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By employing a well-known fixed point theorem, we establish the existence of multiple positive
solutions for the following fourth-order singular differential equation Lu = p(t)f(t, u(t), u′′(t)) −
g(t, u(t), u′′(t)), 0 < t < 1, α1u(0) − β1u′(0) = 0, γ1u(1) + δ1u′(1) = 0, α2u′′(0) − β2u′′′(0) = 0, γ2u′′(1) +
δ2u

′′′(1) = 0, with αi, βi, γi, δi ≥ 0 and βiγi + αiγi + αiδi > 0, i = 1, 2, where L denotes the linear
operator Lu := (ru′′′)′ − qu′′, r ∈ C1([0, 1], (0,+∞)), and q ∈ C([0, 1], [0,+∞)). This equation is
viewed as a perturbation of the fourth-order Sturm-Liouville problem, where the perturbed term
g : (0, 1) × [0,+∞) × (−∞,+∞) → (−∞,+∞) only satisfies the global Carathéodory conditions,
which implies that the perturbed effect of g on f is quite large so that the nonlinearity can tend to
negative infinity at some singular points.

1. Introduction

In this paper, we consider the existence of multiple positive solutions for the following fourth-
order singular Sturm-Liouville boundary value problem involving a perturbed term

Lu = p(t)f
(
t, u(t), u′′(t)

) − g(t, u(t), u′′(t)), 0 < t < 1,

α1u(0) − β1u′(0) = 0, γ1u(1) + δ1u′(1) = 0,

α2u
′′(0) − β2u′′′(0) = 0, γ2u

′′(1) + δ2u′′′(1) = 0,

(1.1)
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where αi, βi, γi, δi ≥ 0 and βiγi + αiγi + αiδi > 0, i = 1, 2, and L denotes the linear operator
Lu := (ru′′′)′ − qu′′, r ∈ C1([0, 1], (0,+∞)) and q ∈ C([0, 1], [0,+∞)) and q ∈ C([0, 1], [0,+∞)).
The perturbed term, g : (0, 1)×[0,+∞)×(−∞,+∞) → [0,+∞), satisfies global Carathéodory’s
conditions.

Equation (1.1) arises from many branches of applied mathematics and physics; for
details, see [1–16]. It mainly describes the deformation of an elastic beam for g(t, u, u′′) ≡ 0;
for example, under the Lidstone boundary condition,

u(0) = u(1) = u′′(0) = u′′(1) = 0, (1.2)

problem (1.1) is used to model such phenomena as the deflection of an elastic beam simply
supported at the endpoints; see [1, 3, 5, 7–11]. Also, if the boundary condition of (1.1) is
a Focal boundary condition, then it describes the deflection of an elastic beam having both
end-points fixed, or having one end simply supported and the other end clampedwith sliding
clamps. In addition, the derivative u′′ in f is the bending moment term which represents the
bending effect, see [1, 3, 5, 7–11, 13, 14, 16]. A brief discussion of the physical interpretation
under some boundary conditions associated with the linear beam equation can be found in
Zill and Cullen [17].

Recently, for the case where the nonlinearity f does not contain the bending moment
term u′′, Ma and Wang [1] studied the existence of positive solutions for (1.1) subject to
boundary conditions u(0) = u(1) = u′′(0) = u′′(1) = 0 and u(0) = u′(1) = u′′(0) = u′′′(1) = 0 if
f is superlinear or sublinear. In the case where f contains the bending moment term u′′ and
under the particular boundary conditions, the authors of papers [9, 12] studied the existence
of positive solutions for (1.1)when f satisfies the following growth condition:

∣∣f
(
t, x, y

) − (αx − βy)∣∣ ≤ a|x| + b∣∣y∣∣ + c, (1.3)

where α, β ∈ R a, b, c > 0, a, b is enough small. But most of the above works were done on
base of the assumptions that the nonlinearity is nonnegative and has no any singularity. In
recent years, one found that the fourth-order changing-sign nonlinear problems also occur to
the classical model for the elastic beam fixed at both ends, especially in the medium span or
large span bridge constructions, this implies that it is necessary and quite natural to study
fourth-order changing-sign boundary value problems.

In this paper, we focus on the particularly difficult and interesting situation, when (1.1)
is singularly perturbed, so that the nonlinearity is allowed to change sign, even may tend
to negative infinity. This problem has essential difference from those unperturbed problems
of [1–16]. We quote in the sequel some papers from the relevant bibliography devoted to
this subject. In [18], Loud considered the existence of T -periodic solutions for a first-order
perturbed system of ordinary differential equations by employing the so-called bifurcation
function

f0(θ) =
∫T

0

〈
z0(τ), φ(τ − θ, x0(τ), 0)

〉
dτ. (1.4)

Moreover, the author of [18] also considered the case when θ0 is not a simple zero of f0, and
the existence of T -periodic solutions of the above problem is associated with the existence of
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the roots of a certain quadratic equation. Recently, by using the exponential dichotomies and
contraction mapping principle, Xia et al. [19] established some sufficient conditions of the
existence and uniqueness of almost periodic solution for a forced perturbed system with pie-
cewise constant argument. The other works, such as Khanmamedov [20], Wu and Gan [21],
Makarenkov and Nistri [22], Liu and Yang [23], Clavero et al. [24], and Cui and Geng [25],
are rich sources for application of perturbed problems.

Our main tool used for the analysis here is known as Guo-Krasnoselskii’s fixed point
theorem, for the convenience of the reader, we now state it as follows.

Lemma 1.1 (see, [26]). Let E be a real Banach space, P ⊂ E a cone. AssumeΩ1,Ω2 are two bounded
open subsets of E with θ ∈ Ω1,Ω1 ⊂ Ω2, and let T : P ∩ (Ω2 \Ω1) → P be a completely continuous
operator such that either

(1) ‖Tx‖ ≤ ‖x‖, x ∈ P ∩ ∂Ω1, and ‖Tx‖ ≥ ‖x‖, x ∈ P ∩ ∂Ω2, or

(2) ‖Tx‖ ≥ ‖x‖, x ∈ P ∩ ∂Ω1, and ‖Tx‖ ≤ ‖x‖, x ∈ P ∩ ∂Ω2.

Then, T has a fixed point in P ∩ (Ω2 \Ω1).

2. Preliminaries and Lemmas

The following definition introduces global Carathéodory’s conditions imposed on a map.

Definition 2.1. Amap g : (t, x, y) �→ g(t, x, y) is said to satisfy global Crathéodory’s conditions
if the following conditions hold:

(i) for each (x, y) ∈ R × R, the mapping t �→ g(t, x, y) is Lebesgue measurable;

(ii) for a.e. t ∈ [0, 1], the mapping (x, y) �→ g(t, x, y) is continuous on R × R;

(iii) there exists a ρ ∈ L1[0, 1] such that, for a.e. t ∈ [0, 1] and (x, y) ∈ R × R, we have

∣∣g
(
t, x, y

)∣∣ ≤ ρ(t). (2.1)

The following lemmas play an important role in proving our main results.

Lemma 2.2 (see, [27]). Let ψ2 and φ2 be the solutions of the linear problems

−(r(t)φ′
2(t)

)′ + q(t)φ2(t) = 0, 0 < t < 1,

φ2(0) = β2, φ′
2(0) = α2,

−(r(t)ψ ′
2(t)

)′ + q(t)ψ2(t) = 0, 0 < t < 1,

ψ2(0) = δ2, ψ ′
2(0) = −γ2,

(2.2)

respectively. Then,

(i) φ2 is strictly increasing on [0, 1] and φ2(t) > 0 on (0, 1];

(ii) ψ2 is strictly decreasing on [0, 1] and ψ2(t) > 0 on [0, 1).
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Set

w2 = −r(t)(φ2(t)ψ ′
2(t) − ψ2(t)φ′

2(t)
)
, (2.3)

by Liouville’s formula, one can easily show w2 = constant > 0.
As [27], we define Green’s function for the BVP:

−(r(t)u′(t))′ + q(t)u(t) = 0, 0 < t < 1,

α2u(0) − β2u′(0) = 0, γ2u(1) + δ2u′(1) = 0,
(2.4)

by

G2(t, s) =
1
w2

⎧
⎨

⎩

φ2(t)ψ2(s), 0 ≤ t ≤ s ≤ 1,

φ2(s)ψ2(t), 0 ≤ s ≤ t ≤ 1,
(2.5)

then we have the following lemma.

Lemma 2.3. For any (t, s) ∈ [0, 1] × [0, 1], i = 1, 2, we have

θ2G2(s, s)G2(t, t) ≤ G2(t, s) ≤ G2(s, s), (or G2(t, t)), (2.6)

where

θ2 =
w2

φ2(1)ψ2(0)
. (2.7)

Proof. It follows from the monotonicity of φ2(t) and ψ2(t) that the right-hand side of (2.6)
holds. For the left hand side, by the monotonicity of φ2(t) and ψ2(t), we have

G2(t, s) =
1
w2

⎧
⎨

⎩

φ2(t)ψ2(s), 0 ≤ t ≤ s ≤ 1,

φ2(s)ψ2(t), 0 ≤ s ≤ t ≤ 1,

≥ 1
w2

⎧
⎪⎪⎪⎨

⎪⎪⎪⎩

φ2(t)ψ2(s)
φ2(s)ψ2(t)
φ2(1)ψ2(0)

, 0 ≤ t ≤ s ≤ 1,

φ2(s)ψ2(t)
φ2(t)ψ2(s)
φ2(1)ψ2(0)

, 0 ≤ s ≤ t ≤ 1,

=
w2

φ2(1)ψ2(0)
G2(t, t)G2(s, s),

= θ2G2(t, t)G2(s, s).

(2.8)

The proof is completed.
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Also, it is well known the Green function for the boundary value problem

−u′′ = 0, 0 < t < 1,

α1u(0) − β1u′(0) = 0, γ1u(1) + δ1u′(1) = 0,
(2.9)

is

G1(t, s) =
1
w1

⎧
⎨

⎩

(
β1 + α1s

)(
γ1 + δ1(1 − t)

)
, 0 ≤ s ≤ t ≤ 1,

(
β1 + α1t

)(
γ1 + δ1(1 − s)

)
, 0 ≤ t ≤ s ≤ 1,

(2.10)

where w1 = β1γ1 + α1γ1 + α1δ1. Let

e(t) =
1
w1

(
β1 + α1t

)(
γ1 + δ1(1 − t)

)
, (2.11)

clearly,

e(t)e(s) ≤ G1(t, s) ≤ e(s). (2.12)

Now, we define an integral operator S : C[0, 1] → [0, 1] by

Sv(t) =
∫1

0
G1(t, τ)v(τ)dτ, (2.13)

and, then, by (2.9), we have

(Sv)′′(t) = −v(t), 0 < t < 1,

α1(Sv)(0) − β1(Sv)′(0) = 0, γ1(Sv)(1) + δ1(Sv)′(1) = 0.
(2.14)

In order to obtain existence of positive solutions to problem (1.1), we will consider the
existence of positive solutions to the following modified problem

−(rv′)′(t) + qv(t) = p(t)f(t, Sv(t),−v(t)) − g(t, Sv(t),−v(t)), 0 < t < 1,

α2v(0) − β2v′(0) = 0, γ2v(1) + δ2v′(1) = 0.
(2.15)

Lemma 2.4. Let u(t) = Sv(t), v(t) ∈ C[0, 1]. Then, we can transform (1.1) into (2.15). Moreover,
if v ∈ C([0, 1], [0,+∞) is a solution of problem (2.15), then the function u(t) = Sv(t) is a positive
solution of problem (1.1).

Proof. It follows from (2.9) that u′′(t) = −v(t), put u′′(t) = −v(t) and u(t) = Sv(t) into (1.1), we
can transform (1.1) into (2.15).
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Conversely, if v ∈ C([0, 1], [0,+∞)) is a solution of (2.15), let u(t) = Sv(t), we have
u′′(t) = −v(t), thus u = Sv is a solution of (1.1). The proof of Lemma 2.4 is completed.

In the rest of the paper, we always suppose that the following assumptions hold.

(B1) p : (0, 1) → [0,+∞) is continuous and satisfies

0 <
∫1

0
G2(s, s)p(s)ds < +∞. (2.16)

(B2) f : [0, 1] × [0,+∞) × (−∞,+∞) → [0,+∞) is continuous.

(B3) g : [0, 1] × [0,+∞) × (−∞,+∞) → [0,+∞) satisfies global Crathéodory’s condition
and

∫1

0
ρ(s)ds > 0. (2.17)

Remark 2.5. It follows from (B1), (B3) and from the monotonicity of φ2(t), ψ2(t) that there
exists (a, b) ⊂ (0, 1) such that

0 <
∫b

a

G2(s, s)p(s)ds ≤
∫b

a

G2(s, s)
[
p(s) + ρ(s)

]
ds

≤
∫1

0
G2(s, s)

[
p(s) + ρ(s)

]
ds

≤
∫1

0
G2(s, s)p(s)ds +

φ2(1)ψ2(0)
w2

∫1

0
ρ(s)ds

< +∞.

(2.18)

So for convenience, in the rest of this paper, we define serval constants as follows:

K =
∫1

0
G2(s, s)

[
p(s) + ρ(s)

]
ds, μ2 =

φ2(a)ψ2(b)
φ2(1)ψ2(0)

, l = μ2

∫b

a

G2(s, s)p(s)ds,

μ1 =

(
β1 + α1a

)(
γ1 + δ1(1 − b)

)
θ2

w1

∫1

0
G1(s, s)G2(s, s)ds.

(2.19)

Lemma 2.6. Assume (B3) is satisfied. Then, the boundary value problem

−(r(t)y′)′(t) + q(t)y(t) = ρ(t), 0 < t < 1,

α2y(0) − β2y′(0) = 0, γ2y(1) + δ2y′(1) = 0,
(2.20)



Journal of Applied Mathematics 7

has a unique solution

y(t) =
∫1

0
G2(t, s)ρ(s)ds, (2.21)

which satisfies

y(t) ≤ G2(t, t)
∫1

0
ρ(s)ds. (2.22)

Proof. First, y(t) =
∫1
0 G2(t, s)ρ(s)ds solves the BVP (2.20), and it is the unique solution of the

BVP (2.20), since −(r(t)y′)′(t) + q(t)y(t) = 0 with boundary conditions

α2y(0) − β2y′(0) = 0, γ2y(1) + δ2y′(1) = 0 (2.23)

only has a trivial solution. Finally, it follows from (2.6) and (B3) that (2.22) holds.

Define a modified function [·]∗ for any z ∈ C[0, 1] by

[z(t)]∗ =

⎧
⎨

⎩

z(t), z(t) ≥ 0,

0, z(t) < 0.
(2.24)

We consider the following approximating problem

−(r(t)x′)′(t) + q(t)x(t) = p(t)f
(
t, S
[
x(t) − y(t)]∗,−[x(t) − y(t)]∗)

− g(t, S[x(t) − y(t)]∗,−[x(t) − y(t)]∗) + ρ(t), 0 < t < 1,

α2x(0) − β2x′(0) = 0, γ2x(1) + δ2x′(1) = 0.

(2.25)

Lemma 2.7. If x(t) ≥ y(t) for any t ∈ [0, 1] is a positive solution of the BVP (2.25), then S(x − y)
is a positive solution of the singular perturbed differential equation (1.1).

Proof. In fact, if x is a positive solution of the BVP (2.25) such that x(t) ≥ y(t) for any t ∈ [0, 1],
then, from (2.25) and the definition of [z(t)]∗, we have

−(r(t)x′)′(t) + q(t)x(t) = p(t)f
(
t, S
(
x(t) − y(t)),−(x(t) − y(t)))

− g(t, S(x(t) − y(t)),−(x(t) − y(t))) + ρ(t), 0 < t < 1,

α2x(0) − β2x′(0) = 0, γ2x(1) + δ2x′(1) = 0. (2.26)

Let v = x − y, then −(r(t)v′)′(t) + q(t)v(t) = −(rx′)′(t) + qx(t) + (ry′)′(t) − qy(t), which implies
that

−(r(t)x′)′(t) + q(t)x(t) = −(r(t)v′)′(t) + q(t)v(t) − (r(t)y′)′(t) + q(t)y(t)

= −(r(t)v′)′(t) + q(t)v(t) + ρ(t),

α2x(0) − β2x′(0) = 0, γ2x(1) + δ2x′(1) = 0. (2.27)
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Thus, (2.26) becomes (2.15), that is, x − y is a positive solution of the differential equation
(2.15). By Lemma 2.4, u = S(x−y) is a positive solution of the singular perturbed differential
equation (1.1). This completes the proof of Lemma 2.7.

Thus, the BVP (2.25) is equivalent to the integral equation

x(t) =
∫1

0
G2(t, s)

[
p(s)f

(
s, S

[
x(s) − y(s)]∗,−[x(s) − y(s)]∗)

−g(s, S[x(s) − y(s)]∗,−[x(s) − y(s)]∗) + ρ(s)]ds.
(2.28)

Hence, we will look for fixed points x(t) ≥ y(t), t ∈ [0, 1], for the mapping T defined on
E := C([0, 1], [0,+∞)) by

(Tx)(t) =
∫1

0
G2(t, s)

[
p(s)f

(
s, S

[
x(s) − y(s)]∗,−[x(s) − y(s)]∗)

−g(s, S[x(s) − y(s)]∗,−[x(s) − y(s)]∗) + ρ(s)]ds.
(2.29)

The basic space used in this paper is E = C([0, 1];R), where R is a real number set.
Obviously, the space E is a Banach space if it is endowed with the norm as follows:

‖u‖ = max
t∈[0,1]

|u(t)|, (2.30)

for any u ∈ E. Let

P = {x ∈ E : x(t) ≥ θ2G2(t, t)‖x‖}, (2.31)

where θ2 is defined by (2.7), then P is a cone of E.

Lemma 2.8. Assume that (B1)–(B3) hold. Then, T : P → P is well defined. Furthermore, T : P →
P is a completely continuous operator.

Proof. For any fixed x ∈ P , there exists a constant L > 0 such that ‖x‖ ≤ L. And then,

[
x(s) − y(s)]∗ ≤ x(s) ≤ ‖x‖ ≤ L,

∣∣S
[
x(s) − y(s)

]∗∣∣ ≤ L
∫1

0
G1(t, s)ds ≤

(
β1 + α1

)(
γ1 + δ1

)

w1
L.

(2.32)
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On the other hand, since g satisfies global Carathéodory’s condition, we have
g(·, u(·), v(·)) ∈ L1(0, 1). Accordingly, Tx in (2.29) is continuous on [0, 1], and, by (2.32),

(Tx)(t) =
∫1

0
G2(t, s)

[
p(s)f

(
s, S

[
x(s) − y(s)]∗,−[x(s) − y(s)]∗)

−g(s, S[x(s) − y(s)]∗,−[x(s) − y(s)]∗) + ρ(s)]ds

≤
∫1

0
G2(s, s)

[
p(s)f

(
s, S

[
x(s) − y(s)]∗,−[x(s) − y(s)]∗) + 2ρ(s)

]
ds

≤N
∫1

0
G2(s, s)

[
p(s) + ρ(s)

]
ds < +∞,

(2.33)

where

N = max
(t,u,v)∈[0,1]×[0,((β1+α1)(γ1+δ1)/w1)L]×[−L,0]

f(t, u, v) + 2. (2.34)

This implies that the operator T : P → E is well defined.
Next, for any x ∈ P , by (2.6), we have

‖Tx‖ = max
0≤t≤1

∫1

0
G2(t, s)

[
p(s)f

(
s, S

[
x(s) − y(s)]∗,−[x(s) − y(s)]∗)

−g(s, S[x(s) − y(s)]∗,−[x(s) − y(s)]∗) + ρ(s)]ds

≤
∫1

0
G2(s, s)

[
p(s)f

(
s, S

[
x(s) − y(s)]∗,−[x(s) − y(s)]∗)

−g(s, S[x(s) − y(s)]∗,−[x(s) − y(s)]∗) + ρ(s)]ds.

(2.35)

On the other hand, from (2.6), we also have

(Tx)(t) =
∫1

0
G2(t, s)

[
p(s)f

(
s, S

[
x(s) − y(s)]∗,−[x(s) − y(s)]∗)

−g(s, S[x(s) − y(s)]∗,−[x(s) − y(s)]∗) + ρ(s)]ds

≥ θ2G2(t, t)
∫1

0
G2(s, s)

[
p(s)f

(
s, S

[
x(s) − y(s)]∗,−[x(s) − y(s)]∗)

−g(s, S[x(s) − y(s)]∗,−[x(s) − y(s)]∗) + ρ(s)]ds.

(2.36)

So

(Tx)(t) ≥ θ2G(t, t)‖Tx‖, t ∈ [0, 1], (2.37)

which yields that T(P) ⊂ P .
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At the end, according to the Ascoli-Arzela Theorem, using standard arguments, one
can show T : P → P is a completely continuous operator.

3. Main Results

Theorem 3.1. Suppose (B1)–(B3) hold. In addition, assume that the following conditions are
satisfied.

(S1) There exists a constant

r > max

⎛

⎝2K,

∫1
0 ρ(s)ds
θ2

⎞

⎠ (3.1)

such that for any (t, u, v) ∈ [0, 1] × [0, ((β1 + α1)(γ1 + δ1)/w1)r] × [−r, 0], f(t, u, v) ≤
(r/K) − 2, where θ2 and K are defined by (2.7) and (2.19), respectively.

(S2) There exists a constant R > 2r such that, for any (t, u, v) ∈ [0, 1] × [(1/2)μ1R,((β1 +
α1)(γ1 + δ1)/w1)R] × [−R,−(1/2)μ2R],

f(t, u, v) ≥ R

l
, (3.2)

where μ1, μ2, l are defined by (2.19).

(S3)

lim
|u|+|v|→+∞

max
t∈[0,1]

f(t, u, v)
|u| + |v| = 0. (3.3)

Then, the singular perturbed differential equation (1.1) has at least two positive solutions u1, u2, and
there exist two positive constants n1, n2 such that u1(t) ≥ n1e(t), u2(t) ≥ n2e(t), for any t ∈ [0, 1].

Proof. Let Ω1 = {x ∈ P : ‖x‖ < r}. Then, for any x ∈ ∂Ω1, s ∈ [0, 1], we have

[
x(s) − y(s)]∗ ≤ x(s) ≤ ‖x‖ ≤ r,

∣∣S
[
x(s) − y(s)]∗∣∣ ≤ r

∫1

0
G1(t, s)ds ≤

(
β1 + α1

)(
γ1 + δ1

)

w1
r.

(3.4)
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It follows from (S1) that

‖Tx‖ = max
t∈[0,1]

(Tx)(t)

= max
0≤t≤1

∫1

0
G2(t, s)

[
p(s)f

(
s, S

[
x(s) − y(s)]∗,−[x(s) − y(s)]∗)

−g(s, S[x(s) − y(s)]∗,−[x(s) − y(s)]∗) + ρ(s)]ds

≤
∫1

0
G2(s, s)

[( r
K

− 2
)
p(s) + 2ρ(s)

]
ds

≤ r

K

∫1

0
G2(s, s)

[
p(s) + ρ(s)

]
ds

= r = ‖x‖.

(3.5)

Therefore,

‖Tx‖ ≤ ‖x‖, x ∈ P ∩ ∂Ω1. (3.6)

On the other hand, let Ω2 = {x ∈ P : ‖x‖ < R} and ∂Ω2 = {x ∈ P : ‖x‖ = R}. Then, for
any x ∈ ∂Ω2, t ∈ [0, 1], noticing R > 2r and (2.22), we have

x(t) − y(t) ≥ x(t) −G2(t, t)
∫1

0
ρ(s)ds

≥ x(t) − x(t)
θ2R

∫1

0
ρ(s)ds

≥ x(t) − r

R
x(t) ≥ 1

2
x(t)

≥ 1
2
θ2G2(t, t)R.

(3.7)

So by (3.7), for any x ∈ ∂Ω2, t ∈ [a, b], we have

1
2
μ2R =

φ2(a)ψ2(b)
2w2

θ2R ≤ x(t) − y(t) ≤ R,

1
2
μ1R =

(
β1 + α1a

)(
γ1 + δ1(1 − b)

)
θ2R

2w1

∫1

0
e(s)G2(s, s)ds

≤ 1
2
θ2R

∫1

0
G1(t, s)G2(s, s)ds ≤ S

(
x(t) − y(t))

≤
(
β1 + α1

)(
γ1 + δ1

)

w1
R.

(3.8)
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It follows from (S2), (3.8), and (2.6) that, for any x ∈ ∂Ω2, t ∈ [a, b],

‖Tx‖ ≥
∫1

0
G2(t, s)

[
p(s)f

(
s, S

[
x(s) − y(s)]∗,−[x(s) − y(s)]∗)

−g(s, S[x(s) − y(s)]∗,−[x(s) − y(s)]∗) + ρ(s)]ds

≥ θ2G2(t, t)
∫1

0
G2(s, s)p(s)f

(
s, S

[
x(s) − y(s)]∗,−[x(s) − y(s)]∗)ds

≥ θ2G2(t, t)
∫b

a

G2(s, s)p(s)f
(
s, S

[
x(s) − y(s)], x(s) − y(s))ds

≥ θ2
φ2(a)ψ2(b)

w2

∫b

a

G2(s, s)p(s)ds
R

l
= μ2

∫b

a

G2(s, s)p(s)ds
R

l

= R = ‖x‖.

(3.9)

So we have

‖Tx‖ ≥ ‖x‖, x ∈ P ∩ ∂Ω2. (3.10)

Next, let us choose ε > 0 such that

ε

∫1

0
G2(s, s)p(s)ds < 1. (3.11)

Then, for the above ε, by (S3), there existsN > R > 0 such that, for any t ∈ [0, 1] and for any
|u| + |v| ≥N,

f(t, u, v) ≤ ε(|u| + |v|). (3.12)

Let

σ = max
(t,u,v)∈[0,1]×[0,((β1+α1)(γ1+δ1)/w1)N]×[−N,0]

f(t, u, v) + 2, (3.13)

take

R∗ =
σ
∫1
0 G2(s, s)

[
p(s) + ρ(s)

]
ds + 2

∫1
0 G2(s, s)ρ(s)ds

1 − ε(1 + ((β1 + α1
)(
γ1 + δ1

)
/w1

)) ∫1
0 G2(s, s)p(s)ds

+N, (3.14)

then R∗ > N > R.
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Now let Ω3 = {x ∈ P : ‖x‖ < R∗} and ∂Ω3 = {x ∈ P : ‖x‖ = R∗}. Then, for any
x ∈ P ∩ ∂Ω3, we have

‖Tx‖ = max
0≤t≤1

∫1

0
G2(t, s)

[
p(s)f

(
s, S

[
x(s) − y(s)]∗,−[x(s) − y(s)]∗)

−g(s, S[x(s) − y(s)]∗,−[x(s) − y(s)]∗) + ρ(s)]ds

≤
∫1

0
G2(s, s)

[
p(s)f

(
s, S

[
x(s) − y(s)]∗, [x(s) − y(s)]∗) + 2ρ(s)

]
ds

≤
(

max
(t,u,v)∈[0,1]×[0,((β1+α1)(γ1+δ1)/w1)N]×[−N,0]

f(t, u, v) + 2
)∫1

0
G2(s, s)

[
p(s) + ρ(s)

]
ds

+
∫1

0
G2(s, s)

[
p(s)ε

(
S
[
x(s) − y(s)]∗ + [x(s) − y(s)]∗) + 2ρ(s)

]
ds

≤ σ
∫1

0
G2(s, s)

[
p(s) + ρ(s)

]
ds +

∫1

0
G2(s, s)

[

p(s)ε

(

1 +

(
β1 + α1

)(
γ1 + δ1

)

w1

)

‖x‖

+2ρ(s)

]

ds

= σ
∫1

0
G2(s, s)

[
p(s) + ρ(s)

]
ds + 2

∫1

0
G2(s, s)ρ(s)ds + ε

(

1 +

(
β1 + α1

)(
γ1 + δ1

)

w1

)

×
∫1

0
G2(s, s)p(s)ds‖x‖

< R∗ = ‖x‖,
(3.15)

which implies that

‖Tx‖ ≤ ‖x‖, x ∈ P ∩ ∂Ω3. (3.16)

By Lemma 1.1, T has two fixed points x1, x2 such that r ≤ ‖x1‖ ≤ R ≤ ‖x2‖.
It follows from

r >

∫1
0 ρ(s)ds
θ2

(3.17)

that

x1(t) − y(t) ≥ x1(t) −G2(t, t)
∫1

0
ρ(s)ds

≥ x1(t) − x1(t)
θ2r

∫1

0
ρ(s)ds



14 Journal of Applied Mathematics

=

⎛

⎝1 −
∫1
0 ρ(s)ds
θ2r

⎞

⎠x1(t)

≥ θ2r
⎛

⎝1 −
∫1
0 ρ(s)ds
θ2r

⎞

⎠G2(t, t)

= m1G2(t, t) > 0, t ∈ (0, 1).

(3.18)

As for (3.18), we also find a positive constantm2 such that

x2(t) − y(t) ≥ m2G2(t, t) > 0, t ∈ (0, 1). (3.19)

Let ui(t) = S(xi − y)(t), (i = 1, 2), then

ui(t) > 0, t ∈ (0, 1)(i = 1, 2),

ui(t) = S
(
xi − y

)
(t) ≥ mi

∫1

0
G1(t, s)G2(s, s)ds

≥ mi

∫1

0
e(s)G2(s, s)dse(t)

= nie(t).

(3.20)

By Lemma 2.7, we know that the singular perturbed differential equation (1.1) has at least
two positive solutions u1, u2 satisfying

u1(t) ≥ n1e(t), u1(t) ≥ n2e(t), t ∈ [0, 1], (3.21)

for some positive constants n1, n2. The proof of Theorem 3.1 is completed.

Theorem 3.2. Suppose (B1)–(B3) hold. In addition, assume that the following conditions are
satisfied.

(S4) There exists a constant

r >
2
∫1
0 ρ(s)ds
θ2

(3.22)

such that, for any (t, u, v) ∈ [0, 1]×[(1/2)μ1r, ((β1+α1)(γ1+δ1)/w1)r]×[−r,−(1/2)μ2r],

f(t, u, v) ≥ r

l
, (3.23)

where θ2 and μ1, μ2, l are defined by (2.7) and (2.19), respectively.
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(S5) There exists a constant R > max{r, ((r/l) + 2)K} such that, for any (t, u, v) ∈ [0, 1] ×
[0, ((β1 + α1)(γ1 + δ1)/w1)R] × [−R, 0],

f(t, u, v) ≤ R

K
− 2, (3.24)

where K, l are defined by (2.19) and r is defined by (S4).

(S6)

lim
|u|+|v|→∞

min
t∈[a,b]

f(t, u, v)
|u| + |v| = +∞. (3.25)

Then, the singular perturbed differential equation (1.1) has at least two positive solutions u1, u2, and
there exist two positive constants n1, n2 such that u1(t) ≥ n1e(t), u2(t) ≥ n2e(t), for any t ∈ [0, 1].

Proof. Firstly, let Ω1 = {x ∈ P : ‖x‖ < r}. Then, for any x ∈ ∂Ω1, t ∈ [0, 1], by (2.22), we have

x(t) − y(t) ≥ x(t) −G2(t, t)
∫1

0
ρ(s)ds

≥ x(t) − x(t)
θ2r

∫1

0
ρ(s)ds

≥ 1
2
x(t) ≥ 1

2
θ2G2(t, t)r.

(3.26)

So, by (3.26), for any x ∈ ∂Ω1, t ∈ [a, b], we have

1
2
μ2r =

φ2(a)ψ2(b)
2w2

θ2r ≤ x(t) − y(t) ≤ r,

1
2
μ1r =

(
β1 + α1a

)(
γ1 + δ1(1 − b)

)
θ2r

2w1

∫1

0
e(s)G2(s, s)ds

≤ 1
2
θ2r

∫1

0
G1(t, s)G2(s, s)ds ≤ S

(
x(t) − y(t))

≤
(
β1 + α1

)(
γ1 + δ1

)

w1
r.

(3.27)
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It follows from (S4), (3.27), and (2.6) that, for any x ∈ ∂Ω2, t ∈ [a, b],

‖Tx‖ ≥
∫1

0
G2(t, s)

[
p(s)f

(
s, S

[
x(s) − y(s)]∗,−[x(s) − y(s)]∗)

−g(s, S[x(s) − y(s)]∗,−[x(s) − y(s)]∗) + ρ(s)]ds

≥ θ2G2(t, t)
∫1

0
G2(s, s)p(s)f

(
s, S

[
x(s) − y(s)]∗,−[x(s) − y(s)]∗)ds

≥ θ2G2(t, t)
∫b

a

G2(s, s)p(s)f
(
s, S

[
x(s) − y(s)], x(s) − y(s))ds

≥ θ2
φ2(a)ψ2(b)

w2

∫b

a

G2(s, s)p(s)ds
r

l
= μ2

∫b

a

G2(s, s)p(s)ds
r

l

= R = ‖x‖. (3.28)

Therefore, we have

‖Tx‖ ≥ ‖x‖, x ∈ P ∩ ∂Ω1. (3.29)

Next, by (S5), we have R > r and

R

K
− 2 >

r

l
> 0. (3.30)

Let Ω2 = {x ∈ P : ‖x‖ < R}. Then, for any x ∈ ∂Ω2, s ∈ [0, 1], we have

[
x(s) − y(s)]∗ ≤ x(s) ≤ ‖x‖ ≤ R,

∣∣S
[
x(s) − y(s)]∗∣∣ ≤ R

∫1

0
G1(t, s)ds ≤

(
β1 + α1

)(
γ1 + δ1

)

w1
R.

(3.31)

It follows from (S5) that

‖Tx‖ = max
t∈[0,1]

(Tx)(t)

= max
0≤t≤1

∫1

0
G2(t, s)

[
p(s)f

(
s, S

[
x(s) − y(s)]∗,−[x(s) − y(s)]∗)

−g(s, S[x(s) − y(s)]∗,−[x(s) − y(s)]∗) + ρ(s)]ds
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≤
∫1

0
G2(s, s)

[(
R

K
− 2
)
p(s) + 2ρ(s)

]
ds

≤ R

K

∫1

0
G2(s, s)

[
p(s) + ρ(s)

]
ds

= R = ‖x‖.
(3.32)

Therefore,

‖Tx‖ ≤ ‖x‖, x ∈ P ∩ ∂Ω2. (3.33)

On the other hand, choose a large enough real numberM > 0 such that

1
2
μ2
2M

∫b

a

G2(s, s)p(s)ds ≥ 1. (3.34)

From (S6), there existsN > R such that, for any t ∈ [a, b],

f(t, u, v) ≥M(|u| + |v|), |u| + |v| ≥N. (3.35)

Take

R∗ > max
{
2N
μ2

, R

}
, (3.36)

then R∗ > R > r. Let Ω3 = {x ∈ P : ‖x‖ < R∗}, for any x ∈ P ∩ ∂Ω3 and for any t ∈ [a, b], we
have

x(t) − y(t) ≥ x(t) −G2(t, t)
∫1

0
ρ(s)ds

≥ x(t) −
∫1
0 ρ(s)ds
θ2R∗ x(t)

≥ 1
2
x(t) ≥ θ2G2(t, t)

2
R∗

≥ 1
2
μ2R

∗ ≥N > 0.

(3.37)
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So, for any x ∈ P ∩ ∂Ω3, t ∈ [a, b], by (3.35), (3.37), we have

‖Tx‖ ≥
∫1

0
G2(t, s)

[
p(s)f

(
s, S

[
x(s) − y(s)]∗,−[x(s) − y(s)]∗)

−g(s, S[x(s) − y(s)]∗,−[x(s) − y(s)]∗) + ρ(s)]ds

≥ θ2G2(t, t)
∫1

0
G2(s, s)p(s)f

(
s, S

[
x(s) − y(s)]∗,−[x(s) − y(s)]∗)ds

≥ θ2G2(t, t)
∫b

a

G2(s, s)p(s)f
(
s, S

[
x(s) − y(s)], x(s) − y(s))ds

≥ θ2
φ2(a)ψ2(b)

w2

∫b

a

G2(s, s)p(s)M
[∣∣S
(
x(s) − y(s))∣∣ + ∣∣(x(s) − y(s))∣∣]ds

≥ θ2φ2(a)ψ2(b)
w2

∫b

a

G2(s, s)p(s)M
(∣∣x(s) − y(s)∣∣)ds

= μ2M

∫b

a

G2(s, s)p(s)ds × 1
2
μ2R

∗

=
1
2
μ2
2M

∫b

a

G2(s, s)p(s)ds × R∗

≥ R∗ = ‖x‖.

(3.38)

Thus,

‖Tx‖ ≥ ‖x‖, x ∈ P ∩ ∂Ω3. (3.39)

By Lemma 1.1, T has two fixed points x1, x2 such that r ≤ ‖x1‖ ≤ R ≤ ‖x2‖.
Noticing that

r >
2
∫1
0 ρ(s)ds
θ2

, (3.40)

we have

x1(t) − y(t) ≥ x1(t) −G2(t, t)
∫1

0
ρ(s)ds

≥ x1(t) − x1(t)
θ2r

∫1

0
ρ(s)ds

=

⎛

⎝1 −
∫1
0 ρ(s)ds
θ2r

⎞

⎠x1(t)
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≥ 1
2
x1(t) ≥ 1

2
θ2rG2(t, t)

= m1G2(t, t) > 0, t ∈ (0, 1).

(3.41)

As for (3.41), we also can find a positive constantm2 such that

x2(t) − y(t) ≥ m2G2(t, t) > 0, t ∈ (0, 1). (3.42)

Let ui(t) = S(xi − y)(t), (i = 1, 2), then

ui(t) > 0, t ∈ (0, 1)(i = 1, 2),

ui(t) = S
(
xi − y

)
(t) ≥ mi

∫1

0
G1(t, s)G2(s, s)ds

≥ mi

∫1

0
e(s)G2(s, s)dse(t)

= nie(t).

(3.43)

By Lemma 2.7, we know that the singular perturbed differential equation (1.1) has at least
two positive solutions u1, u2 satisfying

u1(t) ≥ n1e(t), u1(t) ≥ n2e(t), t ∈ [0, 1], (3.44)

for some positive constants n1, n2. The proof of Theorem 3.2 is completed.

An example Consider the following singular perturbed boundary value problem

−(etu′′′)′(t) + 2etu′′(t) =
1

t(1 − t)f
(
t, u(t), u′′(t)

) − sin(u(t)) + arctan(u′′(t))

(1 + (π/2))
√
t

,

u(0) = 0, u(1) = 0, u′′(0) − 2u′′′(0) = 0, u′′(1) + u′′′(1) = 0,

(3.45)

where

f
(
t, x, y

)
=

⎧
⎪⎪⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎪⎪⎩

tx +
y2

100
,

(
t, x, y

) ∈ [0, 1] × [0, 10] × [−10, 0],
41.88x + 4.075y,

(
t, x, y

) ∈ [0, 1] × [10, 13.93] × [−100,−10],
200

(
1 + t2

)
ex/13.93 + siny,

(
t, x, y

) ∈ [0, 1] × [13.93, 100] × [−100,−422.89],
23.2469

(
x +

∣∣y
∣∣)1/2,

(
t, x, y

) ∈ [0, 1] × [100,+∞) × (−∞,−422.89].
(3.46)
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Then, the BVP (3.45) has at least two positive solutions u1(t) and u2(t) such that

u1(t) ≥ 2.3924t(1 − t), t ∈ [0, 1], u2(t) ≥ 24.833t(1 − t), t ∈ [0, 1]. (3.47)

Proof. In fact, let

r(t) ≡ et, q(t) ≡ 2et, p(t) =
1

t(1 − t) , ρ(t) =
1√
t
, g

(
t, x, y

)
=

sinx + arctany

(1 + (π/2))
√
t
,

(3.48)

then

∣
∣g
(
t, x, y

)∣∣ ≤ 1√
t
. (3.49)

The corresponding Green’s functions can be written by

G1(t, s) =

⎧
⎨

⎩

s(1 − t), 0 ≤ s ≤ t ≤ 1,

t(1 − s), 0 ≤ t ≤ s ≤ 1,

G2(t, s) =
1
3e

⎧
⎪⎪⎪⎨

⎪⎪⎪⎩

(
5
3
es +

1
3
e−2s

)(
1
3
et +

2
3
e−2t

)
, 0 ≤ s ≤ t ≤ 1,

(
5
3
et +

1
3
e−2t

)(
1
3
es +

2
3
e−2s

)
, 0 ≤ t ≤ s ≤ 1,

(3.50)

and, for (t, s) ∈ [0, 1] × [0, 1], we have t(1 − t)s(1 − s) ≤ G1(t, s) ≤ s(1 − s) and

1
5e2 + e−1

G2(s, s)G2(t, t) ≤ G2(t, s) ≤ G2(s, s) (or G2(t, t)). (3.51)

Now, take [1/4, 3/4] ⊂ [0, 1], then we have

K =
∫1

0
G2(s, s)

[
p(s) + ρ(s)

]
ds

=
∫1

0

(
(5/3)es + (1/3)e−2s

)(
(1/3)es + (2/3)e−2s

)

3e

[
1

s(1 − s) +
1√
s

]
ds ≈ 0.6206,

μ2 =
φ2(a)ψ2(b)
φ2(1)ψ2(0)

=
φ2(1/4)ψ2(3/4)
φ2(1)ψ2(0)

=

(
(5/3)e1/4 + (1/3)e−1/2

)(
(1/3)e3/4 + (2/3)e−3/2

)

(5/3)e + (1/3)e−2

≈ 0.4374,

l = μ2

∫b

a

G2(s, s)p(s)ds = 0.4374
∫3/4

1/4

(
(5/3)es + (1/3)e−2s

)(
(1/3)es + (2/3)e−2s

)

3es(1 − s) ds
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≈ 0.2786,

μ1 =

(
β1 + α1a

)(
γ1 + δ1(1 − b)

)
θ2

w1

∫1

0
G1(s, s)G2(s, s)ds

=
1

16
(
5e2 + e−1

)
∫1

0
s(1 − s)

(
(5/3)es + (1/3)e−2s

)(
(1/3)es + (2/3)e−2s

)

3e
ds ≈ 8.4578,

θ2 =
w2

φ2(1)ψ2(0)
=
p(0)

[
ψ2(0)φ′

2(0) − ψ ′
2(0)φ2(0)

]

φ2(1)ψ2(0)
≈ 4.938.

(3.52)

On the other hand, since

∫1

0
ρ(s)ds =

∫1

0

1√
s
ds = 2, (3.53)

then (B1)–(B3) are satisfied.
Choose r = 10, then

10 = r > max

⎧
⎨

⎩
2K,

∫1
0 ρ(s)ds
θ2

⎫
⎬

⎭
= {1.2412, 0.4050}, (3.54)

and, for any (t, x, y) ∈ [0, 1] × [0, 10] × [−10, 0],

f
(
t, x, y

) ≤ 11 ≤ r

K
− 2 ≈ 14.1134. (3.55)

So the condition (S1) is satisfied.
On the other hand, we take R = 100, then R > 2r = 20, and, for any (t, x, y) ∈ [0, 1] ×

[(1/2)μ1R, ((β1+α1)(γ1+δ1)/w1)R]× [−R,−(1/2)μ2R] = [0, 1]× [13.93, 100]× [−100,−422.89],
we have

f
(
t, x, y

) ≥ 542.65 ≥ R

l
≈ 358.93, (3.56)

this implies that the condition (S2) holds. Next, we have

lim
|x|+|y|→+∞

max
t∈[0,1]

f
(
t, x, y

)

|x| + ∣∣y∣∣ = lim
|x|+|y|→+∞

23.2469
(|x| + ∣∣y∣∣)−1/2 = 0. (3.57)
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Thus, (S3) also holds. By Theorem 3.1, the BVP (3.45) has at least two positive solutions u1(t)
and u2(t). Since

n1 =
1
3e

(

θ2r −
∫1

0
ρ(s)ds

)∫1

0
s(1 − s)

(
5
3
es +

1
3
e−2s

)(
1
3
es +

2
3
e−2s

)
ds ≈ 2.3924,

n2 =
1
3e

(

θ2R −
∫1

0
ρ(s)ds

)∫1

0
s(1 − s)

(
5
3
es +

1
3
e−2s

)(
1
3
es +

2
3
e−2s

)
ds ≈ 24.833,

(3.58)

thus

u1(t) ≥ 2.3924t(1 − t), t ∈ [0, 1], u2(t) ≥ 24.833t(1 − t), t ∈ [0, 1]. (3.59)
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[12] M. A. del Pino and R. F. Manásevich, “Existence for a fourth-order boundary value problem under a
two-parameter nonresonance condition,” Proceedings of the American Mathematical Society, vol. 112, no.
1, pp. 81–86, 1991.

[13] B. Liu, “Positive solutions of fourth-order two point boundary value problems,” Applied Mathematics
and Computation, vol. 148, no. 2, pp. 407–420, 2004.

[14] Y. Sun, “Necessary and sufficient condition for the existence of positive solutions of a coupled system
for elastic beam equations,” Journal of Mathematical Analysis and Applications, vol. 357, no. 4, pp. 77–88,
2009.



Journal of Applied Mathematics 23

[15] J. R. Graef, C. Qian, and B. Yang, “A three point boundary value problem for nonlinear fourth order
differential equations,” Journal of Mathematical Analysis and Applications, vol. 287, no. 1, pp. 217–233,
2003.

[16] L. Liu, X. Zhang, and Y. Wu, “Positive solutions of fourth-order nonlinear singular Sturm-Liouville
eigenvalue problems,” Journal of Mathematical Analysis and Applications, vol. 326, no. 2, pp. 1212–1224,
2007.

[17] D. G. Zill and M. R. Cullen, Differential Equations with Boundary-Value Problems, Brooks/Cole, 5th edi-
tion, 2001.

[18] W. S. Loud, “Periodic solutions of a perturbed autonomous system,” Annals of Mathematics Second
Series, vol. 70, pp. 490–529, 1959.

[19] Y. Xia, Z. Huang, and M. Han, “Existence of almost periodic solutions for forced perturbed systems
with piecewise constant argument,” Journal of Mathematical Analysis and Applications, vol. 333, no. 2,
pp. 798–816, 2007.

[20] A. Kh. Khanmamedov, “On the existence of a global attractor for the wave equation with nonlinear
strong damping perturbed by nonmonotone term,”Nonlinear Analysis: Theory, Methods & Applications,
vol. 69, no. 10, pp. 3372–3385, 2008.

[21] S.Wu and S. Gan, “Errors of linearmultistepmethods for singularly perturbed Volterra delay-integro-
differential equations,” Mathematics and Computers in Simulation, vol. 79, no. 10, pp. 3148–3159, 2009.

[22] O. Makarenkov and P. Nistri, “Periodic solutions for planar autonomous systems with nonsmooth
periodic perturbations,” Journal of Mathematical Analysis and Applications, vol. 338, no. 2, pp. 1401–
1417, 2008.

[23] D. Liu and Y. Yang, “Doubly perturbed neutral diffusion processes with Markovian switching and
Poisson jumps,” Applied Mathematics Letters, vol. 23, no. 10, pp. 1141–1146, 2010.

[24] C. Clavero, J. L. Gracia, and F. J. Lisbona, “An almost third order finite difference scheme for singu-
larly perturbed reaction-diffusion systems,” Journal of Computational and Applied Mathematics, vol. 234,
no. 8, pp. 2501–2515, 2010.

[25] M. Cui and F. Geng, “A computational method for solving third-order singularly perturbed
boundary-value problems,” Applied Mathematics and Computation, vol. 198, no. 2, pp. 896–903, 2008.

[26] D. J. Guo and V. Lakshmikantham, Nonlinear Problems in Abstract Cones, vol. 5 of Notes and Reports in
Mathematics in Science and Engineering, Academic Press, Boston, Mass, USA, 1988.

[27] L. H. Erbe and R. M. Mathsen, “Positive solutions for singular nonlinear boundary value problems,”
Nonlinear Analysis: Theory, Methods & Applications, vol. 46, no. 7, pp. 979–986, 2001.



Submit your manuscripts at
http://www.hindawi.com

Hindawi Publishing Corporation
http://www.hindawi.com Volume 2014

Mathematics
Journal of

Hindawi Publishing Corporation
http://www.hindawi.com Volume 2014

Mathematical Problems 
in Engineering

Hindawi Publishing Corporation
http://www.hindawi.com

Differential Equations
International Journal of

Volume 2014

Applied Mathematics
Journal of

Hindawi Publishing Corporation
http://www.hindawi.com Volume 2014

Probability and Statistics
Hindawi Publishing Corporation
http://www.hindawi.com Volume 2014

Journal of

Hindawi Publishing Corporation
http://www.hindawi.com Volume 2014

Mathematical Physics
Advances in

Complex Analysis
Journal of

Hindawi Publishing Corporation
http://www.hindawi.com Volume 2014

Optimization
Journal of

Hindawi Publishing Corporation
http://www.hindawi.com Volume 2014

Combinatorics
Hindawi Publishing Corporation
http://www.hindawi.com Volume 2014

International Journal of

Hindawi Publishing Corporation
http://www.hindawi.com Volume 2014

Operations Research
Advances in

Journal of

Hindawi Publishing Corporation
http://www.hindawi.com Volume 2014

Function Spaces

Abstract and 
Applied Analysis
Hindawi Publishing Corporation
http://www.hindawi.com Volume 2014

International 
Journal of 
Mathematics and 
Mathematical 
Sciences

Hindawi Publishing Corporation
http://www.hindawi.com Volume 2014

The Scientific 
World Journal
Hindawi Publishing Corporation 
http://www.hindawi.com Volume 2014

Hindawi Publishing Corporation
http://www.hindawi.com Volume 2014

Algebra

Discrete Dynamics in 
Nature and Society

Hindawi Publishing Corporation
http://www.hindawi.com Volume 2014

Hindawi Publishing Corporation
http://www.hindawi.com Volume 2014

Decision Sciences
Advances in

Discrete Mathematics
Journal of

Hindawi Publishing Corporation
http://www.hindawi.com

Volume 2014

Hindawi Publishing Corporation
http://www.hindawi.com Volume 2014

Stochastic Analysis
International Journal of


