μ({M,L}) =
[0.45, 0.75] = μ({P,L}).

(iv) μ(∅) = 0 and μ({M,P,L}) = [0.55, 1].
If we take μ = [μl, μr], and μl({L,P,M}) = 0.55, μr({L,P,M}) = 1, μl({P,M}) = 0.3,

μr({P,M}) = 0.6, μl({M,L}) = 0.45, μr({M,L}) = 0.75, μl({P,L}) = 0.45, μr({P,L}) = 0.75,
μl({P}) = 0.25, μr({P}) = 0.375, μl({M}) = 0.25, μr({M}) = 0.5, μl({L}) = 0.125, and μr({L}) =
0.125, thenHM(μl) = 0.8802 < 0.9974 = HM(μr) and hence μ ∈ IVC2

N .
Applying the Choquet integral with respect to the above interval-valued capacity

leads to the Choquet integrals see Table 2.
Since IWAMw(a) > IWAMw(c) > IWAMw(b) and Cμ(c) > Cμ(a) > Cμ(b), we can see

that if we use IWAMw, then student a has the best rank, but if we use Cμ, then student c has
the best rank. We also consider the α-mean Choquet evaluation Ec

α of Cμ as follows:

Ec
α(x) = αCμl(x) + (1 − α)Cμr (x) (4.4)

for all α ∈ [0, 1] and x ∈ {a, b, c}.
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The α-mean Choquet evaluation Ec
α implies that we can interpret the difference of the

degree of favor for student a and student c. Indeed, if α = 1, that is, if the school wants
to favor extremely well-equilibrated students, then the school wants to favor student c than
student a as Ec

1(c) − Ec
1(a) = 0.35; if α = 0, that is, if the school wants to favor somewhat more

well-equilibrated students, then the school wants to favor student c more than student a as
Ec
0(c) − Ec

0(a) = 0.15.
Finally, we have the normalized entropy of interval-valued capacity in IVC2

N as
follows:

1
lnn

HM
(
μ
)
=
[

1
lnn

HM
(
μl

)
,

1
lnn

HM
(
μr

)]
,

HM
(
μl

)
=

∑

T⊂N\{P}

(3 − t − 1)!t!
3!

h
(
μl(T ∪ {P}) − μl(T)

)

+
∑

T⊂N\{M}

(3 − t − 1)!t!
3!

h
(
μl(T ∪ {M}) − μl(T)

)

+
∑

T⊂N\{L}

(3 − t − 1)!t!
3!

h
(
μl(T ∪ {L}) − μl(T)

)
,

HM
(
μl

)
=

∑

T⊂N\{P}

(3 − t − 1)!t!
3!

h
(
μr(T ∪ {P}) − μr(T)

)

+
∑

T⊂N\{M}

(3 − t − 1)!t!
3!

h
(
μr(T ∪ {M}) − μr(T)

)

+
∑

T⊂N\{L}

(3 − t − 1)!t!
3!

h
(
μr(T ∪ {L}) − μr(T)

)
,

(4.5)

where N = {P,M,L}. Thus, we have

1
lnn

HM
(
μ
)
= [0.8012, 0.9079], (4.6)

which shows that the total interval-valued weight is from still rather well distributed to very
quite well distributed.

5. Conclusions

In this paper we consider the new interval-valued measure of the entropy of an interval-
valued capacitywhich generalizes ameasure of the entropy proposed byMarichal’s [3]. From
(3.1), (3.5), and (3.9) and Theorems 3.4, 3.5, 3.6, we investigate the interval-valued weighted
arithmetic mean and interval-valued ordered weighted averaging operator for representing
uncertain weight vectors which are used in the concept of an uncertain aggregations.

From an example in Section 4, it is possible that we use from somewhat oriented to
extremely oriented instead of oriented, from rather well distributed to quite well distributed
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instead of well distributed, and from somewhat well equilibrated to extremely well equili-
brated instead of well equilibrated in the problem of evaluating students.

In the future, by using these results of this paper, we can develop various problems
and models for representing uncertain weights related to interacting criteria.
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