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For nonconvex optimization problem with both equality and inequality constraints, we introduce
a new augmented Lagrangian function and propose the corresponding multiplier algorithm.
New iterative strategy on penalty parameter is presented. Different global convergence properties
are established depending on whether the penalty parameter is bounded. Even if the iterative

sequence {x*} is divergent, we present a necessary and sufficient condition for the convergence of
{f(x¥)} to the optimal value. Finally, preliminary numerical experience is reported.

1. Introduction

This paper is concerned with the following nonlinear programming problem:

min f(x)

st. g(x)<0, i=1,...,m,

. (P)
hi(x)=0, j=1,...,1,

x €Q,

where f,g; : R" — Rfori=1,...,mand h; : R" — Rforj =1,...,1 are all continuously
differentiable functions, and Q is a nonempty and closed subset in R”. Denoted by X the
feasible region and by X* the solution set.
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The classical Lagrangian function for this problem is
m 1
L(x, A, ) = f(x) + D Nigi(x) + D ujhj(x), (1.1)
i=1 j=1

where (A, u) € R™ x RL It is well known that the above classic Lagrangian function would
fail to find out the optimal solution of primal problem because a nonzero duality gap may be
arisen for nonconvex programming. Augmented Lagrangians were proposed to overcome
this difficulty. It combines the advantage from Lagrangian duality methods and penalty
function methods; for example, it does not need to make the penalty parameter infinitely
large, and hence successfully avoid ill-conditioning effects. In fact, if the penalty parameter
is very large, the Lagrangian relaxation subproblem would be very difficult in the sense that
the stabilized Newton step is not regarded as a candidate to be a decreasing direction.

Global convergence properties of augmented Lagrangian methods have been studied
by many researchers [1-8]. It should be noted that the multiplier sequence generated by the
algorithm may be unbounded. Several strategies have proposed to deal with these questions,
such as adding constraint qualifications [5, 6] or via safeguarding projection [1, 2, 9, 10].

In this paper, for the optimization problem (P) with both equality and inequality
constraints, we introduce a new class of augmented Lagrangian functions, which include
the well-known quadratic augmented Lagrangian function as special case [11-13]. It should
be noted that this function class is more general since we do not restrict ¢ to be convex (see
(2.1) below for the definition of ¢). Convergence properties of the corresponding multiplier
algorithm are studied. Specially, a new updated strategy on penalty parameter is proposed,
that is, the penalty parameter ¢ is improved only when the multipliers are too large, and
the iterative point is far away from the feasible region. This strategy guarantees that the
penalty parameter remains unchanged, provided that measure of infeasibility of iterative
point and bounding of multipliers have enough progress (see (2.4)). Furthermore, we study
the performance of the multiplier sequences generated by our algorithm. Finally, compared
with [4, 9, 10], we further consider the case when {x*} is divergent, in which a necessary and
sufficient condition for { f (x¥)} converging to the optimal value is given as well.

The organization of this paper is as follows. In the next section, we propose the
multiplier algorithm and study the global convergence properties. Preliminary numerical
results are reported in Section 3. Conclusion is drawn in Section 4.

2. Multiplier Algorithms

A new generalized quadratic augmented Lagrangian function for (P) is defined as follows:
! ! m
c 1
L(x,\ p,c) = f(x)+ Zyjhj(x) + EZhjz.(x) + EZ{maxz{O,cﬁ(cgi(x)) + A} - J\iz}, (2.1)
i=1 j=1 i=1

where (x, A, p,c) € R" x R™ x R! x R,,, and R, denotes the all positive real scalars, that is,
Ri+ = {a € R | a > 0}. The function ¢ : R — R involved in (2.1) satisfies the following
properties:

(A;) continuously differentiable and strictly increasing on R with ¢(0) = 0 and ¢(a) > a
for a > 0.



Journal of Applied Mathematics 3

Particularly, if ¢(a) = a for & € R, then L reduces to the quadratic augmented
Lagrangian function. Compared with [9, 14, 15], an important point made above is that ¢
is not required to be convex. Hence, it makes the augmented Lagrangian we introduce here
more general.

Given (x, A, p,c), the Lagrangian relaxation subproblem associated with the aug-
mented Lagrangian L is defined as:

min L(x, A, pu,c),

(L/\,/l,c)
st. xeQ.

Its solution set is denoted by S*(\, y, ¢). We always assume throughout this paper that the set
5*(A, u, ) is nonempty, which is ensured if Q is compact, since f, g;, and h; are all continuous.
In addition, we assume that:

(A) f isbounded from below, that is, f, = infyeg: f(x) > —oc0.

It is a rather mild assumption in optimization problem because otherwise the objective
function f can be replaced by e/®). Recall that a vector x* is said to be a stationary point of
(P) if it is a feasible point and there exist \; € R, foralli=1,...,mand p; forj=1,...,Isuch
that the following system holds:

m 1
0€ VF(x") + D LVgi(x®) + D Vhj(x*) + Ng(x¥), (2.2)
i=1 j=1

where Mo (x*) denotes the normal cone of Q at x* [16, Chapter 6]. Let A(x*) denote the
collection of multipliers satisfying (2.2). The set of A(x*) is larger than that of R-multiplier
defined in [17], which reduces to the well-known Karush-Kuhn-Tucker (KKT) point of (P)
when Q = R”, since the complementarity condition is required for KKT point. The following
is the multiplier algorithm based on the generalized quadratic augmented Lagrangian L. One
of its main feature is that the Lagrangian multipliers associated with equality and inequality
constraints are not restricted to be bounded.

Algorithm 2.1 (multiplier algorithm based on L).

Step 1. (initialization)
Let M > 0 and {&x};2, be an arbitrary positive sequence with zero as limit (i.e., &x —
0%). Select an initial point x* € R", A’ € R™, g € R!, and ¢q > 0. Set k := 0.

Step 2. (estimating multipliers)
Compute

)Lf-‘” = max{O,(;b(ckgi(xk)) +/\f}¢'(ckgi<xk>>, Vi=1,...,m,
2.3)
= oy (), Vi=1,.0
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Step 3. (updating penalty parameter)

Let
Cost = Ck, if |A§<+l <M, | W <M, | (x")| <ew, gi(x*) e Vij  (24)
cke1 = (k+1) max{l, Zm:<)tf+1>2, i(ﬂ?”)Z}, otherwise. (2.5)
i+1 j+1

Step 4. (solving Lagrangian relaxation subproblem)
Find xk+1 € S* (J\kﬂrﬂkﬂrckﬂ)-

Step 5. (cycling)

If x**1 € Q and (AF*1, p**1) € A(x**1), then stop; otherwise, let k := k + 1 and go back
to Step 2.

Consider the perturbation of (P); precisely, for any fixed a > 0, define the perturbation
value function as follows:

v(a) = inf{f(x) | x € Q(a)}, (2.6)
where

Q@) = {xeQ| g0 <a,

hix)|<ai=1,---,m,j=1,--- ,1}. (2.7)

It is clear that Q(0) = X. In practical implementation of the previous algorithm, we always
choose the constant M large enough to strictly include 0v(0), the set of subdifferential
of v at origin, since according to the strong duality theory, the optimal Lagrangian
multipliers belong to 0v(0); see [18] for the detailed discussion. In [5, 6], the authors require
the convergence of {\*/ck} to zero. It follows from (2.5) that this nice property holds
automatically in our new strategy. In addition, (2.4) and (2.5) indicate that Lagrangian
relaxation subproblem needs to place more emphasis on decreasing the constraint violations
via increasing the penalty parameter, provided that the current point x* is far away from
feasible region.

Lemma 2.2. Let {x*} be the iterative sequence generated by Algorithm 2.1, and let x* be one of its
accumulate points. If {ci } is bounded, then x* is a stationary point of (P).

Proof. If the algorithm is terminated finitely, then the result follows immediately according to
the stop criterion in Step 5. On the other hand, if the condition (2.5) occurs infinitely, then cx >
k, and hence cx must be unbounded. Therefore, by hypothesis we knew that only condition
(2.4) occurs when k is large enough. Because g;(x¥) < & and |hj(x¥)| < ¢ by (2.4), taking the
limit yields g;(x*) < 0and h;(x*) = 0, since &, converges to zero. This shows the feasibility of
x*. Meanwhile, we know from (2.4) that {AI’F} and { ,u;.‘} are bounded. Hence, we can assume

k

without loss of generality that A\¥ — 1! and pt;‘ — pj. Since x* is an optimal solution of



Journal of Applied Mathematics 5

minimizing L(x, AK, u*, ck) over Q by Step 4, then according to the well-known optimality
conditions we have

—VxL<xk, Ak yk,ck> € Mg <xk>, (2.8)

which together with the formula of (2.3) and (2.4) yields

V() - Sy () - S () € i (+4). 29)
j=1

i=1

Taking limits gives us

1 m
—VF(x") = D Vhi(xY) = DNVEI(xT) € No(x), (2.10)

j=1 i=1

where we have used the upper semicontinuity of normal cone [16, Chapter 6]. This completes
the proof. O

Now, we turn our main concern to the case when {ci} is unbounded.

Theorem 2.3. Let {x*} be the iterative sequence generated by Algorithm 2.1, and let x* be one of its
accumulate points. If {ci } is unbounded, then x* is an optimal solution of (P).

Proof. 1t is clear that if {ck} is unbounded, then the iteration formula (2.5) occurs infinitely.
Hence, for simplification, we assume that (2.5) always happens as k sufficiently large, and
that x* converges to x* (not resorting to a subsequence). Taking into account of (2.5), the
terms AX/cy, p*/cr, (A)?/ck, (4¥)?/ck are all converges to zero. This fact will be used in
the following analysis.

Let us first show that x* is a feasible point of (P). We argue it by contradiction. Note
first that

L(xk,/\k,yk,ck> 1nf{L< ‘u ck> | x € Q}

<i f{L<x Ak, ik, ck> |xe£2(0)}

= {f(x) +— {maxz{O,(])(ckg,-(x)) + )L:(} - <)Lf>2} | x € Q(O)}
nf{f(x) | x € Q(O)}

=v(0),

(2.11)
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where the third and fourth steps are due to the feasibility of x € X. This implies that

lim supL(xk,Ak,yk, ck> <v(0) < +oo.
k— oo

(2.12)

Now, let us consider the following two cases.
Case 1. There exists an index jp such that |k, (x*)| > 0. Due to the continuity of h;,, we must
have |hj, (x> (1/ 2)|hj,(x*)| > O for k is large enough. Therefore,

L(xk,lk,//lk,ck> > f* + i‘u;{hj (xk> + %ih? (xk> _ L
j=1

1

k 2
_p o,k (LB L
_f*+2]§1 <h](x>+Ck>

Noticing that ﬂ;/ck — 0 as mentioned above and |hj, (x*)| > (1/2)|hj,(x*)|, we know that as
k is large enough

k ‘I/l;co k |‘u;<0 1 *
h7°<x > E z th(x >| B z Z|h7-0(x )l @14)
which further implying
AN
X k jU X %\ |2
<h]0 (%) + —Ck> L GRlR (2.15)

This, together with (2.13), yields v(0)
(2.12).

+oo since ¢ approaches to oo, which contradicts
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Case 2. There exists an index iy such that g;, (x*) > 0. Similarly, due to the continuity of g;,, we
know that g;, (x¥) > (1/2)g;,(x*) > 0 as k is sufficiently large. Therefore,

L) 2 o S me{ 09 (eis () 2} - () ) - o 5 0)

i=1

> fo+ ;Tkmaxz{o,ckgi0< > + Ak } - %i<1k> %i(ﬂ;{y (2.16)

k=31 j=1

> for B0 5 31 >2-2L§1< 5y,

where the second inequality comes from the fact ¢(a) > a for all a > 0 by (A;), and the
last inequality follows from the nonnegativity of )Lf by (2.3), since ¢'(a) > 0 for all &« € R
due to the monotonicity of ¢. Invoking (2.5) and taking limits in the above inequality yields
v(0) = +oo, which contradicts (2.12). So far, we have established the feasibility of x*.

It remains to show that x* is an optimal solution. In fact, notice that

) =2t t ) =g o (e (2)) ) - ()

(2.17)

where the second inequality is due to (2.11). Taking limits in the above yields

k— oo j=1 i=1

Flx') = klgrc}of<xk> < limsup{v(O) + 2%(2(//{;()2 " ZlTkiOf)Z} =v(0), (2.18)

where the last step comes from the fact that (,u;.< )2 /cx and ()Ll’.< )2/ ck converge to zero (see (2.5)).
This means that x* must be an optimal solution of (P). The proof is complete. O

Finally, let us deal with the performance of multiplier sequences {A¥} and {u}
generated by our proposed algorithm.



8 Journal of Applied Mathematics

Theorem 2.4. Let {x*} be an iterative sequence generated by Algorithm 2.1, and let x* be one of its
accumulate points. The following statements hold:

(i) if both {372, J\i-(} and {Z;:] y;‘ } are bounded, then we have
m 1
—Vf(x*) = DA VE(xT) = D HiVhi(x") € Ng(xY), (2.19)
i=1 =1

where X} and p; are accumulate points of {AF} and {pk};

(ii) if either {31, )Lf} or {Z;:1 y;.‘} is unbounded, then we have
1 m
=D K Vh(x") = YAV gi(x") € Ma(x"), (2.20)
j=1 i=1

where \} and p; are accumulate points of {A¥/T*} and {u*/ Ty} with

m 1
TF=> A+ Zﬂ;& (2.21)
i=1 j=1

Proof. The proof is divided into the following two cases.

Case 1. Both {3 A¥} and {Z§'=1 y;.‘ } are bounded. In this case, we can obtain that x* is a
stationary point of (P) by following almost the same argument as in Lemma 2.2.

Case 2. Either {3, AF} or {Zézl pt;‘} is divergent. According to the updated strategy on
penalty parameter cx, we know that (2.5) must occur as k sufficiently large. Hence, {ck}
is unbounded in this case. Since {x*} is a global optimal solution of L(x, \¥, u¥, cx) over Q
by Step 4 in Algorithm 2.1, applying the optimality condition to the augmented Lagrangian

relaxation problem Lk ) yields
-v,L <xk, )Lk,yk,ck> € Mg <x’<), (2.22)
that is,
~vf(x) - 2&“% () - jily;f“wz,» (x*) € Mo (x*). (2.23)

Since AF*!/T**1 € [0,1] and p¥*!/T**! € [0,1] are bounded, we can assume without
loss of generality that

L k+1
i * ]

— A7, A

Tk+1 1 Tk+1

— s, i=1,..,m j=1,..1 (2.24)
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Clearly, A} and i} are not all zeros. Dividing by T*! in both sides of (2.23) and using the fact
that Nq is cone, we have

1 m k+1 ! k+1
-7 Vf F(x) - 21: - Vgi(+) - ; Vi (xF) € Sia (x). (2.25)
Taking limits in the above yields
_Z)L Vgi(x*) - Z}y]wl i (x*) € Mg (x¥). (2.26)
j
This establishes the result as desired. 0

Now, a natural question arises: how does the algorithm perform if {x*} is divergent?
The following theorem gives the answer.

Theorem 2.5. Let {x*} be an iterative sequence generated by Algorithm 2.1. If {cx} is unbounded,
then the following statements are equivalent:

a) f(x*) converges to the optimal value, that is,

lim f(xk> = 2(0); (2.27)

(b) v(a) is lower semicontinuous at a = 0 from right, that is, liminf, _,o-v(a) > v(0);

(c) v(a) is continuous at a = 0 from right, that is, lim,_,o-v(a) = v(0).

Proof. (a) = (b). Suppose on the contrary that v is not lower semicontinuous at zero from
right, then there must exist 69 > 0 and ¢ — 0% (as t — oo) such that

v(&) <v(0) -6y, Vt (2.28)
For any given k, since ¢ — 0 we can choose a subsequence ¢ satisfying

¢nck — 0 as k — oo, (2.29)
which together with the continuity of ¢ implies that

¢(ckéy,) — 0 as k — co. (2.30)

In addition, pick zF € Q(¢&,) with f(zF) < v(&,) + (60/2). Then f(zF) < v(0) - (60/2)
by (2.28).
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Therefore,

) = (et ) = g 3o ma . () +25) - (4')

=1 k
m 1 m
+ ;Tkg{maxz{o,d)(ckgi(zk)) + )Lf‘} - ()Lf)z} + %;(#f)z + ZCklz;()‘f)z
8o | Ck « |‘u;‘| 2 S 2
0
<v(0) - >+ ?;1 <§tk + ?> + Eé(‘ﬁ(ckgtk) + Af‘) ,

(2.31)

where the last step is due to the fact |hj(zk)| < ¢, and g;(zF) < &, since zF € Q(&,) and ¢ is
nondecreasing by (A;). Taking the limits in both sides of (2.31) and using (2.27) and (2.30)
yield

v(0) = lim £ () <0(0) - 2, (232)

which leads to a contradiction.
(b) = (a). Since x* converges to x*, it then follows from Theorem 2.3 that x* is an
optimal solution of (P). Hence, for any arbitrary ¢, we have f(x¥) < f(x*) + € = v(0) + € and
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xk € Q(e) (since gi(x¥) — gi(x*) <0< eand |h]~(xk)| — |hj(x*)| = 0 < € as k is sufficiently
large). The latter further implies that v(e) < f(x*) by definition (2.6), that is,

v(e) < f(xk> <ov(0) +e¢. (2.33)

Since v(e) is lower semicontinuous at ¢ = 0 from right by hypothesis, taking the lower
limitation in (2.33) yields

v(0) < ligrg%gfv(e) < likrrlicgff<xk> <lim supf(xk> <v(0), (2.34)

k— oo

that is,
lim £(x*) = 0(0). (2.35)

(c) = (b). It is clear.

(b) = (c). It follows by invoking the fact that v(a) < v(0), since Q(0) C Q(a) for all
a > 0. Then limsup,_, ,.v(a) < v(0), that is, v is upper semicontinuous at origin from right.
This together with the lower semicontinuous of v at origin by hypothesis yields the desired
result. O

3. Preliminary Numerical Reports

To give some insight into the behavior of our proposed algorithm presented in this paper, we
solve two problems by letting ¢ take the following different functions:

D) y1=¢i(a) =a;
(2) y2 = ¢2(a) =e* - 1;

(3) Y3 = 4)3(“) = { aZ;a, othgrE\%ise;

(4) ys = Pa(a) = { aa, a0,

a*  otherwise.

The computer codes were written in Matlab 7.0, and the test was done at a PC of
Pentium 4 with 2.8 GHz CPU and 1.99 GB memory. We implement our algorithm to solve
the following programming problems, where Example 3.1 is obtained by adding an equality
constraint in Example 6.3 in [19], and Example 3.2 comes from [20]. The corresponding
numerical results are reported below, where k is the number of iterations, ck is the penalty
parameter, x* is iterative point, and f(x¥) is the objective function value.

Example 3.1. Consider the following nonconvex programming:

min  (x1 + X — 2)2 + (1 — x2)% + 30(min{0, x1 — x7})>
st. x1+x— V2 < 0, (3.1)

x%+5x1x2—3 =0.
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Table 1: Result of Example 3.1.

$i(s) k Ck x* f(xb)
1 2.5147 (0.6722, 0.6722) 0.4029
$1(s) 4 25147 (0.6950, 0.6950) 0.3675
6 25147 (0.7071, 0.7071) 0.3431
1 10.4139 (0.6612, 0.6612) 0.3924
$2(s) 3 10.4139 (0.6981, 0.6981) 0.3526
5 10.4139 (0.7071, 0.7071) 0.3432
1 17.5462 (0.6517, 0.6517) 0.3676
$3(s) 3 17.5462 (0.6992, 0.6992) 0.3450
5 17.5462 (0.7071, 0.7071) 0.3432
1 17.5462 (0.6388, 0.6388) 0.3033
$a(s) 3 17.5462 (0.7273, 0.7273) 0.3230
5 17.5462 (0.7071, 0.7071) 0.3431
0.42
0.4 p ]
§ 0.38 - .
E
2 036 1
5 034} 1
0.32 ]
0.3} E
1 2 3 4 5 6 7 8 9
The number of iterations: k
— W — Y3
— W — Vi
Figure 1: Result of Example 3.1.
Example 3.2.

min  f(x) = =5(x1 + x2) + 7(xs — 3x3) + X% + x5 + 23 + x2

4
s.t. fo+x1—x2+x3—x4—850,
i=1 (3.2)

X7 +2x5 + x5 +2x; —x1 — x4 — 100,

2x%+x§+x§+2x1—x2—x4—5:0.
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Table 2: Result of Example 3.2.

¢i(s) k Ck xk f(xF)
1 8.4614 (-0.0072, 0.9963, 1.9907, —1.0058) —43.8610
$1(s) 3 24.2390 (-0.0011, 0.9997, 1.9998, —1.0033) —44.0076
9 48.5455 (-0.0012, 0.9997, 1.9998, —1.0036) —44.0083
1 8.4430 (0.0017, 1.0017, 2.0063, —1.0073) -44.1314
$2(s) 3 24.7705 (—0.0028, 0.9992, 1.9994, —1.0086) —44.0186
9 48.7133 (-0.0014, 0.9996, 1.9997, —1.0044) —-44.0097
1 3.8876 (0.0025, 1.0017, 2.0054, —1.0027) -44.1018
$3(s) 3 9.8546 (~0.0027, 0.9992, 1.9994, —1.0085) —44.0190
7 48.2683 (0.0005, 1.0002, 2.0006, —0.9987) —44.0050
1 7.7614 (0.0025, 1.0007, 2.0032, —1.0019) —44.0657
$a(s) 3 246380 (~0.0023, 0.9993, 1.9995, 1.0072) 44,0186
7 48.5943 (-0.0012, 0.9997, 1.9998, —1.0036) —44.0081
—44
g —44.05
=
g
z
g
e
O -—441
4415 T ——
1 2 3 4 5 6 7 8 9 10

The number of iterations: k
— W — Y3
— — Y
Figure 2: Result of Example 3.2.

In the implementation of our algorithm, we use the BEGS quasi-Newton method with
a mixed quadratic and cubic line search procedure to solve the Lagrangian subproblem:

(i) for Example 3.1, the initial data are x° = (1,1)", M = 1000, ex = 1/2%, A% = 1,
and p° = 1, g = 1; {cx} remains unchanged because M is taken large enough
to ensure the validity of (2.4); the obtained solution is a stationary point with the
corresponding multipliers A* = 1.172 and p* = 0, and the inequality is active;

(i) for Example 3.2, the result starts from the nonfeasible point x° = (2,0, —2,1)T,
M =100, e = 1/2%, 1% = (1,1)7, 4° = 1, and ¢y = 1; the obtained solution is
also a stationary point with the corresponding multipliers A* = (1,0)" and p* = 2,
and the first inequality constraint is active.
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The above preliminary numerical result as shown in Tables 1 and 2 and Figures 1 and
2 indicates that Algorithm 2.1 may have better numerical performance, when ¢ is nonlinear
(see ¢ and ¢3), and ¢ is nonconvex (see ¢4) because the decreasing steep is more “quickly”
in the beginning of the iterative, which leads to the requirement of fewer iterative steps. Our
next research topic is to further study the performance of our algorithm for solving various
practical questions.

4. Conclusions

We introduce a new class of generalized quadratic augmented Lagrangian function
with nonconvex functions. Global convergence properties of the corresponding multiplier
algorithm are proposed without requiring the boundedness of Lagrangian multiplier
sequence. Penalty parameter is improved only if multiplier sequences are too large and the
iterative point is far away from feasible region. Necessary and sufficient conditions for the
convergence of { f(x¥)} to the optimal value are established as well.
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