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This paper focuses on solving systems of nonlinear equations numerically. We propose an efficient
iterative scheme including two steps and fourth order of convergence. The proposed method does
not require the evaluation of second or higher order Frechet derivatives per iteration to proceed
and reach fourth order of convergence. Finally, numerical results illustrate the efficiency of the
method.

1. Introduction

Many relationships in nature are inherently nonlinear, which according to these effects are
not in direct proportion to their cause. In fact, a large number of such real-world applications
are reduced to solve a system of nonlinear equations numerically. Solving such systems has
become one of the most challenging problems in numerical analysis, (see [1–4]), for example
in Chaos (chaos theory studies the behavior of dynamical systems that are highly sensitive
to initial conditions), or in climate studies (the weather is famously chaotic, where simple
changes in one part of the system produce complex effects throughout).

Some robust and efficient methods for solving nonlinear systems are brought forward
(e.g., see [5–7]). The Newton’s iteration for nonlinear equations is a basic method, which
converges quadratically under some conditions; this method has also been extended for
systems of nonlinear equations. In this method, if the derivative of the multivariate function
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F(x) at an iterate point is singular or almost singular, namely |F ′(x)| ≈ 0, the iteration can
be aborted due to the overflow or leads to divergence, which restrict its applications to some
extent. Recently, there has been some modified Newton’s methods with cubic convergence
for systems of nonlinear equations in order to overcome on this flaw; see for example [8]. In
fact, there exist fourth-order schemes that avoid the condition of nonsingular Jacobianmatrix.
For example, Noor et al. in [9] design different algorithms for solving nonlinear systems
of equations, obtained by means of variational techniques. One of the iterative schemes
proposed in this paper, that we use in the numerical section, has the following expression:

y(k) = x(k) −
[
F ′
(
x(k)
)
− diag

(
β1f1, β2f2, . . . , βnfn

)(
x(k)
)]−1

F
(
x(k)
)
,

x(k+1) = y(k) −
[
F ′
(
y(k)
)
− diag

(
β1f1, β2f2, . . . , βnfn

)(
y(k)
)]−1

F
(
y(k)
)
,

(1.1)

denoted by NR, where fi, i = 1, . . . , n are the coordinate functions of F.
However, the condition of |F ′(x)|/= 0 cannot be always avoided, though as discussed

in [10], the generalized inverse could be used instead of F ′(x)−1, and the convergence still
remains quadratically. Moreover, the efficiency index of these solvers is not satisfactory for
practical problems, which provide us a way to suggest high order iterative methods with
high efficiency index.

In this paper, we suggest a novel two-step iterative scheme for finding the solution of
nonlinear systems whose Jacobian matrix is required to be nonsingular. The main merit of
our proposed scheme is that per iteration it does not require the evaluation of the second, or
higher order Frechet derivatives, while the fourth-order of convergence is attainable using
only one function and two first-order Frechet derivatives per computing step.

The paper is organized as follows. In the next section, we give a short review on basic
notes in this field of study, while Section 3 proposes the new iterative algorithm to solve
systems of nonlinear equations and analyze its local convergence. In Section 4, numerical
examples will be further considered to show that the newmethod performswell. The detailed
results for numerical examples are analyzed and discussed in this section. And finally, some
conclusions are drawn in Section 5.

2. Preliminary Notes

Let us consider the problem of finding a real zero of a multivariate nonlinear function F(x) =
(f1(x), f2(x), . . . , fn(x))

T , x = (x1, x2, . . . , xn)
T , fi : R

n → R, for all i = 1, 2, . . . , n and F :
D ⊂ R

n → R
n is a smooth map and D is an open and convex set. We assume that α =

(α1, α2, . . . , αn)
T is a zero of the system, and y = (y1, y2, . . . , yn)

T is an initial guess sufficiently
close to α.

Consider Taylor expansion of F(x) about y as follows:

F(x) = F
(
y
)
+ F ′(y)(x − y

)
+G(x), (2.1)

where G(x) = O((x − y)2). Replace y by x(k) into (2.1) to get

F(x) ≈ F
(
x(k)
)
+ F ′
(
x(k)
)(

x − x(k)
)
. (2.2)
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Solve (2.2) for x to get

x ≈ x(k) −
[
F ′
(
x(k)
)]−1

F
(
x(k)
)
+
[
F ′
(
x(k)
)]−1

F(x). (2.3)

If x is an approximation of α, we denote it by x(k+1) and get

x(k+1) ≈ x(k) −
[
F ′
(
x(k)
)]−1

F
(
x(k)
)
+
[
F ′
(
x(k)
)]−1

F
(
x(k+1)

)
, (2.4)

that is,

x(k+1) − x(k) ≈
[
F ′
(
x(k)
)]−1(

F
(
x(k+1)

)
− F
(
x(k)
))

. (2.5)

Waziri et al. [11] proposed a technique to approximate the Jacobian inverse [F ′(x(k))]−1

by a diagonal matrix Dk = diag(d(k)
i ), which is updated at each iteration, and where the ith

diagonal entry of the matrix Dk is defined to be

d
(k)
i =

x
(k)
i − x

(k−1)
i

fi
(
x(k)
) − fi

(
x(k−1)) , (2.6)

where x
(k)
i is the ith component of the vector x(k), for all i = 1, 2, . . . , n and k = 0, 1, 2, . . .. We

here remark that this procedure is similar to the Secant method in one-dimensional case. The
approximation is valid only if fi(x(k))−fi(x(k−1)) is not equal to zero or |fi(x(k))−fi(x(k−1))| > δ,
where δ is a positive real number for all i = 1, 2, . . . , n. If else, then set d(k)

i = d
(k−1)
i , for more

details, please refer to [11].
The order of convergence and efficiency index of such solvers are indeed not good

for practical problems in which iterations with high efficiencies are required. This was just
the motivation of producing higher-order iterative nonlinear systems solvers. Third-order
methods free from second derivatives were proposed from Quadrature rules for solving
systems of nonlinear equations. These methods require one functional evaluation and two
evaluations of first derivatives at two different points. An example of such iterations is the
Arithmetic Mean Newton method (3rd AM) derived from Trapezoidal rule [12]

x(k+1) = G3rd AM

(
x(k)
)
= x(k) −A1

(
x(k)
)−1

F
(
x(k)
)
, (2.7)

where

A1(x) =
F ′(x) + F ′(y)

2
, (2.8)

wherein y is the Newton’s iteration.
The convergence analysis of these methods using point of attraction theory can be

found in [13]. This third-order Newton-like method is more efficient than Halley’s method
because it does not require the evaluation of a third-order tensor of n3 values.
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In the next section, we present our new algorithm which reaches the highest possible
order four by using only three functional evaluations of the multivariate function for solving
systems of nonlinear equations.

3. A Novel Computational Iterative Algorithm

Let p be the order of a method and d be defined as

d = d0n +
q∑
j=1

djn
j+1, (3.1)

where d0 and dj represent the number of times F and F(j) are to be evaluated, respectively.
The definition of the Logarithms Informational Efficiency or Efficiency Index for nonlinear
systems (IE) [1] is given by

IE =
ln p

d0n +
∑q

j=1 djnj+1
. (3.2)

The efficiency indices of the Newton method (2nd NM) and the third-order methods free
from second derivatives (3rd AM) are given by

IE2nd NM =
ln 2

n + n2
, IE3rd AM =

ln 3
n + 2n2

, (3.3)

respectively. We observe that IE3rd AM > IE2nd NM, if n = 1. That is, the third-order methods
free from second derivatives are less efficient than Newton’s method for systems of nonlinear
equations. Let us also note that NR scheme has the same efficiency index as Newton’s method
(IE4th NR = ln 4/(2n + 2n2) = IE2nd NR). Thus, it is important to develop fourth-order methods
from these third-order methods to improve the efficiency. Soleymani et al. [5] have recently
improved the 3rd AM method to get a class of fourth-order Jarratt-type methods for solving
the nonlinear equation f(x) = 0. A simplified example is

yk = xk − 2
3
f(xk)
f ′(xk)

,

xk+1 = xk −
2f(xk)

f ′(xk) + f ′(yk

)
⎡
⎣1 − 1

4

(
f ′(yk

)

f ′(xk)
− 1

)
+
3
4

(
f ′(yk

)

f ′(xk)
− 1

)2
⎤
⎦.

(3.4)
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We extend this method to themultivariate case. The improved fourth-order Arithmetic
Mean Newton method (4th AM) for systems of nonlinear equations can now be suggested
as follows:

x(k+1) = G4th AM

(
x(k)
)

= x(k) −H1

(
x(k)
)[

A1

(
x(k)
)]−1

F(x),
(3.5)

whereH1(x) = (I − (1/4)(τ(x)− I)+(3/4)(τ(x)− I)2), τ(x) = [F ′(x)]−1F ′(x− (2/3)u(x)), and
I is the n × n identity matrix and u(x) = [F ′(x)]−1F(x). Thus, by simplifying, we can produce
the following fourth-order convergent algorithm.

Proposed Algorithm

Step 1. Solve the linear system F ′(x(k))u(x(k)) = F(x(k)),

Step 2. Calculate

(i) y(k) = x(k) − (2/3)u(x(k)),

(ii) τ(x(k)) = [F ′(x(k))]−1F ′(y(k)),

Step 3. Solve the linear system A1(x(k))h(x(k)) = F(x(k)), where A1(x(k)) = (1/2)(F ′(x(k)) +
F ′(y(k))),

Step 4. Calculate x(k+1) = x(k) − (I − (1/4)(τ(x(k)) − I) + (3/4)(τ(x(k)) − I)2)h(x(k)).

The main theorem is going to be demonstrated by means of the n-dimensional Taylor
expansion of the functions involved. Let F : D ⊆ R

n → R
n be sufficiently Frechet

differentiable in D. By using the notation introduced in [14], the qth derivative of F at u ∈
R

n, q ≥ 1, is the q-linear function F(q)(u) : R
n × · · · × R

n → R
n such that F(q)(u)(v1, . . . , vq) ∈

R
n. It is easy to observe that

(1) F(q)(u)(v1, . . . , vq−1, ·) ∈ L(Rn)

(2) F(q)(u)(vσ(1), . . . , vσ(q)) = F(q)(u)(v1, . . . , vq), for all permutation σ of {1, 2, . . . , q}.
So, in the following, we will denote:

(a) F(q)(u)(v1, . . . , vq) = F(q)(u)v1 · · ·vq,

(b) F(q)(u)vq−1F(p)vp = F(q)(u)F(p)(u)vq+p−1.

It is well known that for α + h ∈ R
n lying in a neighborhood of a solution α of the

nonlinear system F(x) = 0, Taylor’s expansion can be applied (assuming that the Jacobian
matrix F ′(α) is nonsingular), and

F(α + h) = F ′(α)

⎡
⎣h +

p−1∑
q=2

Cqh
q

⎤
⎦ +O(hp), (3.6)

where Cq = (1/q!)[F ′(α)]−1F(q)(α), q ≥ 2. We observe that Cqh
q ∈ R

n since F(q)(α) ∈ L(Rn ×
· · · × R

n,Rn) and [F ′(α)]−1 ∈ L(Rn).
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In addition, we can express F ′ as

F ′(α + h) = F ′(α)

⎡
⎣I +

p−1∑
q=2

qCqh
q−1

⎤
⎦ +O(hp), (3.7)

where I is the identity matrix. Therefore, qCqh
q−1 ∈ L(Rn). From (3.7), we obtain

[
F ′(α + h)

]−1 =
[
I +X1h +X2h

2 +X3h
3 + · · ·

][
F ′(α)

]−1 +O(hp), (3.8)

where
X1 = −2C2,

X2 = 4C2
2 − 3C3,

X3 = −8C3
2 + 6C2C3 + 6C3C2 − 4C4,

...

(3.9)

We denote e(k) = x(k) − α as the error in the kth iteration. The equation

e(k+1) = Le(k)
p
+O
(
e(k)

p+1)
, (3.10)

where L is a p-linear function L ∈ L(Rn × · · · ×R
n,Rn), is called the error equation, and p is the

order of convergence. Observe that e(k)p is (e(k), e(k), . . . , e(k)).

Theorem 3.1. Let F : D ⊆ R
n → R

n be sufficiently Frechet differentiable at each point of an open
convex neighborhoodD of α ∈ R

n, that is, a solution of the system F(x) = 0. Let us suppose that F ′(x)
is continuous and nonsingular in α, and x(0) close enough to α. Then the sequence {x(k)}k≥0 obtained
using the iterative expression (3.5) converges to α with order 4, being the error equation

e(k+1) =
(
1
9
C4 +

11
3
C3

2 − C3C2

)
e(k)

4
+O
(
e(k)

5)
. (3.11)

Proof. From (3.6) and (3.7), we obtain

F
(
x(k)
)
= F ′(α)

[
e(k) + C2e

(k)2 + C3e
(k)3 + C4e

(k)4
]
+O
(
e(k)

5)
,

F ′
(
x(k)
)
= F ′(α)

[
I + 2C2e

(k) + 3C3e
(k)2 + 4C4e

(k)3 + 5C5e
(k)4
]
+O
(
e(k)

5)
,

(3.12)

where Ck = (1/k!)[F ′(α)]−1F(k)(α), k = 2, 3, . . ., and e(k) = x(k) − α.
From (3.8), we have

[
F ′
(
x(k)
)]−1

=
[
I +X1e

(k) +X2e
(k)2 +X3e

(k)3
][
F ′(α)

]−1 +O
(
e(k)

4)
, (3.13)

where X1 = −2C2, X2 = 4C2
2 − 3C3 and X3 = −8C3

2 + 6C2C3 + 6C3C2 − 4C4.
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Then,

[
F ′
(
x(k)
)]−1

F
(
x(k)
)
= e(k) − C2e

(k)2 + 2
(
C2

2 − C3

)
e(k)

3

+
(
−4C3

2 + 4C2C3 + 3C3C2 − 3C4

)
e(k)

4
+O
(
e(k)

5)
,

(3.14)

and the expression for y(k) is

y(k) = α +
1
3
e(k) +

2
3
C2e

(k)2 − 4
3

(
C2

2 − C3

)
e(k)

3

+
(
2C4 − 8

3
C2C3 − 2C3C2 + 8C3

2

)
e(k)

4
+O
(
e(k)

5)
.

(3.15)

The Taylor expansion of Jacobian matrix F ′(y(k)) is

F ′
(
y(k)
)
= F ′(α)

[
I + 2C2

(
y(k) − α

)
+ 3C3

(
y(k) − α

)2
+ 4C4

(
y(k) − α

)3

+5C5

(
y(k) − α

)4]
+O
(
e(k)

5)

= F ′(α)
[
I +N1e

(k) +N2e
(k)2 +N3e

(k)3
]
+O
(
e(k)

4)
,

(3.16)

where

N1 =
2
3
C2,

N2 =
4
3
C2

2 +
1
3
C3,

N3 = − 8
3
C2

(
C2

2 − C3

)
+
4
3
C3C2 +

4
27

C4.

(3.17)

Therefore,

τ
(
x(k)
)
=
[
F ′
(
x(k)
)]−1

F ′
(
y(k)
)

= I + (N1 +X1)e(k) + (N2 +X1N1 +X2)e(k)
2

+ (N3 +X1N2 +X2N1 +X3)e(k)
3
+O
(
e(k)

4)

= I − 4
3
C2e

(k) +
(
4C2

2 −
8
3
C3

)
e(k)

2

+
(
−32
3
C3

2 + 8C2C3 +
16
3
C3C2 − 104

27
C4

)
e(k)

3
+O
(
e(k)

4)
,

(3.18)
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and then,

H1

(
x(k)
)
− I = − 1

4

(
τ
(
x(k)
)
− I
)
+
3
4

(
τ
(
x(k)
)
− I
)2

=
1
3
C2e

(k) +
(
1
3
C2

2 +
2
3
C3

)
e(k)

2

+
(
−16
3
C3

2 +
2
3
C2C3 +

4
3
C3C2 +

26
27

C4

)
e(k)

3
+O
(
e(k)

4)
.

(3.19)

On the other hand, the arithmetic mean of the Jacobian matrices can be expressed as

A1

(
x(k)
)
=

1
2

(
F ′
(
x(k)
)
+ F ′
(
y(k)
))

= F ′(α)
[
I +

4
3
C2e

(k) +
(
2
3
C2

2 +
5
3
C3

)
e(k)

2

+
(
−4
3
C3

2 +
4
3
C2C3 +

2
3
C3C2 +

56
27

C4

)
e(k)

3
]
+O
(
e(k)

4)
.

(3.20)

From an analogous reasoning as in (3.8), we obtain

[
A1

(
x(k)
)]−1

=
[
I + Y1e

(k) + Y2e
(k)2 + Y3e

(k)3
][
F ′(α)

]−1 +O
(
e(k)

4)
, (3.21)

where

Y1 = − 4
3
C2,

Y2 =
10
9
C2

2 −
5
3
C3,

Y3 = − 56
27

C4 +
20
27

C3
2 +

8
9
C2C3 +

14
9
C3C2.

(3.22)

So,

h
(
x(k)
)
= A1

(
x(k)
)−1

F
(
x(k)
)

= e(k) − 1
3
C2e

(k)2 +
(
−2
9
C2

2 −
2
3
C3

)
e(k)

3

+
(
50
27

C3
2 −

4
9
C2C3 − 1

9
C3C2 − 29

27
C4

)
e(k)

4
+O
(
e(k)

5)
,

(3.23)
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and finally, by using (3.19) and (3.23), the error equation can be expressed as

e(k+1) = x(k) −H1

(
x(k)
)
A1

(
x(k)
)−1

F
(
x(k)
)
− α

=
(
1
9
C4 +

11
3
C3

2 − C3C2

)
e(k)

4
+O
(
e(k)

5)
.

(3.24)

So, taking into account (3.24), it can be concluded that the order of convergence of the
proposed method is four.

The efficiency index of the fourth-order method free from second derivative (4th AM)
is given by

IE4th AM =
ln 4

n + 2n2
,

IE4th AM

IE2nd NM
=

2n + 2
2n + 1

> 1, n ≥ 1. (3.25)

This shows that the 4th AMmethod is more efficient than 2nd NM and 3rd AMmethods. We
next conduct some numerical experiments to compare the methods.

4. Numerical Examples

In this section, we compare the performance of contributed method with Newton’s scheme
and Arithmetic Mean Newton method (2.7). The algorithms have been written in MATLAB

7.6 and tested for the examples given below. For the following test problems, the approximate
solutions are calculated correct to 500 digits by using variable arithmetic precision. We use
the following stopping criterium:

err =
∥∥∥F
(
x(k)
)∥∥∥ +

∥∥∥x(k+1) − x(k)
∥∥∥ < 1 · e − 100. (4.1)

We have used the approximated computational order of convergence p given by (see [15])

pc ≈
log
(∥∥x(k+1) − x(k)

∥∥)/(∥∥x(k) − x(k−1)∥∥)

log
(∥∥x(k) − x(k−1)∥∥)/(∥∥x(k−1) − x(k−2)∥∥) . (4.2)

Let Itermax be the number of iterations required before convergence is reached and errmin be
the minimum residual.

We check the mentioned method by solving the following test problems.

Test Problem 1 (TP1). Consider F(x1, x2) = 0, where F : (4, 6) × (5, 7) → R
2, and

F(x1, x2) =

(
x2
1 − x2 − 19,

x3
2

6
− x2

1 + x2 − 17

)
. (4.3)
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The Jacobian matrix is given by F ′(x) =
(

2x1 −1
−2x1 (1/2)x2

2+1

)
. The starting vector is x(0) = (5.1, 6.1)T

and the exact solution is α = (5, 6)T . In this case, the comparison of efficiencies is

IE2nd NM =
ln 2
2 + 4

= 0.1155 = IE4th NR, IE3rd AM =
ln 3

2 + 2(4)
= 0.1099,

IE4th AM =
ln 4

2 + 2(4)
= 0.1386.

(4.4)

Test Problem 2 (TP2). Consider

cosx2 − sinx1 = 0,

xx1
3 − 1

x2
= 0,

expx1 − x2
3 = 0.

(4.5)

The solution is

α ≈ (0.909569, 0.661227, 1.575834)T . (4.6)

We choose the starting vector x(0) = (1, 0.5, 1.5)T . The Jacobian matrix is given by

F ′(x) =

⎛
⎜⎜⎜⎜⎜⎝

− cosx1 − sinx2 0

xx1
3 lnx3

1
x2
2

xx1
3
x1

x3

expx1 0 −2x3

⎞
⎟⎟⎟⎟⎟⎠

, (4.7)

and has 7 nonzero elements. In this case, the comparison of efficiencies is: IE2nd NM = ln 2/(3+
7) = 0.0693 = IE4th NR, IE3rd AM = ln 3/(3 + 2(7)) = 0.0646, IE4th AM = ln 4/(3 + 2(7)) = 0.0815.

Test Problem 3 (TP3). Consider

x2x3+ x4(x2 + x3) = 0,

x1x3+ x4(x1 + x3) = 0,

x1x2+ x4(x1 + x2) = 0,

x1x2+ x1x3 + x2x3 = 1.

(4.8)

We solve this system using the initial approximation x(0) = (0.5, 0.5, 0.5,−0.2)T . The solution
is

α ≈ (0.577350, 0.577350, 0.577350,−0.288675)T . (4.9)
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Table 1: Comparison of different methods for systems of nonlinear equations.

Methods TP1 TP2 TP3
Itermax errmin pc Itermax errmin pc Itermax errmin pc

2nd NM 7 8.8e–113 2 9 1.7e–107 2 8 1.7e–144 2.02
3rd AM 5 1.9e–140 3.02 7 5.9e–255 3 6 6.3e–276 3.02
4th NR 4 8.8e–113 4.02 5 1.7e–107 4 5 8.9e–291 4.11
4th AM 4 4.9e–102 4.02 6 2.7e–299 4 5 1.0e–237 4.14

The Jacobian is a matrix given by

F ′(x) =

⎛
⎜⎜⎝

0 x3 + x4 x2 + x4 x2 + x3

x3 + x4 0 x1 + x4 x1 + x3

x2 + x4 x1 + x4 0 x1 + x2

x2 + x3 x1 + x3 x1 + x2 0

⎞
⎟⎟⎠, (4.10)

with 12 nonzero elements. In this case, the comparison of efficiencies is: IE2nd NM = ln 2/(4 +
12) = 0.0433 = IE4th NR, IE3rd AM = ln 3/(4+2(12)) = 0.0392, IE4th AM = ln 4/(2+2(12)) = 0.0495.

Table 1 gives the results for Test Problems 1, 2, and 3. It is observed for all problems
that the fourth-order method converges in the least number of iterations. The computational
order of convergence agrees with the theory. 4th AM gives the best results in terms of least
residual, and it is themost efficientmethod compared to 2nd NMand 3rd AM. It can compete
with the 4th NR method and has the advantage of having a higher efficiency index.

5. Concluding Remarks

The efficiency of the quadratically and cubicallymultidimensional methods is not satisfactory
in most practical problems. Thus in this paper, we have extended a fourth-order method
from a third-order method for systems of nonlinear equations. We have shown that the
fourth-order iterative method is more efficient than the second order Newton and third-order
methods. Numerical experiments have also shown that the fourth-order method is efficient.
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