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We introduce the notion of cyclic weakly Chatterjea type contraction and generalized cyclic weakly
Chatterjea type contraction in metric spaces. We discussed the existence of fixed point theorems of
(generalized) cyclic weakly Chatterjea type contractionmappings in the context of completemetric
spaces. Our main theorems extend and improve some fixed point theorems in the literature.

1. Introduction and Preliminaries

Celebrated Banach’s contraction mapping principle is one of the cornerstones in the develop-
ment of nonlinear analysis. Fixed point theorems have applications not only in the various
branches of mathematics but also in economics, chemistry, biology, computer science, engi-
neering, and others. In particular, such theorems are used to demonstrate the existence and
uniqueness of a solution of differential equations, integral equations, functional equations,
partial differential equations, and others. Due to the importance, generalizations of Banach
fixed point theorem have been investigated heavily by many authors. (see, e.g., [1, 2]).

Following this trend, in 1972, Chatterjea [3] introduced the following definition.

Definition 1.1. Let (X, d) be a metric space. A self-mapping T : X → X is called a Chatterjea
type contraction if there exists α ∈ (0, 1/2) such that for all x, y ∈ X the following inequality
holds:

d
(
Tx, Ty

) ≤ α(d(x, Ty) + d(y, Tx)). (1.1)
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In this interesting paper, Chatterjea [3] proved that every Chatterjea type contraction T
on a complete metric space has a unique fixed point. Later, Choudhury [4] introduced a gen-
eralization of Chatterjea type contraction as follows.

Definition 1.2. A self-mapping T : X → X, on a metric space (X, d), is said to be a weakly
C-contractive (or a weak Chatterjea type contraction) if for all x, y ∈ X,

d
(
Tx, Ty

) ≤ 1
2
[
d
(
x, Ty

)
+ d

(
y, Tx

)] − ψ(d(x, Ty), d(y, Tx)), (1.2)

where ψ : [0,+∞)2 → [0,+∞) is a continuous function such that

ψ
(
x, y

)
= 0 iff x = y = 0. (1.3)

In [4], the author proves that every weak Chatterjea type contraction on a complete
metric space has a unique fixed point.

One of the interesting generalizations of a Banach’s contractionmapping principle was
given by Kirk et al. [5] in 2003 by introducing the following notion of cyclic representation.

Definition 1.3 (see [5]). Let X be a nonempty set and let T : X → X be an operator. By
definition, X =

⋃m
i=1Xi is a cyclic representation of X with respect to T if

(a) Xi, i = 1, . . .,m are nonempty sets,

(b) T(X1) ⊂ X2, . . . , T(Xm−1) ⊂ Xm, T(Xm) ⊂ X1.

After the remarkable paper of Kirk et al. [5], some new fixed-point theorems for
operators T defined on a complete metric space X with a cyclic representation of X with
respect to T have appeared in the literature (see, e.g., [1, 2, 4–19]). Very recently, Karapınar
[10] introduced the notion of the cyclic weak ϕ-contraction and proved fixed point theorems
for these types of contractions.

Definition 1.4 (see [10]). Let (X, d) be a metric space,m ∈ N, A1, A2, . . . , Am closed nonempty
subsets of X, and Y =

⋃m
i=1Ai. An operator T : Y → Y is called a cyclic weak ϕ-contraction if

(1) X =
⋃m
i=1Ai is a cyclic representation of X with respect to T ;

(2) there exists a continuous, nondecreasing function ϕ : [0,∞) → [0,∞)with ϕ(t) > 0
for t ∈ (0,∞) and ϕ(0) = 0 such that

d
(
Tx, Ty

) ≤ d(x, y) − ϕ(d(x, y)), (1.4)

for any x ∈ Ai, y ∈ Ai+1, i = 1, 2, . . . , m where Am+1 = A1.

Let F denote all the continuous functions ϕ : [0,∞) → [0,∞) with ϕ(t) > 0 for t ∈
(0,∞) and ϕ(0) = 0.

Theorem 1.5 (see [10]). Let (X, d) be a complete metric space, m ∈ N, A1, A2, . . . , Am nonempty
subsets of X, and X =

⋃m
i=1Ai. Suppose that T is a cyclic weak ϕ-contraction with ϕ ∈ F. Then, T has

a fixed point z ∈ ⋂n
i=1Ai.
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In this paper, we introduce the notions of cyclic weakly Chatterjea type contractions
and generalized cyclic weakly Chatterjea type contractions and then derive fixed point
theorems on these cyclic contractions in the setup of complete metric spaces. Our results gen-
eralize fixed point theorems [2, 5, 20] in the sense of metric spaces.

2. Main Results

2.1. Fixed Point Theory for the Cyclic Weakly Chatterjea Type
Contractions in Complete Metric Space

First we introduce the notion of cyclic weakly Chatterjea type contraction in metric space.
For convenience, we denote by F1 the class of functions ψ : [0,∞)2 → [0,∞) lower

semicontinuous satisfying ψ(x, y) = 0 if and only if x = y = 0.

Definition 2.1. Let (X, d) be a metric space, m ∈ N, A1, A2, . . . , Am nonempty subsets of X,
and Y =

⋃m
i=1Ai. An operator T : Y → Y is called a cyclic weakly Chatterjea type contraction

if

(1) X =
⋃m
i=1Ai is a cyclic representation of X with respect to T ;

(2) for any x ∈ Ai, y ∈ Ai+1, i = 1, 2, . . . , m

d
(
Tx, Ty

) ≤ α(d(x, Ty) + d(y, Tx)) − ψ(d(x, Ty), d(y, Tx)), (2.1)

where Am+1 = A1, ψ ∈ F1 and α ∈ (0, 1/2].

Notice that the cyclic weak Chatterjea type contractions constitute a strictly larger class
of mappings than cyclic weak ϕ-contractions.

The main result of this section is the following.

Theorem 2.2. Let (X, d) be a complete metric space, m ∈ N, A1, A2, . . . , Am nonempty closed
subsets of X, and X =

⋃m
i=1Ai. Suppose that T is a cyclic weakly Chatterjea type contraction. Then, T

has a unique fixed point z ∈ ⋂n
i=1Ai.

Proof. Take x0 ∈ X and consider the sequence given by xn+1 = Txn, n = 0, 1, 2, . . .. If there
exists n0 ∈ N such that xn0+1 = xn0 , then the existence of the fixed point is proved. Indeed,
xn0+1 = Txn0 = xn0 and xn0 is the desired point. Suppose that xn+1 /=xn for all n = 0, 1, 2, . . ..
Since X =

⋃m
i=1Ai, for any n > 0 there exists in ∈ {1, 2, . . . , m} such that xn−1 ∈ Ain and

xn ∈ Ain+1 . Due to the fact that T is a cyclic weakly Chatterjea type contraction, we have

d(xn, xn+1) = d(Txn−1, Txn)

≤ α(d(xn−1, Txn) + d(xn, Txn−1)) − ψ(d(xn−1, Txn), d(xn, Txn−1))
= α(d(xn−1, xn+1) + d(xn, xn)) − ψ(d(xn−1, xn+1), 0) ≤ αd(xn−1, xn+1)
≤ α(d(xn−1, xn) + d(xn, xn+1)).

(2.2)
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Therefore,

d(xn, xn+1) ≤ α

1 − αd(xn−1, xn) for any n = 1, 2, . . . . (2.3)

If we take k = α/(1 − α) < 1, then we have

d(xn, xn+1) ≤ kd(xn−1, xn) for any n = 1, 2, . . . . (2.4)

It follows that d(xn, xn+1) ≤ knd(x0, x1) and

lim
n→∞

d(xn, xn+1) = 0. (2.5)

In the sequel, we will prove that {xn} is a Cauchy sequence. First, we prove the following
claim. For every ε > 0 there exists n ∈ N such that if r, q ≥ nwith r −q ≡ 1(m), then d(xr, xq) <
ε.

Suppose, to the contrary, that there exists ε > 0 such that for any n ∈ N we can find
rn > qn ≥ nwith rn − qn ≡ 1(m) satisfying

d
(
xqn , xrn

) ≥ ε. (2.6)

Now, we take n > 2m. Then, corresponding to qn ≥ n we can choose rn in such a way that it
is the smallest integer with rn > qn satisfying rn − qn ≡ 1(m) and d(xqn , xrn) ≥ ε. Therefore,
d(xqn , xrn−m) ≤ ε. Using the triangular inequality, we obtain

ε ≤ d(xqn , xrn
) ≤ d

(
xqn , xrn−m

)
+

m∑

i=1

d(xrn−i , xrn−i+1)

< ε +
m∑

i=1

d(xrn−i , xrn−i+1).

(2.7)

Taking (2.5) into account and letting n → ∞ in the inequality above, we find

lim
n→∞

d
(
xqn , xrn

)
= ε. (2.8)

Again, by the triangular inequality, we have

ε ≤ d
(
xqn , xrn

)

≤ d
(
xqn , xqn+1

)
+ d

(
xqn+1 , xrn+1

)
+ d(xrn+1 , xrn)

≤ d
(
xqn , xqn+1

)
+ d

(
xqn+1 , xqn

)
+ d

(
xqn , xrn

)
+ d(xrn , xrn+1) + d(xrn+1 , xrn)

= 2d
(
xqn , xqn+1

)
+ d

(
xqn , xrn

)
+ 2d(xrn , xrn+1).

(2.9)
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Passing to the limit as n → ∞ in (2.8) and taking (2.5) and (2.8) into account, we get

lim
n→∞

d
(
xqn+1 , xrn+1

)
= ε. (2.10)

Since xqn and xrn lie in different adjacently labeled setsAi andAi+1 for certain 1 ≤ i ≤ m, using
the fact that T is a cyclic weakly Chatterjea type contraction, we have

d
(
xqn+1 , xrn+1

)
= d

(
Txqn , Txrn

)

≤ α
(
d
(
xqn , Txrn

)
+ d

(
xrn , Txqn

)) − ψ(d(xqn , Txrn
)
, d

(
xrn , Txqn

))

≤ α
(
d
(
xqn , xrn+1

)
+ d

(
xrn , xqn+1

)) − ψ(d(xqn , xrn+1
)
, d

(
xrn , xqn+1

))

≤ α
(
d
(
xqn , xrn

)
+ d(xrn , xrn+1) + d

(
xrn , xqn

)
+ d

(
xqn , xqn+1

))

− ψ(d(xqn , xrn+1
)
, d

(
xrn , xqn+1

))
.

(2.11)

Taking (2.5) and (2.8) into account together with the lower semicontinuity of ψ, the inequali-
ties above yield

ε ≤ α · ε − lim inf
n→+∞

ψ
(
d
(
xqn , xrn+1

)
, d

(
xrn , xqn+1

))

≤ α · ε − ψ(ε, ε) ≤ α · ε
(2.12)

as n → ∞. Hence, ψ(ε, ε) = 0. From the fact that ψ(x, y) = 0 ⇔ x = y = 0, we have ε = 0,
which is a contradiction. Therefore, our claim is proved.

We prove that (X, d) is a Cauchy sequence. Fix ε > 0. By the claim, we find n0 ∈ N such
that if r, q ≥ n0 with r − q ≡ 1(m),

d
(
xr, xq

) ≤ ε

2
. (2.13)

Since limn→∞ d(xn, xn+1) = 0, there exists n1 ∈ N such that

d(xn, xn+1) ≤ ε

2m
(2.14)

for any n ≥ n1. Suppose that r, s ≥ max {n0, n1} with s > r. Then, there exists k ∈ {1, 2, . . . , m}
such that s − r ≡ k(m). Therefore, we have s − r + ϕ ≡ 1(m) for ϕ = m − k + 1. So, we derive

d(xr, xs) ≤ d
(
xr, xs+j

)
+ d

(
xs+j , xs+j−1

)
+ · · · + d(xs+1, xs). (2.15)

By (2.13) and (2.14) and the inequality above, we get

d(xr, xs) ≤ ε

2
+ j × ε

2m
≤ ε

2
+m × ε

2m
= ε. (2.16)
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This proves that (xn) is a Cauchy sequence. Since X is a complete metric space, there exists
x ∈ X such that limn→∞xn = x.

Now, we prove that x is a fixed point of T . Since limn→∞xn = x and, as X =
⋃m
i=1Ai is

a cyclic representation of X with respect to T , the sequence (xn) has infinite terms in each Ai

for i ∈ {1, 2, . . . , m}. Suppose that x ∈ Ai, Tx ∈ Ai+1 and we take a subsequence xnk of (xn)
with xnk ∈ Ai−1 (the existence of this subsequence is guaranteed by the previously mentioned
comment). By using the contractive condition, we obtain

d(xnk+1 , Tx) = d(Txnk , Tx)

≤ α(d(xnk , Tx) + d(x, Txnk)) − ψ(d(xnk , Tx), d(x, Txnk))
= α(d(xnk , Tx) + d(x, xnk+1)) − ψ(d(xnk , Tx), d(x, xnk+1)).

(2.17)

Letting n → ∞ and by using xnk → x together with the lower semicontinuity of ψ, we have

d(x, Tx) ≤ αd(x, Tx) − lim inf
n→+∞

ψ(d(xnk , Tx), d(x, xnk+1))

≤ αd(x, Tx) − ψ(d(x, Tx), 0) ≤ αd(x, Tx)
(2.18)

which is a contradiction (since α < 1/2) unless d(x, Tx) = 0. Therefore, x is a fixed point of T .
Finally, to prove the uniqueness of the fixed point, we have y, z ∈ X with y and z

being fixed points of T . The cyclic character of T and the fact that y, z ∈ X are fixed points of
T imply that y, z ∈ ⋂m

i=1Ai. Using the contractive condition we obtain

d
(
y, z

)
= d

(
Ty, Tz

) ≤ α(d(y, Tz) + d(z, Ty)) − ψ(d(y, Tz), d(z, Ty)). (2.19)

That is,

d
(
y, z

) ≤ 2αd
(
y, z

) − ψ(d(y, z), d(z, y)) ≤ 2αd
(
y, z

)
. (2.20)

This gives us ψ(d(y, z), d(z, y)) = 0, and, by our assumption about ψ, d(y, z) = 0, that is,
y = z. This finishes the proof.

Corollary 2.3. Let (X, d) be a complete metric space, m ∈ N, A1, A2, . . . , Am nonempty subsets of
X, and X =

⋃m
i=1Ai. Suppose that T : X → X be an operator such that

(1) X =
⋃m
i=1Ai is a cyclic representation of X with respect to T ;

(2) there exists β ∈ [0, 1/2) such that

d
(
Tx, Ty

) ≤ β(d(x, Ty) + d(y, Tx)) (2.21)

for any x ∈ Ai, y ∈ Ai+1, i = 1, 2, . . . , m where Am+1 = A1. Then, T has a fixed point z ∈ ⋂n
i=1Ai.
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Proof. Let β ∈ [0, 1/2). Here, it suffices to take the function ψ : [0,+∞)2 → [0,+∞) as ψ(a, b) =
(α − β)(a + b). It is clear that ψ satisfies the following conditions:

(1) ψ(a, b) = 0 if and only if a = b = 0,

(2) ψ(x, y) = (α − β)(x + y) = ψ(x + y, 0).

Hence, we apply Theorems 2.2 for α ∈ [1/4, 1/2) and get the desired result.

The following corollary gives us a fixed point theorem with a contractive condition of
integral type for cyclic contractions.

Corollary 2.4. Let (X, d) be a complete metric space, m ∈ N, A1, A2, . . . , Am nonempty closed
subsets of X, and X =

⋃m
i=1Ai. Suppose that T : X → X be an operator such that

(i) X =
⋃m
i=1Ai is a cyclic representation of X with respect to T ;

(ii) there exists β ∈ [0, 1/2) such that

∫d(Tx,Ty)

0
ρ(t)dt ≤ β

∫d(x,Ty)+d(y,Tx)

0
ρ(t)dt (2.22)

for any x ∈ Ai, y ∈ Ai+1, i = 1, 2, . . . , m where Am+1 = A1 and ρ : [0,∞) → [0,∞) is a Lebesgue-
integrable mapping satisfying

∫ε
0 ρ(t)dt for ε > 0. Then T has unique fixed point z ∈ ⋂m

i=1Ai.

Proof. It is easily proved that the function ϕ : [0,∞) → [0,∞) given by ϕ(t) =
∫ t
0 ρ(s)ds

satisfies that ϕ ∈ F1. Therefore, Corollary 2.3 is obtained from Theorem 2.2, taking as ϕ the
previously defined function and as ψ the function ψ(x, y) = (α − β)(x + y) = ϕ(x + y, 0).

If in Corollary 2.4, we take Ai = X for i = 1, 2, . . . , m, we obtain the following result.

Corollary 2.5. Let (X, d) be a complete metric space and let T : X → X be a mapping such that for
any x, y ∈ X,

∫d(Tx,Ty)

0
ρ(t)dt ≤ β

∫d(x,Ty)+d(y,Tx)

0
ρ(t)dt, (2.23)

where ρ : [0,∞) → [0,∞) is a Lebesgue-integrable mapping satisfying
∫ε
0 ρ(t)dt for ε > 0 and the

constant β ∈ [0, 1/2). Then T has unique fixed point.

If in Theorem 2.2 we put Ai = X for i = 1, 2, . . . , m we get the main result of [4].

Corollary 2.6. Let (X, d) be a complete metric space and T : X → X a mapping such that for any
x, y ∈ X,

d
(
Tx, Ty

) ≤ α(d(x, Ty) + d(y, Tx)) − ψ(d(x, Ty) + d(y, Tx)), (2.24)

where ψ ∈ F1 and α ∈ (0, 1/2). Then T has unique fixed point.
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Example 2.7. Let X = R with the usual metric. Suppose A1 = [0, 1], A2 = [0, 1/2], and Y =⋃2
i=1Ai. Define T : Y → Y such that Tx = x/9 for all x ∈ Y . It is clear that

⋃2
i=1Ai is a cyclic

representation of Y with respect to T . Furthermore, if ψ : [0,+∞)2 → [0,+∞) is defined
by ψ(x, y) = (x + y)/9, then ψ ∈ F2. Here T is a generalized cyclic weakly Chatterjea type
contraction for α = 1/2. To see this fact we examine three cases.

(i) Suppose that x ≥ y. Then, the inequality (2.1) turns into

d
(
Tx, Ty

)
=
∣
∣
∣
x

7
− y

7

∣
∣
∣ =

x − y
7

≤ 1
2
[
d
(
x, Ty

)
+ d

(
y, Tx

)] − ψ(d(x, Ty), d(y, Tx))

=
1
2

[∣∣
∣x − y

7

∣
∣
∣ +

∣
∣
∣y − x

7

∣
∣
∣
]
− 1
9

[∣∣
∣x − y

7

∣
∣
∣ +

∣
∣
∣y − x

7

∣
∣
∣
]

=
1
2

[
x − y

7
+
∣
∣∣y − x

7

∣
∣∣
]
− 1
9

[
x − y

7
+
∣
∣∣y − x

7

∣
∣∣
]

=
7
18

[
x − y

7
+
∣∣∣y − x

7

∣∣∣
]
.

(2.25)

If y < x/7, then (2.25) becomes

x − y
7

≤ 7
18

[
x − y

7
+
x

7
− y

]
=

4
9
(
x − y). (2.26)

Hence, (2.1) is satisfied. If y ≥ x/7, then (2.25) becomes

x − y
7

≤ 7
18

[
x − y

7
+ y − x

7

]
=

1
3
(
x + y

)
. (2.27)

Thus, (2.1) is true.

(ii) Suppose that y/7 ≤ x ≤ y. Then, the inequality (2.1) yields that

d
(
Tx, Ty

)
=
∣∣∣
x

7
− y

7

∣∣∣ =
y − x
7

≤ 1
2
[
d
(
x, Ty

)
+ d

(
y, Tx

)] − ψ(d(x, Ty), d(y, Tx))

=
1
2

[∣∣∣x − y

7

∣∣∣ +
∣∣∣y − x

7

∣∣∣
]
− 1
9

[∣∣∣x − y

7

∣∣∣ +
∣∣∣y − x

7

∣∣∣
]

=
7
18

[∣∣∣x − y

7

∣∣∣ +
∣∣∣y − x

7

∣∣∣
]

=
7
18

[
x − y

7
+ y − x

7

]
=

1
3
(
x + y

)
.

(2.28)

So, (2.1) holds.
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(iii) Finally, suppose that y/7 ≥ x. Then, the inequality (2.1) yields that

d
(
Tx, Ty

)
=
∣
∣
∣
x

7
− y

7

∣
∣
∣ =

y − x
7

≤ 1
2
[
d
(
x, Ty

)
+ d

(
y, Tx

)] − ψ(d(x, Ty), d(y, Tx))

=
1
2

[∣∣
∣x − y

7

∣
∣
∣ +

∣
∣
∣y − x

7

∣
∣
∣
]
− 1
9

[∣∣
∣x − y

7

∣
∣
∣ +

∣
∣
∣y − x

7

∣
∣
∣
]

=
7
18

[∣∣
∣x − y

7

∣
∣
∣ +

∣
∣
∣y − x

7

∣
∣
∣
]

=
7
18

[
x − y

7
+ y − x

7

]
=

1
3
(
y + x

)
.

(2.29)

Hence, (2.1) is true.

Therefore, all conditions of Theorem 1.5 are satisfied, and so T has a fixed point (which is
z = 0 ∈ ⋂2

i=1Ai.)

2.2. Fixed Point Theory for the Generalized Cyclic Weakly Chatterjea Type
Contractions in Complete Metric Space

In this section we derive fixed point theorems for self-maps satisfying certain generalized
cyclic weakly Chatterjea type contractions in a complete metric space.

For convenience, we denote by F2 the class of functions ψ : [0,∞)4 → [0,∞) lower
semicontinuous satisfying ψ(x, y, z, t) = 0 if and only if x = y = z = t = 0.

We introduce the notion of generalized cyclic weakly Chatterjea type contraction in
metric space.

Definition 2.8. Let (X, d) be a metric space,m ∈ N, A1, A2, . . . , Am nonempty subsets ofX and
Y =

⋃m
i=1Ai. An operator T : Y → Y is called a generalized cyclic weakly Chatterjea type

contraction if

(1) X =
⋃m
i=1Ai is a cyclic representation of X with respect to T ;

(2)

d
(
Tx, Ty

) ≤ α
[
d(x, Tx) + d

(
y, Ty

)
+ d

(
x, Ty

)
+ d

(
y, Tx

)]

− ψ(d(x, Tx), d(x, Ty), d(x, Ty), d(y, Tx)),
(2.30)

for any x ∈ Ai, y ∈ Ai+1, i = 1, 2, . . . , m where Am+1 = A1 and

ψ
(
d(x, Tx), d

(
y, Ty

)
, d

(
x, Ty

)
, d

(
y, Tx

)) ∈ F2 and α ∈
(
0,

1
4

]
. (2.31)

We state the main result of this section as follows.

Theorem 2.9. Let (X, d) be a complete metric space, m ∈ N, A1, A2, . . . , Am nonempty closed
subsets of X and X =

⋃m
i=1Ai. Suppose that T is a generalized cyclic weakly C-contraction. Then,

T has a unique fixed point z ∈ ⋂n
i=1Ai.
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Proof. As in the proof of Theorem 2.2, we take x0 ∈ X and construct a sequence by defining
xn+1 = Txn, n = 0, 1, 2, . . .. Suppose that there exists n0 ∈ N such that xn0+1 = xn0 . Then, since
xn0+1 = Txn0 = xn0 , the existence of the fixed point is proved. So, we assume that xn+1 /=xn for
any n = 0, 1, 2, . . .. Since X =

⋃m
i=1Ai, for any n > 0, there exists in ∈ {1, 2, . . . , m} such that

xn−1 ∈ Ain and xn ∈ Ain+1 . Regarding that T is a generalized cyclic weakly Chatterjea type con-
traction, we have

d(xn, xn+1) = d(Txn−1, Txn)

≤ α[d(xn−1, Txn−1) + d(xn, Txn) + d(xn−1, Txn) + d(xn, Txn−1)]

− ψ(d(xn−1, Txn−1), d(xn, Txn), d(xn−1, Txn), d(xn, Txn−1))
= α[d(xn−1, xn) + d(xn, xn+1) + d(xn−1, xn+1)]

− ψ(d(xn−1, xn), d(xn, xn+1), d(xn−1, xn+1), 0)
≤ α[d(xn−1, xn) + d(xn, xn+1) + d(xn−1, xn+1)]

≤ 2α[d(xn−1, xn) + d(xn, xn+1)].

(2.32)

Therefore,

d(xn, xn+1) ≤ 2α
1 − 2α

d(xn−1, xn) for any n = 1, 2, . . . . (2.33)

If we take k = α/(1 − α) < 1, then we have

d(xn, xn+1) ≤ kd(xn−1, xn) for any n = 1, 2, . . . . (2.34)

It follows that d(xn, xn+1) ≤ knd(x0, x1) and

lim
n→∞

d(xn, xn+1) = 0. (2.35)

We show that {xn} is a Cauchy sequence. For this purpose, first, we prove the following claim.
For every ε > 0 there exists n ∈ N such that if r, q ≥ nwith r − q ≡ 1(m), then d(xr, xq) < ε.

Assume the contrary. So there exists ε > 0 such that for any n ∈ N we can find rn >
qn ≥ nwith rn − qn ≡ 1(m) satisfying

d
(
xqn , xrn

) ≥ ε. (2.36)
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Now, we take n > 2m. Then, corresponding to qn ≥ n we can choose rn in such a way that it
is the smallest integer with rn > qn satisfying rn − qn ≡ 1(m) and d(xqn , xrn) ≥ ε. Therefore,
d(xqn , xrn−m) ≤ ε by using the triangular inequality

ε ≤ d
(
xqn , xrn

) ≤ d(xqn , xrn−m
)
+

m∑

i=1

d(xrn−i , xrn−i+1)

< ε +
m∑

i=1

d(xrn−i , xrn−i+1).

(2.37)

Passing to the limit as n → ∞ in the last inequality and taking into account that
limn→∞ d(xn, xn+1) = 0, we obtain

lim
n→∞

d
(
xqn , xrn

)
= ε. (2.38)

Again, by the triangular inequality

ε ≤ d
(
xqn , xrn

)

≤ d
(
xqn , xqn+1

)
+ d

(
xqn+1 , xrn+1

)
+ d(xrn+1 , xrn)

≤ d
(
xqn , xqn+1

)
+ d

(
xqn+1 , xqn

)
+ d

(
xqn , xrn

)
+ d(xrn , xrn+1) + d(xrn+1 , xrn)

= 2d
(
xqn , xqn+1

)
+ d

(
xqn , xrn

)
+ 2d(xrn , xrn+1).

(2.39)

Taking (2.35) and (2.38) into account, we get

lim
n→∞

d
(
xqn+1 , xrn+1

)
= ε (2.40)

as n → ∞ in (2.38).
Since xqn and xrn lie in different adjacently labeled setsAi andAi+1 for certain 1 ≤ i ≤ m,

using the fact that T is a generalized cyclic weakly Chatterjea type contraction, we have

d
(
xqn+1 , xrn+1

)
= d

(
Txqn , Txrn

)

≤ α
[
d
(
xqn , Txqn

)
+ d(xrn , Txrn) + d

(
xqn , Txrn

)
+ d

(
xrn , Txqn

)]

− ψ(d(xqn , Txqn
)
, d(xrn , Txrn), d

(
xqn , Txrn

)
, d

(
xrn , Txqn

))

≤ α
[
d
(
xqn , xqn+1

)
+ d(xrn , xrn+1) + d

(
xqn , xrn+1

)
+ d

(
xrn , xqn+1

)]

− ψ(d(xqn , xqn+1
)
, d(xrn , xrn+1), d

(
xqn , xrn+1

)
, d

(
xrn , xqn+1

))
.

(2.41)
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Taking into account (2.35) and (2.38) and the lower semicontinuity of ψ, letting n → ∞ in
the last inequality, we obtain

ε ≤ α[ε + 0 + ε + 0] − lim inf
n→+∞

ψ
(
d
(
xqn , xqn+1

)
, d(xrn , xrn+1), d

(
xqn , xrn+1

)
, d

(
xrn , xqn+1

))

≤ α[ε + 0 + ε + 0] − ψ(ε, 0, ε, 0) ≤ 2α · ε
(2.42)

and from the last inequality, ψ(ε, 0, ε, 0) ≤ −2αε ≤ 0. Therefore ϕ(ε, 0, ε, 0) = 0. From the fact
that ψ(x, y, z, t) = 0 ⇔ x = y = z = t = 0, we have ε = 0, which is a contradiction. Therefore,
our claim is proved.

In the sequel, we will prove that (X, d) is a Cauchy sequence. Fix ε > 0. By the claim,
we find n0 ∈ N such that if r, q ≥ n0 with r − q ≡ 1(m)

d
(
xr, xq

) ≤ ε

2
. (2.43)

Since limn→∞d(xn, xn+1) = 0, we also find n1 ∈ N such that

d(xn, xn+1) ≤ ε

2m
(2.44)

for any n ≥ n1. Suppose that r, s ≥ max{n0, n1} and s > r. Then there exists k ∈ {1, 2, . . . , m}
such that s − r ≡ k(m). Therefore, s − r + ϕ ≡ 1(m) for ϕ = m − k + 1. So, we have

d(xr, xs) ≤ d
(
xr, xs+j

)
+ d

(
xs+j , xs+j−1

)
+ · · · + d(xs+1, xs). (2.45)

By (2.43) and (2.44) and from the last inequality, we get

d(xr, xs) ≤ ε

2
+ j × ε

2m
≤ ε

2
+m × ε

2m
= ε. (2.46)

This proves that (xn) is a Cauchy sequence. Since X is a complete metric space, there exists
x ∈ X such that limn→∞ xn = x. In what follows, we prove that x is a fixed point of T . In fact,
since limn→∞ xn = x and as X =

⋃m
i=1Ai is a cyclic representation of X with respect to T , the

sequence (xn) has infinite terms in each Ai for i ∈ {1, 2, . . . , m}. Suppose that x ∈ Ai, Tx ∈
Ai+1 and we take a subsequence xnk of (xn)with xnk ∈ Ai−1 (the existence of this subsequence
is guaranteed by the previously mentioned comment). By using the contractive condition, we
can obtain

d(xnk+1 , Tx) = d(Txnk , Tx)

≤ α[d(xnk , Txnk) + d(x, Tx) + d(xnk , Tx) + d(x, Txnk))

− ψ(d(xnk , Txnk), d(x, Tx), d(xnk , Tx), d(x, Txnk))
= α[d(xnk , xnk+1) + d(x, Tx) + d(xnk , Tx) + d(x, xnk+1))

− ψ(d(xnk , xnk+1), d(x, Tx), d(xnk , Tx), d(x, xnk+1)).

(2.47)
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Passing to the limit as n → ∞ and using xnk → x, lower semicontinuity of ψ, we have

d(x, Tx) ≤ 1
2
d(x, Tx) − lim inf

n→+∞
ψ(d(xnk , xnk+1), d(x, Tx), d(xnk , Tx), d(x, xnk+1))

≤ 1
2
d(x, Tx) − ψ(0, d(x, Tx), d(x, Tx), 0) ≤ 1

2
d(x, Tx),

(2.48)

which is a contradiction unless d(x, Tx) = 0, and, therefore, x is a fixed point of T . Finally,
to prove the uniqueness of the fixed point, we have y, z ∈ X with y and z being fixed points
of T . The cyclic character of T and the fact that y, z ∈ X are fixed points of T imply that
y, z ∈ ⋂m

i=1Ai. Using the contractive condition we obtain

d
(
y, z

)
= d

(
Ty, Tz

) ≤ α[d(y, Ty) + d(z, Tz) + d(y, Tz) + d(z, Ty)]

− ψ(d(y, Ty), d(z, Tz), d(y, Tz), d(z, Ty)).
(2.49)

that is,

d
(
y, z

) ≤ 2αd
(
y, z

) − ψ(0, 0, d(y, z), d(z, y)) ≤ d(y, z). (2.50)

This gives us ψ(0, 0, d(y, z), d(z, y)) ≤ (1 − 2α)d(y, z) ≤ 0, and, by our assumption about ψ,
d(y, z) = 0, that is, y = z. This finishes the proof.

Corollary 2.10. Let (X, d) be a complete metric space, m ∈ N, A1, A2, . . . , Am nonempty subsets of
X, and X =

⋃m
i=1Ai. Suppose that T : X → X be an operator such that

(1) X =
⋃m
i=1Ai is a cyclic representation of X with respect to T ;

(2) there exists β ∈ [0, 1/4) such that

d
(
Tx, Ty

) ≤ β[d(x, Tx) + d(y, Ty) + d(x, Ty) + d(y, Tx)] (2.51)

for any x ∈ Ai, y ∈ Ai+1, i = 1, 2, . . . , m, where Am+1 = A1. Then, T has a fixed point
z ∈ ⋂n

i=1Ai.

Proof. Let β ∈ [0, 1/4). Here, it suffices to take the function ψ : [0,+∞)4 → [0,+∞) defined
by ψ(a, b, c, e) = (α − β)(a + b + c + e). Obviously, ψ satisfies that ψ(a, b, c, e) = 0 if and only if
a = b = c = e = 0, and ψ(x, y, z, t) = (α − β)(x + y + z + t) = ψ(x + y + z + t, 0). Then, we can
apply Theorems 2.9.

The following corollary gives us a fixed point theorem with a contractive condition of
integral type for cyclic contractions.

Corollary 2.11. Let (X, d) be a complete metric space, m ∈ N, A1, A2, . . . , Am nonempty closed
subsets of X and X =

⋃m
i=1Ai. Suppose that T : X → X be an operator such that

(1) X =
⋃m
i=1Ai is a cyclic representation of X with respect to T ;
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(2) there exists β ∈ [0, 1/4) such that

∫d(Tx,Ty)

0
ρ(t)dt ≤ β

∫d(x,Tx)+d(y,Ty)+d(x,Ty)+d(y,Tx)

0
ρ(t)dt (2.52)

for any x ∈ Ai, y ∈ Ai+1, i = 1, 2, . . . , m, whereAm+1 = A1 and ρ : [0,∞) → [0,∞) is a Lebesgue-
integrable mapping satisfying

∫ε
0 ρ(t)dt for ε > 0. Then T has unique fixed point z ∈ ⋂m

i=1Ai.

Proof. It is easily proved that the function ϕ : [0,∞) → [0,∞) given by ϕ(t) =
∫ t
0 ρ(s)ds

satisfies that ϕ ∈ F1. Therefore, Corollary 2.10 is obtained from Theorem 2.9, taking as ϕ the
perviously defined function and as ψ the function ψ(x, y, z, t) = (1/4 − α)(x + y + z + t) =
ϕ(x + y + z + t, 0).

If in Corollary 2.11, we take Ai = X for i = 1, 2, . . . , m, we obtain the following result.

Corollary 2.12. Let (X, d) be a complete metric space and let T : X → X be a mapping such that for
any x, y ∈ X,

∫d(Tx,Ty)

0
ρ(t)dt ≤ β

∫d(x,Tx)+d(y,Ty)+d(x,Ty)+d(y,Tx)

0
ρ(t)dt, (2.53)

where ρ : [0,∞) → [0,∞) is a Lebesgue-integrable mapping satisfying
∫ε
0 ρ(t)dt for ε > 0 and the

constant β ∈ [0, 1/4). Then T has unique fixed point.

If in Theorem 2.9 we put Ai = X for i = 1, 2, . . . , m, we have the generalized result of
[4].

Corollary 2.13. Let (X, d) be a complete metric space and let T : X → X be a mapping such that for
any x, y ∈ X,

d
(
Tx, Ty

) ≤ α
[
d(x, Tx) + d

(
y, Ty

)
+ d

(
x, Ty

)
+ d

(
y, Tx

)]

− ψ(d(x, Tx), d(y, Ty), d(x, Ty), d(y, Tx)),
(2.54)

where ψ ∈ F2 and α ∈ (0, 1/4]. Then T has unique fixed point.

Example 2.14. Let X = R with the usual metric. Suppose A1 = [0, 1], A2 = [0, 1/3], A3 =
[0, 1/9], A4 = [0, 1/27] and Y =

⋃4
i=1Ai. Define T : Y → Y such that Tx = x/4 for all

x ∈ Y . It is clear that
⋃4
i=1Ai is a cyclic representation of Y with respect to T . Furthermore,

if ψ : [0,+∞)4 → [0,+∞) is defined by ψ(x, y, z, t) = (x + y + z + t)/16, then ψ ∈ F2. As in
Example 2.7, it can be easily shown that T is a generalized cyclic weakly Chatterjea type con-
traction α = 1/4. Therefore, all conditions of Theorem 2.9 are satisfied, and so T has a fixed
point (which is z = 0 ∈ ⋂4

i=1Ai).
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[17] M. Păcurar and I. A. Rus, “Fixed point theory for cyclic ϕ-contractions,” Nonlinear Analysis. Theory,
Methods and Applications A, vol. 72, no. 3-4, pp. 2683–2693, 2010.

[18] M. A. Petric, “Best proximity point theorems for weak cyclic Kannan contractions,” Filomat, vol. 25,
no. 145, 154 pages, 2011.

[19] I. A. Rus, “Cyclic representations and fixed points,”Annals of the Tiberiu Popoviciu Seminar of Functional
Equations, Approximation and Convexity, vol. 3, pp. 171–178, 2005.

[20] S. Banach, “Sur les operations dans les ensembles abstraits et leur application aux equations integ-
erales,” Fundamenta Mathematicae, vol. 3, pp. 133–181, 1922.



Submit your manuscripts at
http://www.hindawi.com

Hindawi Publishing Corporation
http://www.hindawi.com Volume 2014

Mathematics
Journal of

Hindawi Publishing Corporation
http://www.hindawi.com Volume 2014

Mathematical Problems 
in Engineering

Hindawi Publishing Corporation
http://www.hindawi.com

Differential Equations
International Journal of

Volume 2014

Applied Mathematics
Journal of

Hindawi Publishing Corporation
http://www.hindawi.com Volume 2014

Probability and Statistics
Hindawi Publishing Corporation
http://www.hindawi.com Volume 2014

Journal of

Hindawi Publishing Corporation
http://www.hindawi.com Volume 2014

Mathematical Physics
Advances in

Complex Analysis
Journal of

Hindawi Publishing Corporation
http://www.hindawi.com Volume 2014

Optimization
Journal of

Hindawi Publishing Corporation
http://www.hindawi.com Volume 2014

Combinatorics
Hindawi Publishing Corporation
http://www.hindawi.com Volume 2014

International Journal of

Hindawi Publishing Corporation
http://www.hindawi.com Volume 2014

Operations Research
Advances in

Journal of

Hindawi Publishing Corporation
http://www.hindawi.com Volume 2014

Function Spaces

Abstract and 
Applied Analysis
Hindawi Publishing Corporation
http://www.hindawi.com Volume 2014

International 
Journal of 
Mathematics and 
Mathematical 
Sciences

Hindawi Publishing Corporation
http://www.hindawi.com Volume 2014

The Scientific 
World Journal
Hindawi Publishing Corporation 
http://www.hindawi.com Volume 2014

Hindawi Publishing Corporation
http://www.hindawi.com Volume 2014

Algebra

Discrete Dynamics in 
Nature and Society

Hindawi Publishing Corporation
http://www.hindawi.com Volume 2014

Hindawi Publishing Corporation
http://www.hindawi.com Volume 2014

Decision Sciences
Advances in

Discrete Mathematics
Journal of

Hindawi Publishing Corporation
http://www.hindawi.com

Volume 2014

Hindawi Publishing Corporation
http://www.hindawi.com Volume 2014

Stochastic Analysis
International Journal of


