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We construct a linearizing Riccati transformation by using an ansatz and a linearizing point
transformation utilizing the Lie point symmetry generators for a three-parameter class of
Liénard type nonlinear second-order ordinary differential equations. Since the class of equations
also admits an eight-parameter Lie group of point transformations, we utilize the Lie-Tresse
linearization theorem to obtain linearizing point transformations as well. The linearizing
transformations are used to transform the underlying class of equations to linear third- and
second-order ordinary differential equations, respectively. The general solution of this class of
equations can then easily be obtained by integrating the linearized equations resulting from
both of the linearization approaches. A comparison of the results deduced in this paper is
made with the ones obtained by utilizing an approach of mapping the class of equations by a
complex point transformation into the free particle equation. Moreover, we utilize the linearizing
Riccati transformation to extend the underlying class of equations, and the Lie-Tresse linearization
theorem is also used to verify the conditions of linearizability of this new class of equations.

1. Introduction

A three-parameter class of Liénard type nonlinear second-order ordinary differential
equations (ODEs) of the form

x′′ + (b + 3kx)x′ + k2x3 + bkx2 + λx = 0, (1.1)
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where x = x(t), x′ = dx/dt and so on with b, k, and λ arbitrary constants, has been a subject
of great interest as the equations belonging to this class are widely applied in nonlinear
oscillations.

A particular class of (1.1), when b = λ = 0, was studied in [1] for the exact solutions
using the Lie symmetry groupmethod. For b = 0, the authors in [2] have obtained the general
solution of (1.1) indirectly through the use of nonlocal transformations associated with the
modified Prelle-Singer method given in [3]. In [4], Bluman et al. investigated the class of
(1.1) and have obtained the general solution of (1.1) by mapping (1.1) to the free particle
equation by an explicit complex point transformation by utilizing the symmetry properties
of the determining equations leading to the transformation.

In this paper, we revisit (1.1) from the viewpoint of linearization and derive the general
solution of the class of (1.1) in a simpler manner than given previously. In particular, we
construct a linearizing Riccati transformation of (1.1) by using an ansatz and a linearizing
point transformations utilizing the Lie point symmetries admitted by (1.1) to transform
the underlying equation to linear ones and hence obtain the general solution of (1.1) by
integrating the linearized equations arising in both cases. We show that the general solutions
obtained by the linearization of (1.1) by these two approaches coincide with the results
obtained by Bluman et al. in [4] for certain nonzero constants. However, our approach is
much simpler. Furthermore, we also make use of the linearizing Riccati transformation to
extend the underlying class of Liénard type equations and then the Lie-Tresse linearization
theorem is utilized to determine the conditions under which this new class of equations is
linearizable.

The outline of the paper is as follows. In Section 2, we present a Riccati transformation
which linearizes (1.1) to a linear third-order equation and the use of the conditions of Lie-
Tresse (see, e.g., Mahomed [5] and the references therein) for the linearization by point
transformation of the class of (1.1) to a linear equation as well. We also show how one
can utilize these linearizing transformations arising in the two approaches to construct
exact general solutions to (1.1). We provide, in Section 3, extension of the class of (1.1)
and the conditions that determine linearizability of this new class of equations by Lie point
transformations. Finally, in Section 4, concluding remarks are made.

2. Linearization and General Solution of (1.1)

In this section, we consider the linearizability of (1.1), firstly by finding a Riccati transfor-
mation and then by deriving a point transformation by the Lie-Tresse theorem. We derive
the Riccati transformation by using an ansatz. We then also use the invariant criteria of Lie-
Tresse [5] to obtain the linearizing point transformations. The general solution of (1.1) is
easily constructed making use of these linearizing transformations.

2.1. Linearization by an Ansatz Method

We use the following ansatz of the form:

x = α(t)
u′

u
, (2.1)
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where u′ = du/dt, to linearize (1.1). Using (2.1), substituting for x and the derivatives x′ and
x′′ into (1.1), we find that α(t) = 1/k. Hence, we find that the transformation x = u′/(ku)
transforms (1.1) into the following linear third-order ODE:

u′′′ + bu′′ + λu′ = 0. (2.2)

Now letting z = u′, (2.2) becomes a linear second-order ODE:

z′′ + bz′ + λz = 0. (2.3)

The characteristic equation of (2.3) has roots given by

m =
−b ±

√
b2 − 4λ
2

. (2.4)

Therefore, there arise three cases. It should be mentioned that our analysis of (1.1) is thus
much simpler than that of [4].

Case 1 (b2 − 4λ > 0). In this case, the general solution of (2.3) is given by

z = c1 exp

[(
−b +

√
b2 − 4λ
2

)
t

]
+ c2 exp

[(
−b −

√
b2 − 4λ
2

)
t

]
, (2.5)

where c1 and c2 are arbitrary constants. Thus, the general solution of (2.2) takes the form

u =
2c1(

−b +
√
b2 − 4λ

) exp

[(
−b +

√
b2 − 4λ
2

)
t

]
− 2c2(

b +
√
b2 − 4λ

) exp

[(
−b −

√
b2 − 4λ
2

)
t

]

+ c3,

(2.6)

where c3 is a constant of integration. Hence, the general solution of (1.1) using (2.1) yields

x(t) =
1
k

c1 exp
[√

b2 − 4λ t
]
+ c2(

2c1/
(
−b +

√
b2 − 4λ

))
exp

[√
b2 − 4λ t

]
− 2c2/

(
b +

√
b2 − 4λ

)
+A

, (2.7)

where A denotes c3 exp[((b +
√
b2 − 4λ)/2)t]. Note that not all the constants ci are arbitrary

and only two are.

Case 2 (b2 − 4λ = 0). Here we obtain the following general solution to (1.1) given by:

x(t) =
1
k

c1 + c2 t

−2c1/b + c2(−2t/b − 4/b2) + c3 exp [bt/2]
, (2.8)

where c1, c2, and c3 are arbitrary constants of which only any two are arbitrary.
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Case 3 (b2 − 4λ < 0). The solution of (2.3) in this case is given by

z = exp
[
−bt
2

][
c1 cos

(√
4λ − b2t

2

)
+ c2 sin

(√
4λ − b2t

2

)]
, (2.9)

where c1 and c2 are arbitrary constants. Hence, the general solution of (1.1) is given by

x(t) =
2λ
k

exp[−bt/2]
[
c1 cos

(√
4λ − b2t/2

)
+ c2 sin

(√
4λ − b2t/2

)]
exp[−bt/2]

[(
−bc1 −

√
4λ − b2c2

)
cos

(√
4λ − b2t/2

)
+ B

]
+ 2λc3

, (2.10)

where B denotes (−bc2 +
√
4λ − b2c1) sin(

√
4λ − b2t/2), and c3 is an arbitrary constant. The

same remark as in Case 1 applies regarding the constants.

Remark 2.1. In the general solution (2.7) in Case 1, where b2 − 4λ > 0, by setting Ω =√
b2 − 4λ/2, A = c3(b −

√
b2 − 4λ)(b +

√
b2 − 4λ)/2c1, and B = −c2/c1 if c1 /= 0, we obtain the

general solution given in [4] for this case. In the same manner, in the general solution (2.8)
in Case 2, where b2 − 4λ = 0, letting D1 = −c1/c2 and D2 = c3b

2/2c2 if c2 /= 0, we derive the
general solution corresponding to this case given in [4].

2.2. Linearization by Lie-Tresse Method

Here we consider the linearizability of (1.1) with b2 − 4λ > 0 by point transformation
utilizing the Lie-Tresse result. Equation (1.1) has the maximal eight-dimensional Lie algebra.
Moreover, one can readily verify that the linearizing conditions 4 and 5 as given in [5,
Theorem 8] are satisfied. The two noncommuting symmetry generators are

X1 = 2x exp

[(
b −

√
b2 − 4λ
2

)
t

]
∂t −

[(
b +

√
b2 − 4λ

)
x2 + 2kx3

]
exp

[(
b −

√
b2 − 4λ
2

)
t

]
∂x,

X2 =
−2(

b −
√
b2 − 4λ

)∂t.
(2.11)

By condition 9 in [5, Theorem 8], we find the linearizing transformation X = X(t, x), Y =
Y (t, x) that will reduce X1 and X2 to their canonical form:

X1 = ∂Y , X2 = X∂X + Y∂Y . (2.12)

Thus, by solving the system of partial differential equations (PDEs):

X1(X) = 0, X2(X) = X,

X1(Y ) = 1, X2(Y ) = Y,
(2.13)
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which involve some tedious calculations, we obtain the following linearizing point transfor-
mation:

X(t, x) =
(

x

2kx + b +
√
b2 − 4λ

)((
√
b2−4λ−b)/(

√
b2−4λ+b))

exp

[(
−b +

√
b2 − 4λ
2

)
t

]
,

Y (t, x) =

(
2kx + b +

√
b2 − 4λ

)
(
2b2 − 8λ + 2b

√
b2 − 4λ

)
x
exp

[(√
b2 − 4λ − b

2

)
t

]
+

k

2λ
exp

[(√
b2 − 4λ − b

2

)
t

]
,

(2.14)

which linearizes (1.1) to the linear second-order ODE:

XY ′′ =
2
√
b2 − 4λ(

b −
√
b2 − 4λ

)Y ′. (2.15)

The general solution of (2.15) is given by

Y =
c1
(
b −

√
b2 − 4λ

)
(
b +

√
b2 − 4λ

) X((b+
√
b2−4λ)/(b−

√
b2−4λ)) + c2, (2.16)

where c1 and c2 are arbitrary constants. Hence, by using the transformation (2.14), we obtain
the following general solution for (1.1) given by

x(t)=
exp

[((√
b2 − 4λ − b

)
/2

)
t
]
−2c1

√
b2−4λ

(
b −

√
b2 − 4λ

)
exp

[((
−b−

√
b2 − 4λ

)
/2

)
t
]

(
4kc1

√
b2 − 4λ

(
b −

√
b2 − 4λ

)
/
(
b +

√
b2 − 4λ

))
exp

[((
−b−

√
b2 − 4λ

)
/2

)
t
]
−C

,

(2.17)

where C denotes (2k/(b−
√
b2 − 4λ)) exp [((

√
b2 − 4λ−b)/2)t]+2c2

√
b2 − 4λ. One can similarly

achieve linearization by point transformation for the other cases.

Remark 2.2. In the general solution (2.17), by settingΩ =
√
b2 − 4λ/2, A = c2/k

√
b2 − 4λ (b−√

b2 − 4λ)(b +
√
b2 − 4λ), and B = 2c1

√
b2 − 4λ (b −

√
b2 − 4λ), we obtain the general solution

for the case b2 − 4λ > 0 given in [4].

3. Generalization of (1.1)

In this section, we extend the linearizable equation (1.1). That is, we obtain a bigger class
of nonlinear second-order ODEs than (1.1) which is linearizable by a Riccati transformation
to a class of linear variable coefficient third-order ODEs. We also determine the conditions
of linearizability of this new class of nonlinear second-order ODEs using the Lie-Tresse
linearization theorem.
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3.1. Extension of (1.1) by Riccati Transformation

Let

u′′′ + β(t)u′′ + γ(t)u′ + δ(t)u + θ(t) = 0 (3.1)

be the general linearized form of the class of linear variable coefficient third-order ODEs. By
the Riccati transformation

u′

u
=

x(t)
α(t)

, (3.2)

where u′ = du/dt, we obtain

u = exp
(∫

x

α(t)
dt

)
. (3.3)

Then, we deduce from (3.3), u′, u′′, and u′′′ as follows:

u′ =
x

α(t)
exp

(∫
x

α(t)
dt

)
,

u′′ =

(
x′

α(t)
+

x2

α2(t)
− xα′(t)

α2(t)

)
exp

(∫
x

α(t)
dt

)
,

u′′′ =

(
x′′

α(t)
− 2x′α′(t)

α2(t)
− xα′′(t)

α2(t)
− 2xα′(t)2

α3(t)
+

3xx′

α2(t)
− 3x2α′(t)

α3(t)
+

x3

α3(t)

)
exp

(∫
x

α(t)
dt

)
.

(3.4)

Substituting (3.3)-(3.4) into (3.1), we get the following nonlinear second-order ODE:

x′′ +
(
β(t) +

3x
α(t)

− 2α′(t)
α(t)

)
x′ +

x3

α2(t)
+
(
β(t)
α(t)

− 3α′(t)
α2(t)

)
x2

+

(
γ(t) − β(t)α′(t)

α(t)
+
2α′(t)2

α2(t)
− α′′(t)

α(t)

)
x + α(t)δ(t) + α(t)θ(t) exp

(
−
∫

x

α(t)
dt

)
= 0.

(3.5)

Thus, the extended form of (1.1) is the class of (3.5) which is linearizable by the Riccati
transformation (3.2) to (3.1).

Remark 3.1. If we substitute in (3.5), α = 1/k, β(t) = b, γ(t) = λ, and δ(t) = θ(t) = 0, then
(3.5) reduces to the class of (1.1).
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3.2. Linearization of (3.5) by Lie-Tresse Theorem

If (3.5) is linearizable by Lie point transformations, then we must have θ(t) = 0 by the
linearizing condition 4 in [5, Theorem 8]. Therefore, with θ(t) = 0, (3.5) takes the following
form:

x′′ = C(t, x)x′ +D(t, x), (3.6)

where

C(t, x) = −
(
β(t) +

3x
α(t)

− 2α′(t)
α(t)

)
,

D(t, x) = −
[

x3

α2(t)
+
(
β(t)
α(t)

− 3α′(t)
α2(t)

)
x2 +

(
γ(t) − β(t)α′(t)

α(t)
+
2α′(t)2

α2(t)
− α′′(t)

α(t)

)
x +D

]
,

(3.7)

where D denotes α(t)δ(t). One can readily verify that the coefficients C(t, x) and D(t, x) in
(3.7) satisfy the system of PDEs in condition 5 in [5, Theorem 8]. Hence by the Lie-Tresse
linearization Theorem 8 in [5], the class of (3.6) is linearizable by Lie point transformations.

4. Concluding Remarks

We revisited the three-parameter class of Liénard type nonlinear ODEs (1.1) from the
viewpoint of straightforward linearization to obtain in an easier fashion the explicit general
solutions for this class. For (1.1), we found a linearizing Riccati transformation by using an
ansatz and a linearizing point transformation utilizing the Lie point symmetry generators
admitted by (1.1). Since the underlying class of (1.1) satisfies the Lie-Tresse linearization
theorem, it admits an eight-dimensional Lie algebra. We utilized two symmetries to obtain a
linearizing point transformations. In the first approach to the linearization of (1.1) by a Riccati
transformation, we transformed (1.1) into a linear third-order ODE, and in the latter case the
linearization resulted in reducing (1.1) to a linear second-order ODE. We easily obtained
the general solutions of the class of (1.1) by integrating the linearized equations resulting
from both of the linearization approaches. A comparison of the results obtained in this paper
is made with the ones obtained by using an approach of mapping the class of (1.1) by a
complex point transformation into the free particle equation. We have shown that the general
solutions of (1.1) obtained in [4] are equivalent to the general solutions of (1.1) obtained in
this paper by utilizing the two linearization approaches. Furthermore, the two approaches
to linearization and constructing the general solutions of (1.1), namely, linearization by a
Riccati transformation and use of the Lie-Tresse linearization theorem, presented in this paper
have not been reported in the earlier literature. Moreover, we have shown how one can make
use of the linearizing Riccati transformation to extend the underlying class of Liénard type
equations, and thus it is shown that a bigger class than the Liénard system can be linearized
by Riccati transformations than given in [4]. By using the Lie-Tresse linearization theorem,
we also obtained the conditions for linearization of this new class of equations by Lie point
transformations.
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