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This paper studies the finite element (FE) approximation to a second-type variational inequality.
The supe rclose and superconvergence results are obtained for conforming bilinear FE and
nonconforming EQrot FE schemes under a reasonable regularity of the exact solution u ∈ H5/2(Ω),
which seem to be never discovered in the previous literature. The optimal L2-norm error estimate
is also derived for EQrot FE. At last, some numerical results are provided to verify the theoretical
analysis.

1. Introduction

Variational inequality (VI) theory has been playing an important role in the obstacle problem,
contact problem, elasticity problem, and so on [1]. FE methods for solving VI problems
have attracted more and more attentions. For example, as regards to the first type-VI case,
the authors of [2] used piecewise quadratic FE to approximate the obstacle problem and
suggested the error order between the FE solution and the exact solution should be O(h3/2).
The authors of [3] first obtained the error bound O(h3/2−ε) (for any ε > 0) for the above FE
when the obstacle vanished. Then through a detailed analysis, the authors of [4] obtained
the same error bound as the ones of [3] under the hypothesis that the free boundary has
finite length. Later, the authors of [5] obtained the same error bound as the ones of [3] for
the same element without the hypothesis of finite length of the free boundary. Furthermore,
[6] investigated the Wilson’s element approximation to the obstacle problem and derived the
error bound with order O(h). The authors of [7] obtained the same error estimate with order
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O(h) on anisotropic meshes by making the full use of the bilinear part of the Wilson element,
which relaxed the interpolation restriction and simplified the proofs of [5, 6]. Recently, the
authors of [8] proposed a class of nonconforming FE methods for the parabolic obstacle VI
problem with moving grids and obtained the optimal error estimates on anisotropic meshes.
On the other hand, some studies [9–11] have been devoted to FE approximation to Signorini
problem which arises in contact problems and obtained different error estimates under
different assumptions. The authors of [12] derived the convergence result ofO(h3/4| logh|1/4)
if the displacement field is of H2 regularity and also showed that if stronger but reasonable
regularity is available (u ∈ W2,p, p > 2), the above result can be improved to optimal
order O(h). The authors of [13] applied a class of Crouzeix-Raviart-type FEs to Signorini
problem and obtained O(h) order estimate on anisotropic meshes. The authors of [14] used
the bilinear FE to approximate the frictionless Signorini problem by virtue of the information
on the contact zone and derived a superconvergence rate of O(h3/2) when the exact solution
u ∈ H5/2(Ω). The authors of [15] presented the nonconforming Carey FE approximation to
the problem of [14] and obtained the same convergence and superconvergence results are
also obtained.

For the second type case, the authors of [16] proposed a Galerkin FE schemes for
deriving a posteriori error estimates for a friction problem and a model flow of Bingham
fluid. The authors of [17] considered the FE approximation to the plate contact problem and
obtained some error estimates by employing the technique of mesh dependent norm.

In this paper, we will consider the following second type-VI problem [18, 19]:

find u ∈ K∗, such that

a(u, v − u) + j(v) − j(u) ≥ (f, v − u), ∀v ∈ K∗,
(1.1)

where Ω ⊂ R2 is a bounded convex polygonal domain; K∗ is defined as follows:

K∗ =
{
v ∈ H1(Ω) | v = 0, on Γ − Γd; v ≥ 0,

∂v

∂n
≥ 0, v

∂v

∂n
= 0, on Γd = Γ0d ∪ Γ+d

}
, (1.2)

in which Γ = ∂Ω,Γd ⊂ Γ and Γ0
d
= {x ∈ Γd | v(x) = 0}, Γ+

d
= {x ∈ Γd | v(x) > 0}. a(u, v) =∫

Ω(∇u∇v + μuv)dx dy, μ is a positive constant, (f, v) =
∫
Ω fv dx dy, j(v) =

∫
Γd
ψ(v)ds, and

ψ(t) =
∫ t

0
ϕ(τ)dτ, ϕ(τ) =

⎧
⎪⎪⎪⎨

⎪⎪⎪⎩

g, τ ≥ kg,
τ

k
, |τ | ≤ kg,

−g τ ≤ −kg,
(1.3)

and g and k are positive constants. (1.1) may describe many practical engineering problems
and attracts many scholars’ interests. For instance, the authors of [20] obtained the O(h1/2−ε)
error estimate of energy norm for linear FE; the authors of [21] got theO(h1/2) error estimate
in energy norm by improving the result of [20] for u ∈ H3/2(Ω); the authors of [22]
derived the optimal O(h2) error estimate of L2 norm and O(h) error estimate of energy
norm when u ∈ H2(Ω). But all the above studies mentioned above only paid attention to the
convergence analysis for the conforming FE with no consideration on the superconvergence
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property, although it is surely an interesting and useful phenomenon in scientific computing
of industrial problems [23].

In this paper, as a first attempt, we try to investigate the superconvergence of
conforming and nonconforming FE schemes for problem (1.1)with a reasonable assumption
of u ∈ H5/2(Ω). The rest of this paper is organized as follows. In the next section, we give
the equivalent form of (1.1) and the conforming bilinear FE (see [14]) approximation of (1.1).
Moreover, superclose result ofO(h3/2) is derived under the broken energy norm. In Section 3,
the nonconforming EQrot FE (see [26]) approximation is used, and the same superclose result
is obtained under the energy norm; the optimal error estimate of L2-norm is also derived
when u ∈ H2(Ω). In Section 4, we construct a postprocessing interpolation operator to obtain
the superconvergence properties. In Section 5, we present some numerical results to verify
the theoretical analysis.

2. The Equivalent Form and Conforming FE Scheme

It has been shown in [21, 22] that (1.1) is equivalent to

find u ∈ K∗, such that

a(u, v) +
∫

Γd
ϕ(u)vds =

(
f, v
)
, ∀v ∈ K∗,

(2.1)

and (2.1) has the unique solution u in K∗. It can be verified that ϕ(t) satisfies the following
two properties: for all a, b ∈ R1,

∣∣ϕ(a) − ϕ(b)∣∣ ≤ 1
k
|a − b|, (2.2)

(
ϕ(a) − ϕ(b))(a − b) ≥ 0. (2.3)

Let Th be a rectangular partition with a maximum size h in (x, y) plane, K ∈ Th a general
element; V 1

h and V 2
h are the conforming bilinear FE space and the nonconforming EQrot

FE space. We denote by Π1
h
and Π2

h
the associated interpolation operators on V 1

h
and V 2

h
,

respectively. In the meantime, we denoteKi
h
by a convex set associated withK∗ in V i

h
(i = 1, 2)

as follows:

K1
h =
{
vh ∈ V 1

h | vh = 0 on Γ − Γd
}
,

K2
h =
{
vh ∈ V 2

h |
∫

F

vhds = 0, F ⊂ Γ − Γd,
∫

F

vhds ≥ 0, F ⊂ Γd
}
,

(2.4)

where F is an edge of K. The following two lemmas will play an important role in the FE
analysis, which can be found in [14, 24], respectively.
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Lemma 2.1. For all u ∈ H2(Ω), F ⊂ ∂K, there holds ‖u −Πi
hu‖0,F ≤ Ch3/2|u|2,K.

Lemma 2.2. Let u ∈ H5/2(Ω), then for vh ∈ K1
h
, there holds

(
∇
(
u −Π1

hu
)
, vh
)
= O
(
h3/2
)
|u|5/2|vh|1, (2.5)

where |u|5/2 =
∑

|α|=2
∫∫

Ω|u(α)(ϑ) − u(α)(θ)|2/|ϑ − θ|3dϑ dθ.

The corresponding conforming FE approximation version of (2.1) reads as

find u ∈ K1
h, such that

a(uh, vh) +
∫

Γd
ϕ(uh)vhds =

(
f, vh

)
, ∀vh ∈ K1

h.
(2.6)

Theorem 2.3. Let u ∈ H5/2(Ω) be the exact solution of (1.1) and uh ∈ K1
h the bilinear FE solution

of (2.6), then there holds

∣∣∣Π1
hu − uh

∣∣∣
1
≤ ch3/2|u|5/2, (2.7)

here and later, c is a generic positive constant, which is independent of h, K, and u.

Proof. Subtracting (2.1) from (2.6), then taking v = vh in it, one can get

a(u − uh, vh) +
∫

Γd

(
ϕ(u) − ϕ(uh)

)
vhds = 0. (2.8)

Let ξ = Π1
hu − uh and η = u −Π1

hu. Taking vh = ξ in the above equation, there yields

a(u − uh, ξ) +
∫

Γd

(
ϕ(u) − ϕ(uh)

)
ξds = 0. (2.9)

By the definition of a(v, v), we have

|ξ|21 ≤ a(ξ, ξ) = a(u − uh, ξ) − a
(
η, ξ
)

= −
∫

Γd

(
ϕ(u) − ϕ(uh)

)
ξds − a(η, ξ)

= −
∫

Γd

(
ϕ(u) − ϕ

(
Π1
hu
))
ξds −

∫

Γd

(
ϕ
(
Π1
hu
)
− ϕ(uh)

)
ξds − (∇η,∇ξ) − μ(η, ξ).

(2.10)

Noticing (2.3), we have − ∫Γd(ϕ(Π1
h
u) − ϕ(uh))ξds ≤ 0; thus

|ξ|21 ≤ I1 + I2, (2.11)

in which I1 = − ∫Γd(ϕ(u) − ϕ(Π1
h
u))ξds, I2 = −(∇η,∇ξ) − μ(η, ξ).
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From (2.2) and Lemma 2.1, I1 can be estimated as

|I1| ≤ c

k

∫

Γd

∣
∣η
∣
∣|ξ|ds ≤ ∥∥η∥∥0,Γd‖ξ‖0,Γd ≤ ch

3/2|u|2|ξ|1. (2.12)

Applying the interpolation theory and Lemma 2.2, we get

|I2| ≤ ch3/2|u|5/2|ξ|1. (2.13)

The desired result follows directly from the combination of (2.12) and (2.13).

3. The Nonconforming FE Scheme

The corresponding nonconforming FE approximation scheme of (2.1) reads as

find u ∈ K2
h, such that

ah(uh, vh) +
∫

Γd
ϕ(uh)vhds =

(
f, vh

)
, ∀vh ∈ K2

h,
(3.1)

where ah(u, v) =
∑

K

∫
K(∇u∇v + μuv)dx dy.

First, we introduce the following Lemma 3.1, which can be found in [25].

Lemma 3.1 (see [25]). If u ∈ H2(Ω), vh ∈ K2
h, one has

(
∇
(
u −Π2

hu
)
,∇vh

)
= 0. (3.2)

By using the similar technique in [26], one now states and proves the following
important conclusion.

Lemma 3.2. For all u ∈ H5/2(Ω), vh ∈ K2
h, there holds

∑

K

∫

∂K

∂u

∂n
vhds ≤ ch3/2|u|5/2‖vh‖h, (3.3)

where ‖vh‖h = (
∑

K∈Th |vh|21,K)1/2.

Proof. Let Z1 = (x0 − hx, y0 − hy), Z2 = (x0 + hx, y0 − hy), Z3 = (x0 + hx, y0 + hy), and Z4 =
(x0−hx, y0+hy) be the four vertices ofK, Fi = ZiZi+1 (i = 1, 2, 3, 4, mod 4). We define operators
P0 and P0i as

P0v =
1
|K|
∫

K

v dx, P0iω =
1
|Fi|
∫

Fi

ω ds, (3.4)

respectively, where |K| and |Fi| denote the measures of K and Fi, respectively.
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It can be checked that

∑

K

∫

∂K

∂u

∂n
vhds =

∑

K

[

−
∫

F1

∂u

∂y
(vh − P01vh)dx +

∫

F2

∂u

∂x
(vh − P02vh)dy

+
∫

F3

∂u

∂y
(vh − P03vh)dx −

∫

F4

∂u

∂x
(vh − P04vh)dy

]

+
∑

F⊂Γd

∫

F

∂u

∂n
vhds

.=
∑

K

4∑

i=1

Mi +M.

(3.5)

By the definition of P01, we get

∫

K

(
vh
(
x, y0 − hy

) − P01vh
(
x, y0 − hy

))
dx dy

= 2hy

∫

F1

vh
(
x, y0 − hy

)
dx − 4hxhy

|F1|
∫

F1

vh
(
x, y0 − hy

)
dx = 0.

(3.6)

Noticing that (vh −P01vh)|F1 equals (vh −P03vh)|F3 and ∂vh/∂x is only dependent on x,
we can derive that

M1 +M3 =
∫x0+hx

x0−hx

[
∂u

∂y

(
x, y0 + hy

) − ∂u

∂y

(
x, y0 − hy

)
]
(vh − P01vh)dx

=
∫x0+hx

x0−hx

[∫y0+hy

y0−hy

∂2u

∂y2

(
x, y
)
dy

]

(vh − P01vh)dx

=
∫x0+hx

x0−hx

∫y0+hy

y0−hy

(
∂2u

∂y2
− P0 ∂

2u

∂y2

)

(vh − P01vh)dy dx

=

∥∥∥∥∥
∂2u

∂y2
− P0 ∂

2u

∂y2

∥∥∥∥∥
0,K

‖vh − P01vh‖0,K

≤ ch3/2|u|5/2,K|vh|1,K.

(3.7)

Similarly, M2 +M4 ≤ ch3/2|u|5/2,K|vh|1,K. By using the same technique as [14, 15], M
can be estimated as

|M| ≤ ch3|u|5/2‖vh‖h. (3.8)

Thus the desired result follows.
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Theorem 3.3. Let u ∈ H5/2(Ω) be the exact solution of (1.1) and uh ∈ K2
h the nonconforming FE

solution of (3.1). Then one has

∥
∥
∥Π2

hu − uh
∥
∥
∥
h
≤ Ch3/2|u|5/2. (3.9)

Proof. Subtracting (2.1) from (3.1) gives

ah(u − uh, vh) +
∫

Γd

(
ϕ(u) − ϕ(uh)

)
vhds =

∑

K

∫

∂K

∂u

∂n
vhds. (3.10)

For convenience, we still denote ξ = Π2
hu − uh and η = u −Π2

hu. Taking vh = Π2
hu − uh

in (3.10) yields

ah(u − uh, ξ) +
∫

Γd

(
ϕ(u) − ϕ(uh)

)
ξds =

∑

K

∫

∂K

∂u

∂n
ξds. (3.11)

By Lemma 3.1, we can derive that

‖ξ‖2h ≤ ah(ξ, ξ) = ah(u − uh, ξ) − ah
(
η, ξ
)

= −
∫

Γd

(
ϕ(u) − ϕ(uh)

)
ξds − ah

(
η, ξ
)
+
∑

K

∫

∂K

∂u

∂n
ξds

= −
∫

Γd

(
ϕ(u) − ϕ

(
Π2
hu
))
ξds −

∫

Γd

(
ϕ
(
Π2
hu
)
− ϕ(uh)

)
ξds − μ(η, ξ) +

∑

K

∫

∂K

∂u

∂n
ξds.

(3.12)

Noticing Lemma 3.2 and using the analysis technique of Theorem 2.3, one can
immediately get the desired result.

Remark 3.4. As a by-product, if we assume u ∈ H2(Ω) instead of u ∈ H5/2(Ω), the consistency
error can be estimated as

∑

K

∫

∂K

∂u

∂n
vhds ≤ ch|u|2‖vh‖h, (3.13)

which can be found in [26]. Then we can derive the following optimal error estimate:

‖u − uh‖h ≤ Ch|u|2. (3.14)

Now we start to give the L2-norm estimate through a duality argument.

Theorem 3.5. Let u ∈ K2(Ω) and uh ∈ V 2
h be the solutions of (1.1) and (3.1), respectively, there

holds

‖u − uh‖0 ≤ Ch2|u|2. (3.15)
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Proof. Let ω ∈ H2(Ω) be the solution of the following auxiliary elliptic problem:

−�w + μw = u − uh, inΩ,

w = 0, on Γ − Γd,

∂w

∂n
= −β(x)w, on Γd,

(3.16)

in which β(x) = (ϕ(u) − ϕ(uh))/(u − uh), then

‖w‖2 ≤ c‖u − uh‖0. (3.17)

By (3.16) and Lemma 3.1, we can derive that

‖u − uh‖20 = (u − uh, u − uh) = ah(u − uh,w)

+
∫

Γd
βw(u − uh)ds +

∑

K

∫

∂K

∂w

∂n
(u − uh)ds

= ah
(
u − uh,w −Π2

hw
)
+ ah

(
u − uh,Π2

hw
)

+
∫

Γd
βw(u − uh)ds +

∑

K

∫

∂K

∂w

∂n
(u − uh)ds

= ah
(
u − uh,w −Π2

hw
)
−
∫

Γd

(
ϕ(u) − ϕ(uh)

)
Π2
hw ds +

∫

Γd
βw(u − uh)ds

+
∑

K

∫

∂K

∂w

∂n
(u − uh)ds +

∑

K

∫

∂K

∂u

∂n
Π2
hw ds

= ah
(
u − uh,w −Π2

hw
)
+
1
k

∫

Γd
(u − uh)

(
w −Π2

hw
)
ds

+
∑

K

∫

∂K

∂w

∂n
(u − uh)ds +

∑

K

∫

∂K

∂u

∂n

(
w −Π2

hw
)
ds

= J1 + J2 + J3,

(3.18)

where J1 = ah(u−uh,w−Π2
hw), J2 = 1/k

∫
Γd
(u−uh)(w−Π2

hw)ds, and J3 =
∑

K

∫
∂K ∂w/∂n(u−

uh)ds+
∑

K

∫
∂K ∂u/∂n(w−Π2

h
w)ds. These three terms can be estimated one by one as follows.

By (3.14), (3.17), and the interpolation theory, J1 can be estimated as

J1 =
(
∇(u − uh),∇

(
w −Π2

hw
))

+ μ
(
u − uh,w −Π2

hw
)

≤ ch2|u|2|w|2 + ch2‖u − uh‖0|w|2
≤ ch2|u|2‖u − uh‖0 + ch2‖u − uh‖20.

(3.19)
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By the trace theorem, (3.17), and Lemma 2.1, one gets

J2 ≤ 1
k
‖u − uh‖0,Γd

∥
∥
∥u −Π2

hu
∥
∥
∥
0,Γd

≤ ch5/2|u|2|w|2 ≤ ch5/2|u|2‖u − uh‖0. (3.20)

By (3.13), (3.14), and (3.17), we have

J3 ≤ ch|u|2
∥
∥∥w −Π2

hw
∥
∥∥
h
+ ch|w|2‖u − uh‖h ≤ ch2|u|2|w|2 ≤ ch2|u|2‖u − uh‖0. (3.21)

The desired result follows the combination of the above estimates of J1, J2, and J3.

Remark 3.6. As to the L2-norm error estimate of bilinear FE scheme, the readers may refer to
[21, 22].

4. The Global Superconvergence Result

In order to obtain the global superconvergence, we combine the four neighbouring elements
K1, K2, K3, K4 ∈ Th into one new rectangular element K0, whose four edges are L1, L2, L3,
and L4. T2h represents the corresponding new partition. For the conforming FE scheme, we
construct the postprocessing operator Π1

2hu|K0 : C(K0) → P2(K0) as follows:

Π1
2hu
(
Zj

)
= u
(
Zj

)
, j = 1, 2, . . . , 8, (4.1)

in which Zj is the four vertices and four mid point of edges ofK0. For the nonconforming FE
scheme, we construct the postprocessing Π2

2h operator as

Π2
2h u|K0

∈ P2(K0), ∀K0 ∈ T2h,
∫

Lj

(
Π2

2hu − u
)
ds = 0, j = 1, 2, 3, 4,

∫

K1∪K3

(
Π2

2hu − u
)
dx = 0,

∫

K2∪K4

(
Π2

2hu − u
)
dx = 0, ∀K0 ∈ T2h.

(4.2)

It is easy to validate that the interpolation operator is well posed and has the following
properties [23]:

Πi
2hΠ

i
hu = Πi

2hu, ∀u ∈ H2(Ω),
∥∥∥Πi

2hu − u
∥∥∥
h
≤ chr |u|r+1, ∀u ∈ Hr+1(Ω), 0 ≤ r ≤ 2,

∥∥∥Πi
2hvh

∥∥∥
h
≤ c‖vh‖h, ∀vh ∈ Ki

h.

(4.3)
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Figure 1: The conforming FE solution (a) and the nonconforming FE solution (b) on the 64 × 64 mesh.

Theorem 4.1. If u ∈ H5/2(Ω) is the exact solution of (1.1), uh is the conforming or nonconforming
FE solution. The following superconvergence result

∥∥∥u −Πi
2huh

∥∥∥
h
≤ ch3/2|u|5/2 (4.4)

holds.

Proof. By (4.3), one gets

∥∥∥Πi
2hΠ

i
hu −Πi

2huh
∥∥∥
h
=
∥∥∥Πi

2h(Π
i
hu − uh)

∥∥∥
h
≤ c
∥∥∥Πi

hu − uh
∥∥∥
h
≤ ch3/2|u|5/2,

∥∥∥Πi
2hΠ

i
hu − u

∥∥∥
h
=
∥∥∥Πi

2hu − u
∥∥∥
h
≤ ch3/2|u|5/2.

(4.5)

Noticing Πi
2huh − u = Πi

2huh −Πi
2hΠ

i
hu + Πi

2hΠ
i
hu − u, the proof is completed.

5. Numerical Results

In this section, we will present an example to confirm the correctness of our theoretical
analysis. In (1.1), we choose Ω = [0, 1] × [0, 1] with boundary ∂Ω = Γ, μ = 1, ϕ(u) =
u,Γd = {0} × [0, 1], u|Γd = (x1 − 1/2)2 − 1/4, u|Γ−Γd = 0. The right hand term f = 1. Since
there may be no exact solution to the above problem, we use the conforming FE solution
on a sufficient refined mesh h = 1/256 as the reference solution. Then we compare the
conforming and nonconforming FE solutions (see Figure 1) on the coarser meshes (h =
1/2, 1/4, 1/8, 1/16, 1/32, 1/64) with the reference one in Tables 1 and 2.

From the above tables, we can see that the conforming and nonconforming FE
solutions both converge. At the same time, the superconvergence results in our experiments
are a little better than the theoretical ones. We may explain this phenomenon with some
special properties of this nonconforming FE that we have not discovered.
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Table 1: The error estimates for conforming FE scheme.

h 1/2 1/4 1/8 1/16 1/32 1/64
∥∥Π1

h
u − uh

∥∥
h

2.1780E−02 6.6596E−03 1.8851E−03 5.1760E−04 1.3861E−04 3.5405E−05
order / 1.8084 1.8796 1.9084 1.9324 1.9786
∥∥u −Π1

2huh
∥∥
h

5.3923E−03 1.5926E−03 4.1215E−04 1.0371E−04 2.5691E−05 6.1214E−06
order / 1.8401 1.9657 1.9935 2.0092 2.0486

Table 2: The error estimates for nonconforming FE scheme.

h 1/2 1/4 1/8 1/16 1/32 1/64
∥
∥Π2

h
u − uh

∥
∥
h

1.1264E−01 4.6572E−02 1.8679E−02 8.0004E−03 3.1977E−03 1.3906E−03
order / 1.5552 1.5790 1.5280 1.5817 1.5164
∥∥u −Π2

2huh
∥∥
h

8.1523E−02 3.1059E−02 1.0260E−02 3.1725E−03 9.4359E−04 2.7340E−04
order / 1.6201 1.7399 1.7983 1.8336 1.8578
‖u − uh‖0 1.0995E−02 2.7109E−03 6.4263E−04 1.5941E−04 3.9258E−05 9.3430E−06
order / 2.0139 2.0539 2.0078 2.0151 2.0498
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