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Some fixed point theorems for (ϕ, ψ, p)-contractive maps and (ϕ, k, p)-contractive maps on a
complete metric space are proved. Presented fixed point theorems generalize many results existing
in the literature.

1. Introduction and Preliminaries

Branciari [1] established a fixed point result for an integral type inequality, which is a
generalization of Banach contraction principle. Kada et al. [2] introduced and studied the
concept of w-distance on a metric space. They give examples of w-distances and improved
Caristi’s fixed point theorem, Ekeland’s ε-variational’s principle, and the nonconvex
minimization theorem according to Takahashi (see many useful examples and results on w-
distance in [2–5] and in references therein). Kada et al. [2] defined the concept of w-distance
in a metric space as follows.

Definition 1.1 (see [2]). Let X be a metric space endowed with a metric d. A function
p : X ×X → [0,∞) is called a w-distance on X if it satisfies the following properties:

(1) p(x, z) ≤ p(x, y) + p(y, z) for any x, y, z ∈ X,

(2) p is lower semicontinuous in its second variable, that is, if x ∈ X and yn → y in X
then p(x, y) ≤ lim infn→∞ p(x, yn),

(3) for each ε > 0, there exists δ > 0 such that p(z, x) ≤ δ and p(z, y) ≤ δ imply
d(x, y) ≤ ε.
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We denote by Φ the set of functions ϕ : [0,+∞) → [0,+∞) satisfying the following
hypotheses:

(c1) ϕ is continuous and nondecreasing,

(c2) ϕ(t) = 0 if and only if t = 0.

We denote by Ψ the set of functions ψ : [0,+∞) → [0,+∞) satisfying the following
hypotheses:

(h1) ψ is right continuous and nondecreasing,

(h2) ψ(t) < t for all t > 0.

Let p be a w-distance on metric space (X, d), ϕ ∈ Φ and ψ ∈ Ψ. A map T from X into
itself is a (ϕ, ψ, p)-contractive map on X if for each x, y ∈ X, ϕp(Tx, Ty) ≤ ψϕp(x, y).

The following lemmas are used in the next section.

Lemma 1.2 (see [3]). If ψ ∈ Ψ, then limn→∞ψn(t) = 0 for each t > 0, and if ϕ ∈ Φ, {an} ⊆ [0,∞)
and limn→∞ϕ(an) = 0, then limn→∞an = 0.

Lemma 1.3 (see [2]). Let (X, d) be a metric space and let p be a w-distance on X.

(i) If {xn} is a sequence in X such that limnp(xn, x) = limnp(xn, y) = 0, then x = y. In
particular, if p(z, x) = p(z, y) = 0, then x = y.

(ii) If p(xn, yn) ≤ αn p(xn, y) ≤ βn for any n ∈ N, where {αn} and {βn} are sequences in
[0,∞) converging to 0, then {yn} converges to y.

(iii) Let p be a w-distance on metric space (X, d) and {xn} a sequence in X such that for
each ε > 0 there exist Nε ∈ N such that m > n > Nε implies p(xn, xm) < ε (or
limm,n→∞p(xn, xm) = 0), then {xn} is a Cauchy sequence.

Note that if p(a, b) = p(b, a) = 0 and p(a, a) ≤ p(a, b) + p(b, a) = 0, then p(a, a) = 0 and,
by Lemma 1.3, a = b.

In [3], Razani et al. proved a fixed point theorem for (ϕ, ψ, p)-contractive mappings,
which is a new version of the main theorem in [1], by considering the concept of the w-
distance.

The main aim of this paper is to present some generalization fixed point Theorems
by Kada et al. [2], Hicks and Rhoades [6] and several other results with respect to (ϕ, ψ, p)-
contractive maps on a complete metric space.

2. (ϕ, ψ, p)-Contractive Maps

In the next theorem we state one of the main results of this paper generalizing Theorem 4 of
[2]. In what follows, we use ϕp to denote the composition of ϕwith p.

Theorem 2.1. Let p be a w-distance on complete metric space (X, d), ϕ ∈ Φ and ψ ∈ Ψ. Suppose
T : X → X is a map that satisfies

ϕp
(
Tx, T2x

)
≤ ψ(ϕp(x, Tx)), (2.1)
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for each x ∈ X and that

inf
{
p
(
x, y

)
+ p(x, Tx) : x ∈ X}

> 0 (2.2)

for every y ∈ X with y /= Ty. Then there exists u ∈ X such that u = Tu. Moreover, if v = Tv, then
p(v, v) = 0.

Proof. Fix x ∈ X. Set xn+1 = Txn with x0 = x. Then by (2.1)

ϕp(xn, xn+1) ≤ ψϕp(xn−1, xn)
≤ ψ2ϕp(xn−2, xn−1)

≤ · · · ≤ ψn(ϕp(x0, x1)
)
,

(2.3)

thus limnϕp(xn, xn+1) = 0 and Lemma 1.2 implies

lim
n→∞

p(xn, xn+1) = 0, (2.4)

and similarly

lim
n→∞

p(xn+1, xn) = 0. (2.5)

Now we proof that {xn} is a Cauchy sequence. By triangle inequality, continuity of ϕ
and (2.4), we have

ϕp(xn, xn+2) ≤ ψϕ
[
p(xn, xn+1) + p(xn+1, xn+2)

] −→ 0, (2.6)

as n → ∞ and so limn→∞ϕp(xn, xn+2) = 0 which concludes

lim
n→∞

p(xn, xn+2) = 0. (2.7)

By induction, for any k > 0 we have

lim
n→∞

p(xn, xn+k) = 0. (2.8)

So, by Lemma 1.3, {xn} is a Cauchy sequence, and since X is complete, there exists
u ∈ X such that xn → u in X.

Now we prove that u is a fixed point of T .
From (2.8), for each ε > 0, there existsNε ∈ N such that n > Nε implies p(xNε , xn) < ε

but xn → u and p(x, ·) is lower semicontinuous, thus

p(xNε , u) ≤ lim
n→∞

inf p(xNε , xn) ≤ ε. (2.9)
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Therefore, p(xNε , u) ≤ ε. Set ε = 1/k, Nε = nk and we have

lim
k→∞

p(xnk , u) = 0. (2.10)

Now, assume that u/= Tu. Then by hypothesis, we have

0 < inf
{
p(x, u) + p(x, Tx) : x ∈ X} ≤ inf

{
p(xn, u) + p(xn, xn+1) : n ∈ N

} −→ 0 (2.11)

as n → ∞ by (2.4) and (2.10). This is a contradiction. Hence u = Tu.
If v = Tv, we have

ϕp(v, v) = ϕp
(
Tv, T2v

)
≤ ψϕp(v, Tv) = ψϕp(v, v) < ϕp(v, v). (2.12)

This is a contradiction. So ϕp(v, v) = 0, and by hypothesis p(v, v) = 0.
Here we give a simple example illustrating Theorem 2.1. In this example, we will show

that Theorem 4 in [2] cannot be applied.

Example 2.2. LetX = {(1/n) | n ∈ N}∪{0}, which is a complete metric space with usual metric
d of reals. Moreover, by defining p(x, y) = y, p is a w-distance on (X, d). Let T : X → X
be a map as T(1/n) = 1/(n + 1), T0 = 0. Suppose ϕ(t) = t1/t is a continuous and strictly
nondecreasing map and ψ(t) = (1/3)t, for any t > 0. We have

sup
x∈X

p
(
Tx, T2x

)

p(x, Tx)
= 1, (2.13)

and so there is not any r ∈ [0, 1) such that p(Tx, T2x) ≤ rp(x, Tx), and hence Theorem4 in [2]
dose not work. But

ϕp
(
Tx, T2x

)
= p

(
Tx, T2x

)1/p(Tx,T2x)
=
(

1
n + 2

)n+2

≤ 1
3

(
1

n + 1

)n+1

=
1
3
p(x, Tx)1/p(x,Tx) = ψϕp(x, Tx),

(2.14)

because for any n ∈ N we have ((n + 1)/(n + 2))n+11/(n+2) ≤ 1/3. Also for any n ∈ N we have
1/n/= T(1/n). So for arbitrary n ∈ N, inf{p(1/m, 1/n)+p(1/m, 1/(m+1)) : m ∈ N} = 1/n > 0,
hence T is satisfied in Theorem 2.1. We note that 0 is a fixed point for T .

The next examples show the role of the conditions (2.1) and (2.2).

Example 2.3. Let X = [−1, 1], d(x, y) = |x − y|, and define p : X → X by p(x, y) = |3x − 3y|,
where x, y ∈ X. Set ψ(t) = rt and ϕ(t) = t for all t ∈ [0,∞). Let us define T : X → X by T0 = 1
and Tx = x/10 if x /= 0. We have

ϕp
(
T0, T20

)
= p

(
T0, T20

)
= p

(
1,

1
10

)
= 3 − 3

10
≤ 3 =

1
3
p(0, T0) = ψϕp(0, T0). (2.15)
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If x /= 0, then

ϕp
(
Tx, T2x

)
= p

(
Tx, T2x

)
= p

(
x

10
,
x

100

)
=

1
10

∣∣∣∣3x − 3x
10

∣∣∣∣ ≤
1
3
p(x, Tx) = ψϕp(x, Tx)

(2.16)

and hence (2.1) holds.
Now, we remark that 0/= T(0), and

inf
n∈N

p(Tn(x), 0) + p(Tn(x), TTn(x)) = 0 for every x ∈ X. (2.17)

Thus, the condition (2.2) is not satisfied, and there is no z ∈ X with Tz = z. In this case we
observe that Theorem 2.1 is invalid without condition (2.2).

Example 2.4. Let X = [2,∞) ∪ {0, 1}, d(x, y) = |x − y|, x, y ∈ X, and set p = d. Let ψ, ϕ be as
Example 2.3. Let us define T : X → X by T0 = 1 and Tx = 0 if x /= 0. Clearly, T has no fixed
point in X. Now, for each x ∈ X and that

inf
{
d
(
x, y

)
+ d(x, Tx) : x ∈ X}

> 0 (2.18)

for every y ∈ X with y /= Ty, so condition (2.2) is satisfied. But, for x = 0, d(Tx, T2x) >
rd(x, Tx) for any r ∈ [0, 1). Hence, condition (2.1) dose not hold. We note that Theorem 2.1
dose not work without condition (2.1).

Suppose θ : R
+ → R

+ is Lebesgue-integrable mapping which is summable and∫ε
0 θ(η)dη > 0, for each ε > 0. Now, in the next corollary, set ϕ(t) =

∫ t
0 θ(η)dη and ψ(t) = ct,

where c ∈ [0, 1[. Then, ϕ ∈ Φ and ψ ∈ Ψ. Hence we can conclude the following corollary as a
special case.

Corollary 2.5. Let T be a selfmap of a complete metric space (X, d) satisfying

∫d(Tx,T2x)

0
θ(t)dt ≤ c

∫d(x,Tx)

0
θ(t)dt (2.19)

for all x ∈ X. Suppose that

inf
{
d
(
x, y

)
+ d(x, Tx) : x ∈ X}

> 0 for every y ∈ X (2.20)

with y /= Ty. Then there exists a u ∈ X such that Tu = u.

Note that Corollary 2.5 is invalid without condition (2.20). For example, take X =
{0} ∪ {1/2n : n ≥ 1}, which is a complete metric space with usual metric d of reals. Define
T : X → X by T(0) = 1/2 and T(1/2n ) = 1/2n−1 for n ≥ 1. Set ϕ(t) ≡ 1. It is easy to check

that
∫d(Tx,T2x)
0 ϕ(t)dt ≤ (1/2)

∫d(x,Tx)
0 ϕ(t)dt, for any x ∈ X; however, y /= Ty for any y ∈ X and

inf{d(x, y) + d(x, Tx) : x ∈ X} = 0. Clearly, T has got no fixed point in X.
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Remark 2.6. From Theorem 2.1, we can obtain Theorem4 in [2] as a special case. For this, in
the hypotheses of Theorem 2.1, set ψ(t) = rt and ϕ(t) = t for all t ∈ [0,∞).

Corollary 2.7. Let p be a w-distance on complete metric space (X, d), ϕ ∈ Φ and ψ ∈ Ψ. Suppose
T is a continuous mapping for X into itself such that (2.1), is satisfied. Then there exists u ∈ X such
that u = Tu. Moreover, if v = Tv, then p(v, v) = 0.

Proof. Assume that there exists y ∈ X with y /= Ty and inf{p(x, y) + p(x, Tx) : x ∈ X} = 0.
Then there exists a sequence {xn} such that

p
(
xn, y

)
+ p(xn, Txn) −→ 0 (2.21)

as n → ∞. Hence p(xn, y) → 0 and p(xn, Txn) → 0 as n → ∞. Lemma 1.3 implies that
Txn → y as n → ∞. Now by assumption

ϕp
(
Txn, T

2xn
)
≤ ψ(ϕp(xn, Txn)

)
(2.22)

and so ϕp(Txn, T2xn) → 0 as n → ∞. By Lemma 1.2, p(Txn, T2xn) → 0 as n → ∞. We also
have

p
(
xn, T

2xn
)
≤ p(xn, Txn) + p

(
Txn, T

2xn
)
, (2.23)

hence p(xn, T2xn) → 0 as n → ∞. By Lemma 1.3, we conclude that {T2xn} converges to y.
Since T is continuous, we have

Ty = T
(

lim
n→∞

Txn

)
= lim

n→∞
T2xn = y. (2.24)

This is a contradiction. Therefore, if y /= Ty, then inf{p(x, y) + p(x, Tx) : x ∈ X} > 0. So,
Theorem 2.1 gives desired result.

In Example 2.3, T is satisfied in condition (2.1), but it is not continuous. So, the
hypotheses in Corollary 2.7are not satisfied . We note that T has no fixed point.

It is an obvious fact that, if f : X → X is a map which has a fixed point x ∈ X, then x
is also a fixed point of fn for every natural number n. However, the converse is false. If a map
satisfies F(f) = F(fn) for each n ∈ N, where F(f) denotes a set of all fixed points of f , then it is
said to have property P [7, 8]. The following theorem extends and improves Theorem 2 of [7].

Theorem 2.8. Let (X, d) be a complete metric space with w-distance p on X. Suppose T : X → X
satisfies

(i)

ϕp
(
Tx, T2x

)
≤ ψϕp(x, Tx), ∀x ∈ X, (2.25)

or

(ii) with strict inequality, ψ ≡ 1 and for all x ∈ X, x /= Tx. If F(T)/= ∅, then T has property P .
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Proof. We shall always assume that n > 1, since the statement for n = 1 is trivial. Let u ∈ F(Tn).
Suppose that T satisfies (i). Then,

ϕp(u, Tu) = ϕp(Tnu, TTnu) ≤ ψϕp
(
Tn−1u, TTn−1u

)
≤ · · · ≤ ψnϕp(u, Tu), (2.26)

and so p(u, Tu) = 0. Now from

ϕp(u, u) = ψϕp(u, Tnu) ≤
n−1∑
i=0

ψϕp
(
Tiu, T i+1u

)
= 0, (2.27)

we have p(u, u) = 0. Hence, by Lemma 1.3, we have u = Tu, and u ∈ F(T). Suppose that T
satisfies (ii). If Tu = u, then there is nothing to prove. Suppose, if possible, that Tu/=u. Then a
repetition of the argument for case (i) leads to ϕp(u, Tu) < ψϕp(u, Tu), that is a contradiction.
Therefore, in all cases, u = Tu and F(Tn) = F(T).

The following theorem extends Theorem 2.1 of [6]. A function G mapping X into the
real is T -orbitally lower semicontinuous at z if {xn} is a sequence in O(x,∞) and xn → z
implies that G(p) ≤ lim infn→∞G(xn).

Theorem 2.9. Let (X, d) be a complete metric space with w-distance p on X. Suppose T : X → X
and there exists an x such that

ϕp
(
Ty, T2y

)
≤ ψϕp(y, Ty), ∀y ∈ O(x,∞). (2.28)

Then,

(i) lim Tnx = z exists,

(ii)

ϕp(Tnx, z) ≤ ψn

1 − ψϕp(x, Tx) for n ≥ 1, (2.29)

(iii) p(z, Tz) = 0 if and only if G(x) = p(x, Tx) is T -orbitally lower semicontinuous at z.

Proof. Observe that (i) and (ii) are immediate from the proof of Theorem 2.1. We prove (iii).
It is clear that p(z, Tz) = 0 impling G(x) is T -orbitally lower semicontinuous at z.

xn = Tnx → z and G is T -orbitally lower semicontinuous at x implies

0 ≤ ϕp(z, Tz) = ϕG(z) ≤ lim inf
n→∞

ϕG(xn) = lim inf
n→∞

ψϕp(xn, Txn) ≤ lim inf
n→∞

ψnϕp(x, Tx) = 0.

(2.30)

So, p(z, Tz) = 0.

The mapping T is orbitally lower semicontinuous at u ∈ X if limk→∞Tnkx = u implies
that limk→∞Tnk+1x = Tu. In the following, we improve Theorem 2 of [9] that it is correct form
Theorem 1 of [7].
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Theorem 2.10. Let p be a w-distance on complete metric space (X, d), ϕ ∈ Φ and ψ ∈ Ψ. Suppose
T : X → X is orbitally lower semicontinuous map on X that satisfies

ϕp
(
Tx, T2x

)
≤ ψ(ϕp(x, Tx)) (2.31)

for each x ∈ X. Then there exists u ∈ X such that u ∈ F(T). Moreover, if v = Tv, then p(v, v) = 0.

Proof. Observe that the sequence {xn} is a Cauchy sequence immediate from the proof of
Theorem 2.1 and so there exists a point u in X such that xn → u as n → ∞. Since T is
orbitally lower semicontinuous at u, we have p(u, Tu) ≤ lim infn→∞p(xn, xn+1) = 0. Now, we
have

ϕp(u, Tu) ≤ ϕ lim inf
n→∞

p(xn, xn+1) = ϕ(0) = 0, (2.32)

and so p(u, Tu) = 0. Similarly, p(Tu, u) = 0. Hence, u ∈ F(T). By Theorem 2.1 we can conclude
that if v = Tv, then p(v, v) = 0.

The following example shows that Theorem 2 in [9] cannot be applicable. So our
generalization is useful.

Example 2.11. Let = [0,∞) be a metric space with metric d defined by d(x, y) = (40/3)|x −
y|,x, y ∈ X, which is complete. We define p : X → X by p(x, y) = (1/3)|y|. Let ϕ be as defined
before in Corollary 2.5 and ψ(t) = (1/10)t,t > 0. Assume that T : X → X by Tx = x/10 for
any x ∈ X. We have, d(Tx, T2x) = (4/3)d(x, Tx), x ∈ X, and so Theorem 2 in [9] dose not
work. But

ϕp
(
Tx, T2x

)
≤ ψ(ϕp(x, Tx)) (2.33)

for each x ∈ X. Hence by Theorem 2.10 there exists a fixed point for T . We note that 0 is fixed
point for T .

3. (ϕ, k, p)-Contractive Maps

In this section we obtain fixed points for (ϕ, k, p)-contractive maps (i.e., (ϕ, ψ, p)-contractive
maps that ψ(t) = k for all t ∈ [0,∞), where k ∈ [0, 1)).

In 1969, Kannan [10] proved the following fixed point theorem. Contractions are
always continuous and Kannan maps are not necessarily continuous.

Theorem 3.1 (see [10]). Let (X, d) be a complete metric space. Let T be a Kannan mapping on X,
that is, there exists k ∈ [0, 1/2) such that

d
(
Tx, Ty

) ≤ k(d(x, Tx) + d(y, Ty)) (3.1)

for all x, y ∈ X. Then, T has a unique fixed point in X. For each x ∈ X, the iterative sequence
{Tnx}n≥1 converges to the fixed point.
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In the next theorem, we generalize this theorem as follows.

Theorem 3.2. Let (X, d) be a complete metric space. Let T be a (ϕ, k)-Kannan mapping on X, that
is, there exists k ∈ [0, 1/2) such that

ϕd
(
Tx, Ty

) ≤ k(ϕd(x, Tx) + ϕd(y, Ty)) (3.2)

for all x, y ∈ X. Then, T has a unique fixed point in X. For each x ∈ X, the iterative sequence
{Tnx}n≥1 converges to the fixed point.

Proof. Let x ∈ X and define xn+1 = Tnx for any n ∈N, and set r = k/(1 − k). Then, r ∈ [0, 1),

ϕd
(
Tx, T2x

)
≤ k

(
ϕd(x, Tx) + ϕd

(
Tx, T2x

))
(3.3)

and so

ϕd
(
Tx, T2x

)
≤ rϕd(x, Tx). (3.4)

Then, from the proof of Theorem 2.1, lim Tnx = z exists. From (3.4), we have

ϕd(Tnx, Tz) ≤ rϕd
(
Tn−1x, z

)
≤ rn

1 − r ϕd(x, Tx) for n ≥ 1. (3.5)

Thus, lim Tnx = Tz, and so z = Tz. Clearly, z is unique. This completes the proof.

The set of all subadditive functions ϕ inΦ is denoted byΦ′. In the following theorems,
we generalize Theorems 3.4 and 3.5 due to Suzuki and Takahashi [4].

Theorem 3.3. Let p be a w-distance on complete metric space (X, d), ϕ ∈ Φ′ and T be a selfmap.
Suppose there exists k ∈ [0, 1/2) such that

(i) ϕp(Tx, T2x) ≤ kϕp(x, T2x) for each x ∈ X,

(ii) inf{p(x, z) + p(x, Tx) : x ∈ X} > 0 for every z ∈ X with z/= Tz.

Then T has a fixed point in X. Moreover, if v is a fixed point of T , then p(v, v) = 0.

Proof. Fix x ∈ X. Define x0 = x and xn = Tnx0 for every n ∈ N. Put r = k/(1 − k). Then,
0 ≤ r < 1. By hypothesis, since ϕ ∈ Φ′, we have

ϕp(xn, xn+1) ≤ kϕp(xn−1, xn+1) ≤ kϕp(xn−1, xn) + kϕp(xn, xn+1), (3.6)

for all n ∈ N. It follows that

ϕp(xn, xn+1) ≤ rϕp(xn−1, xn) ≤ · · · ≤ rnϕp(x0, x1), (3.7)
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for all n ∈ N. Using the similar argument as in the proof of Theorem 2.1, we can prove that
the sequence {un} is Cauchy and so there exists u ∈ X such that xn → u as n → ∞. Also, we
have u ∈ F(T). Since

ϕp(v, v) = ϕp
(
Tv, T2v

)
≤ kϕp

(
v, T2v

)
= kϕp(v, v), (3.8)

we have ϕp(v, v) = 0 and so p(v, v) = 0. The proof is completed.

Corollary 3.4. Let p be a w-distance on complete metric space (X, d), ϕ ∈ Φ′ and let T be a con-
tinuous map. Suppose there exists k ∈ [0, 1/2) such that

ϕp
(
Tx, T2x

)
≤ kϕp

(
x, T2x

)
, (3.9)

for each x ∈ X.
Then T has a fixed point in X. Moreover, if v is a fixed point of T , then p(v, v) = 0.

Proof. It suffices to show that inf{p(x, z) + p(x, Tx) : x ∈ X} > 0 for every u ∈ X with u/= Tu.
Assume that there exists u ∈ X with u/= Tu and inf{p(x, u) + p(x, Tx) : x ∈ X} = 0. Then
there exists a sequence {xn} in X such that limn→∞[p(xn, u) + p(xn, Txn)] = 0. It follows that
p(xn, u) → 0 and p(xn, Txn) → 0 as n → ∞. Hence, Txn → u. On the other hand, since
ϕ ∈ Φ′ and (3.9), we have

ϕp
(
xn, T

2xn
)
≤ ϕp(xn, Txn) + ϕp

(
Txn, T

2xn
)
≤ ϕp(xn, Txn) + kϕp

(
xn, T

2xn
)
, (3.10)

and hence

ϕp
(
xn, T

2xn
)
≤ 1

1 − kϕp(xn, Txn), (3.11)

for all n ∈ N. Thus, p(xn, T2xn) → 0 as n → ∞. Therefore, T2xn → u. Since T : X → X is
continuous, we have

T(u) = T
(

lim
n→∞

Txn

)
= lim

n→∞
T2xn = u, (3.12)

which is a contradiction. Therefore, using Theorem 3.3, p(v, v) = 0. This completes the proof.

Question 1. Can we generalize Theorems 3.2, 3.3, and Corollary 3.4 for (ϕ, ψ, p)-contractive
maps?
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