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We present a novel technique to solve multiserver retrial systems with impatience. Unfortunately
these systems do not present an exact analytic solution, so it is mandatory to resort to approximate
techniques. This novel technique does not rely on the numerical solution of the steady-state
Kolmogorov equations of the Continuous Time Markov Chain as it is common for this kind of
systems but it considers the system in its Markov Decision Process setting. This technique, known
as value extrapolation, truncates the infinite state space using a polynomial extrapolation method
to approach the states outside the truncated state space. A numerical evaluation is carried out to
evaluate this technique and to compare its performance with previous techniques. The obtained
results show that value extrapolation greatly outperforms the previous approaches appeared in
the literature not only in terms of accuracy but also in terms of computational cost.

1. Introduction

A common assumption when evaluating the performance of communication systems is that
users that do not obtain an immediate service leave the system without retrying. However,
due to the increasing number of customers and network complexity, the customer behavior
in general, and the retrial phenomenon in particular, may have a nonnegligible impact on the
system performance. For example, in mobile cellular networks the importance of the retrial
phenomenon has been stressed in [1–3]. An extensive bibliography on retrial queues can be
found in [4]. The modeling of repeated attempts has been a subject of numerous investiga-
tions, because these systems have a nonhomogeneous and infinite state space. However,
it is known that the classical theory [5] is developed for random walks on the semistrip
{0, . . . , C} × Z+ (being C the number of servers) with infinitesimal transitions subject to
conditions of space homogeneity.
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When the space-homogeneity condition does not hold, for example, in the case of re-
trial queues, the problem of calculating the equilibrium distribution has not been solved
beyond approximate techniques when the number of servers is higher than two [6]. In par-
ticular, Marsan et al. [7] propose a well-known approximate technique for its analysis. In [8],
a generalization of the approximate technique in [7] was proposed, showing a substantial
improvement in the accuracy at the expense of a marginal increase of the computational cost.
Those approximations are based on the reduction of an infinite state space to a finite one by
aggregating states. Other solutions maintain the infinite state space but homogenize it beyond
a given level in order to solve the system. These later models are known as generalized
truncated models [6] and usually present the advantage of providing a much better accuracy
than the finite methodologies [9]. In this category we find the models proposed by Falin
[10], by Neuts and Rao [11], and by Artalejo and Pozo [6]. All these approaches rely on the
numerical solution of the steady-state Kolmogorov equations of the Continuous Time Mark-
ov Chain (CTMC) that describes the system under consideration.

Very recently, however, an alternative approach for evaluating infinite state space
Markov processes has been introduced by Leino et al. [12–14]. The new technique, named
value extrapolation, does not rely on solving the global balance equations. This technique
considers the system in its MDP (Markov Decision Process) setting and solves the expected
value from the Howard equations written for a truncated state space. Instead of a simple trun-
cation, the relative values of states just outside the truncated state space are estimated using a
polynomial extrapolation based on the states inside, obtaining a closed system. Therefore, we
can compute any performance parameter as far as we are capable to express it as the expected
value of a random variable that is function of the system state.

So far the value extrapolation technique has been applied to multiclass single server
queues showing very promising results. It must be noted that a key aspect on the application
of value extrapolation lies on the election of the extrapolating function for the relative state
values. Indeed, in [14] the authors show that by selecting an appropriate polynomial function
the technique yields exact results for the moments of the queue length in a multiclass Dis-
criminatory Processor-Sharing (DPS) system. Unfortunately, the appropriateness of the func-
tional form of the extrapolation depends on the system and also on the revenue function, that
is, the performance parameter we are interested in. Hence, there is no universal good choice
for the extrapolating function. In this paper we address the application of the value extra-
polation technique to an important class of queuing systems, for example, retrial queues,
which are essentially different of the type of queues to which this technique has been applied.
A potential drawback of value extrapolation compared to conventional state space truncation
methods is that, since the stationary state probabilities are not obtained, if one want to
compute several performance parameters, the technique has to be applied once per each of
them. We apply well-known linear algebra algorithms to compute several performance pa-
rameters simultaneously, and through some series of numerical examples we show that, at
least for the type of system that we are studying, the relative impact in terms of computational
cost is marginal.

The application of the value extrapolation technique has only addressed problems in
which relative state values are expected to follow a polynomial tendency. In this paper we de-
velop the value extrapolation technique to solve a multiserver retrial system, addressing also
the drawback of computing only a single performance parameter every time the technique is
used.

In a first part of the paper, we develop the analytical part of the technique, defining
the associated Howard equations of the model and the revenue functions. In a second part,
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Figure 1: Retrial model under study.

we compare our technique with other previously proposed techniques in terms of accuracy
and computational cost. Results show that the proposed technique clearly outperforms the
rest of the studied techniques in terms of computational cost, and this improvement is even
much higher in terms of accuracy.

The rest of the paper is structured as follows. Section 2 describes the system under
study, while Section 3 introduces the solving technique used. In Section 4, the numerical
analysis is carried out, evaluating the value extrapolation technique and comparing it with
other previous solving techniques proposed in the literature. Final remarks and a summary
of results are provided in Section 5.

2. System Model

The system under study is a generic retrial system including user impatience, that is, users
leave the system with certain probability after a nonsuccessful retrial. A diagram of the sys-
tem is shown in Figure 1. Users arrive following a Poisson process with rate λ to a system
with C servers and request an exponentially distributed service time with rate μ. Without loss
of generality, we consider that each user occupies one server. When a new request finds all
servers occupied, it joins the retrial orbit with probability 1. After an exponentially distributed
time of rate μr , this session retries. The reattempt is successful if it finds a free server. Other-
wise, the user leaves the system with probability Pi or returns to the retrial orbit with proba-
bility (1−Pi), starting the retrial procedure again. Note that we consider an infinite capacity for
the retrial orbit.

The model considered can be represented as a bidimensional CTMC, S(t) = {K(t),
M(t)}, where K(t) is the number of sessions being served and M(t) the number of users in
the retrial orbit at time t. The state space of the process is defined by

S := {s = (k,m) : k ≤ C;m ∈ Z+}. (2.1)

Figure 2 shows the transition diagram of such system, showing two important prop-
erties in the dimension corresponding to the number of users in the retrial orbit: on the one
hand its infinite cardinality and on the other hand its space-heterogeneity produced by the
fact that retrial rate depends on the number of customers in the retrial orbit.
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Figure 2: Transition diagram.

3. Solving Technique

In this section we develop the value extrapolation technique for the model presented in
Section 2. Additionally, we present some particularities that should be taken into account
when using this technique.

3.1. MDP Settings

As it has been aforementioned, the problem under interest has not a closed form solution
when C > 2 [6], so approximation techniques are mandatory. To the best of our knowledge,
all the approximate techniques that have appeared in literature compute the steady state
probabilities (π(s)) using the balance equations in order to compute the desired performance
parameters, that is, solving the linear system of equations:

π(s)
∑

s′ /= s

qss′ =
∑

s′ /= s

π
(
s′
)
qss′ ∀s ∈ S, (3.1)

along with the normalization condition
∑

sπ(s) = 1, where qss′ represents the transition rate
from state s to s′.

Notwithstanding, value extrapolation is not based on the probability of being in a cer-
tain state, but on a new metric called relative state values. Relative state values appear when
we consider the system in the setting of an MDP. Formally, an MDP can be defined as a tuple
{S,A,P,R}, where S is a set of states, A is a set of actions, P is a state transition function, and
R is a revenue function. The state of the system can be controlled by choosing actions a from
A, influencing in this way the state transitions. The transition function P : S × S × A → R+

specifies the transition rate between a pair of states when a certain action is taken at the orig-
inal state. The first characteristic of the value extrapolation technique is the necessity of the
definition of a revenue function that must be a function of the system state, that is, r(s).
Following the definition of the revenue function for every state, in the steady state, a mean
revenue rate of the entire process can be introduced as r =

∑
s∈Sπ(s)r(s). In the value
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extrapolation technique, the revenue function R has to be defined so that the resulting aver-
age revenue r coincides with the desired performance metric.

Once we have defined the MDP framework as well as the revenue function, we are in
a position to define the relative state values. It is obvious that after performing an action in
state s the system will collect a revenue for that action (r(s)), but as the number of transitions
increases, the average revenue collected converges to r. The relative state value (v(s)) is equal
to the difference between the total revenue incurred when the system starts at state s and the
total revenue incurred in a system for which the revenue rate at all states is r:

v(s) = E

[∫∞

0
(r(S(t)) − r)dt | S(0) = s

]
. (3.2)

The Howard equations relate revenues, relative state values, and transition rates:

r(s) − r +
∑

s′
qss′
(
v
(
s′
) − v(s)

)
= 0 ∀s ∈ S. (3.3)

The Howard equations represent the policy evaluation phase of the well-known policy
iteration algorithm, the most widespread dynamic programming technique, proposed in [15].
The Howard equations that correspond to the system under study are

r(k,m) − r + λ(v(k + 1, m) − v(k,m)) + kμ(v(k − 1, m) − v(k,m))

+mμr(v(k + 1, m − 1) − v(k,m)) = 0 if k < C,

r(C,m) − r + λ(v(C,m + 1) − v(C,m)) + Cμ(v(C − 1, m) − v(C,m))

+mμrPi(v(C,m − 1) − v(C,m)) = 0 if k = C.

(3.4)

As we can observe the number of states is infinite because m can take any value in Z+,
thus we need to truncate the state space to Ŝ. In our case, the truncated state space is defined
by

Ŝ := {s = (k,m) : k ≤ C;m ≤ Q}. (3.5)

In general, Q is known as the truncation level. As we choose a higher value of Q, we
can expect a higher accuracy as the system is more similar to the original one, but we will have
a higher computation cost too. Therefore, the objective will be to achieve a certain accuracy
with the minimum value of Q.

There will be as many Howard equations as number of states, |Ŝ|. The number of un-
knowns will be the |Ŝ| relative state values plus the expected revenue r, that is, |Ŝ| + 1 un-
knowns. However, as only the differences in the relative values appear in the Howard equa-
tions, we can set v(0) = 0, so we will have a solvable linear system of equations with the same
number of equations as unknowns.
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3.2. Polynomial Fitting

The traditional truncation sets qss′ = 0 for all s′ /∈ Ŝ, but value extrapolation performs a more
efficient truncation. Basically, value extrapolation considers the relative state values outside Ŝ
that appear in the Howard equations as an extrapolation of some relative state values inside
Ŝ. As we truncate the retrial orbit dimension beyond a value Q, the value extrapolation tech-
nique uses the state value of some states in Ŝ to approximate v(C,Q + 1), which is expected
to improve the accuracy significantly, as it is better than ignoring these relative state values.
Note that if extrapolation yielded the exact value for those states outside Ŝ, the results ob-
tained by solving the truncated model would be exact. Also note that including value extra-
polation neither increases the computational cost nor increases the number of Howard equa-
tions, which remains equal to |Ŝ| = (C + 1) × (Q + 1).

Summarizing, the objective of value extrapolation is to find an extrapolation function
that fits with some points in Ŝ so that it approximates also points outside Ŝ. It is important to
choose a fitting function that makes the Howard equations remain a closed system of linear
equations. The most common fitting functions that fulfill that condition are the polynomials.
We can use all the states in Ŝ into the fitting procedure (global fitting) or, what is most com-
monly used, only a subset (Sf) of them (local fitting).

For the sake of simplicity, in the following description we will assume there exists a
mapping W from the two-dimensional set of states into a single-dimensional set, for example,
the real numbers: W : Ŝf → R. Hence, below we deal with states as if they were real values
given as w = W(s). The specific mapping used for the model under study is specified later
on.

The choice of W will highly depend on the states we want to extrapolate its relative
state value. Note also that the function f(w) and the set Ŝf need to be chosen so that the par-
ameters in f(w) have unambiguous values, that is, in the case of choosing a polynomial as
the fitting function, the number of different points in Ŝf has to be equal or greater than the
number of coefficients in the polynomial. In general, the procedure to compute the coeffi-
cients of the fitting polynomial ai consists in minimizing the least mean squared error

E =
∑

w∈W

(
f(w) − v(w)

)2
. (3.6)

Then the optimal values for the ai’s can be computed by solving the equations

∂E

∂ai
= 0 ∀i. (3.7)

In our case, we are using as many points as the number of parameters of the fitting
polynomial, so the fitting procedure is an ordinary polynomial interpolation and E = 0,
that is, all the considered points will lie in the curve of the polynomial. In this case,
the problem can be formulated as follows. Given a set of n = |W(Ŝf)| = |Ŝf | points
(w0, v(w0)), . . . , (wn−1, v(wn−1)), where there are not two identical wi, we can determine an
(n − 1)-th degree polynomial so that f(wi) = v(wi) for i = 0, . . . , n − 1, where

f(w) = a0 + a1w + a2w
2 + · · · + an−1w

n−1. (3.8)
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The interpolating polynomial satisfies the following n linear equations:

f(wi) = a0 + a1wi + a2w
2
i + · · · + an−1w

n−1
i = v(wi) i = 0, . . . , n − 1, (3.9)

which in a matrix form are

Aa =

⎡
⎢⎢⎢⎢⎢⎢⎣

1 w0 . . . wn−1
0

1 w1 . . . wn−1
1

...
...

. . .
...

1 wn−1 . . . wn−1
n−1

⎤
⎥⎥⎥⎥⎥⎥⎦

⎡
⎢⎢⎢⎢⎢⎢⎣

a0

a1

...

an−1

⎤
⎥⎥⎥⎥⎥⎥⎦

=

⎡
⎢⎢⎢⎢⎢⎢⎣

v(w0)

v(w1)

...

v(wn−1)

⎤
⎥⎥⎥⎥⎥⎥⎦

= b. (3.10)

The matrix of coefficients of this system (A) is a Vandermonde matrix, whose deter-
minant is nonvanishing and therefore A is invertible. Thus, there always exists a unique
solution to the considered linear system of equations or, equivalently, there exists a unique
polynomial that goes through all the n points. However, Vandermonde matrices are often
badly conditioned, specially if some wi are very close, so the procedure to compute the fitting
polynomial is also badly conditioned. It is important to note that the unicity of the fitting
polynomial does not mean that it cannot be written in a basis different from the standard
basis. More concretely in this work we have used the Lagrange basis.

For the considered interpolation problem, the polynomial in its Lagrange setting is a
linear combination

L(w) =
n−1∑

j=0

v
(
wj

)
�j(w) (3.11)

of Lagrange basis polynomials

�j(w) =
n−1∏

i=0
i /= j

w −wi

wj −wi
=

w −w0

wj −w0
· · · w −wj−1

wj −wj−1

w −wj+1

wj −wj+1
· · · w −wn−1

wj −wn−1
. (3.12)

For the truncated problem of interest and as shown in Figure 3, we will have a Howard
equation in which appears v(C,Q + 1), that is a state value of a state that does not belong to
Ŝ. Therefore, we must approximate the value v(C,Q + 1) by using some relative state values
of states belonging to Ŝ. It is important to emphasize that for the extrapolation of v(C,Q + 1)
we only use states from the last row of the model shown in Figure 3, that is, states of the form
s = (C,m), with varying m. With this choice, we define the mapping W as W((C,m)) = m.
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Figure 3: Truncated model and states that appear in Howard equations outside the truncated model.

Moreover, we use an (n− 1)-th degree polynomial that interpolates the n points in Sf := {si =
(C,Q − i) | i = 0, . . . , n − 1} and then W(Sf) = {wi = Q − i | i = 0, . . . , n − 1}:

w0 = Q −→ v(w0) = v(C,Q),

w1 = Q − 1 −→ v(w1) = v(C,Q − 1),

...

wj = Q − j −→ v
(
wj

)
= v
(
C,Q − j

)
,

...

wn−1 = Q − (n − 1) −→ v(wn−1) = v(C,Q − (n − 1)).

(3.13)

This way, the general form of the extrapolation state when using an (n − 1)-th degree
polynomial is

v(n)(C,Q + 1) = L(n)(Q + 1) =
n−1∑

j=0

v
(
C,Q − j

)
�j(Q + 1). (3.14)

For example, in the case of linear extrapolation (n = 2), we use (Q, v(C,Q)) and (Q−1,
v(C,Q − 1)), having

v(2)(C,Q + 1) = L(2)(Q + 1) = v(C,Q)�0(Q + 1) + v(C,Q − 1)�1(Q + 1)

= v(C,Q)
(Q + 1) − (Q − 1)

Q − (Q − 1)
+ v(C,Q − 1)

(Q + 1) −Q

(Q − 1) −Q

= 2v(C,Q) − v(C,Q − 1).

(3.15)
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Table 1: Revenue function definition.

Blocking probability Pb
r(k,m) = 1 for k = C, for all m

r(k,m) = 0 otherwise

Nonservice probability Pns
r(k,m) = mμrPi/λ for k = C, for all m

r(k,m) = 0 otherwise
Mean number of users retrying Nret r(k,m) = m for all k, for all m

Probability of being in state (K,M) π(K,M) r(k,m) = 1 for k = K, m = M

r(k,m) = 0 otherwise

Probability of having K busy servers B(K) r(k,m) = 1 for k = K, for all m
r(k,m) = 0 otherwise

Following a similar procedure, we can obtain the next relationship for n = 3 and n = 4:

v(3)(C,Q + 1) = 3v(C,Q) − 3v(C,Q − 1) + v(C,Q − 2),

v(4)(C,Q + 1) = 4v(C,Q) − 6v(C,Q − 1) + 4v(C,Q − 2) − v(C,Q − 3).
(3.16)

In general, for (n − 1)-th degree polynomials and using the Lagrange basis to reduce
the complexity of the procedure, a simple closed-form expression for the extrapolated value
can be obtained by

v(n)(C,Q + 1) =
n−1∑

k=0

(−1)k
(

n

k + 1

)
v(C,Q − k), (3.17)

where n is the number of coefficients taken for Lagrange polynomials.

3.3. Revenue Function

As performance parameters are not computed from the steady state probabilities as usual,
it is important to explain more carefully how they are computed. By definition, r(s) is the
revenue rate obtained when the system is in state s. Therefore, we must define the revenue as
the performance parameter we want to compute. The effect of that action is that the computed
r will be the performance parameter we are looking for. Additionally, the inputs r(s) in the
Howard equations must be properly set. Table 1 gives several examples on how r(s) can
be set in order to obtain certain performance parameters such as: blocking probability Pb =
Prob{K = C}, mean number of users in the retrial orbit Nret = E[M], nonservice probability
Pns (probability of a user leaving the system due to impatience without obtaining service),
probability of being in a certain state π(K,M), and probability of having K busy servers
B(K).

As an example, we focus on the blocking probability and we define the revenue func-
tion to be 1 in those states in which an attempt is blocked, that is, when r(C,m) = 1, for all m,
and 0 in the rest of states, r(k,m) = 0, k /=C, for all m.
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3.4. Effect of the Value Extrapolation into the Howard Equations

In our problem, and as mentioned above, we will only have to replace v(C,Q + 1) by its ap-
proximate value in the Howard equation that corresponds to the state v(C,Q). As an example,
if we use linear extrapolation (n = 2), that equation becomes

r(C,Q) − r + v(C,Q)
(−λ − Cμ −QPiμr

)
+ λv(C,Q + 1) + Cμv(C − 1, Q)

+QPiμrv(C,Q − 1) = r(C,Q) − r + v(C,Q)
(
λ − Cμ −QPiμr

)
+ Cμv(C − 1, Q)

+
(
QPiμr − λ

)
v(C,Q − 1) = 0.

(3.18)

As v(C,Q + 1) no longer appears in the Howard equations, the linear system of equa-
tions we have consists of (C+1)× (Q+1) equations with the same number of unknowns. This
system can be expressed in matrix form for simplicity reasons. Therefore, the system can be
seen as xT = b, where x is a vector with the (C + 1) × (Q + 1) unknowns (r and the relative
state values v(s)) and b are the negative revenue rates for the different states:

x =
[
r v(0, 1) · · · v(0, Q) v(1, 0) · · · v(C,Q)

]
,

b =
[−r(0, 0) −r(0, 1) · · · −r(C,Q)

]
.

(3.19)

Matrix T represents the matrix of coefficients and can be constructed making all the
elements in the first row of matrix T0 equal to −1.

Matrix T0 is given by

T0 =

⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

A0
1 A0

0 · · · 0 0

A1
2 A1

1 · · · 0 0

...
...

. . .
...

...

0 0 · · · AC−1
1 AC−1

0

0 0 · · · AC
2 AC

1

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

, (3.20)

where the submatrices are defined as

Ak
0 = (k + 1)μI, for 0 ≤ k ≤ (C − 1),

Ak
2 =

⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

λ μr 0 · · · 0 0

0 λ 2μr · · · 0 0

...
...

...
. . .

...
...

0 0 0 · · · λ Qμr

0 0 0 · · · 0 λ

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

, for 1 ≤ k ≤ C,
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Ak
1 =

⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

α 0 0 · · · 0

0 α − μr 0 · · · 0

0 0 α − 2μr · · · 0

...
...

...
. . .

...

0 0 0 · · · α −Qμr

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

, for 0 ≤ k ≤ (C − 1), α = −λ − kμ.

(3.21)

When k = C, using linear (n = 2) and quadratic (n = 3) extrapolation, we obtain,
respectively,

AC
1 =

⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

β Piμr · · · 0 0

λ β − Piμr · · · 0 0

0 λ · · · 0 0

...
...

. . .
...

...

0 0 · · · β − (Q − 1)Piμr QPiμr − λ

0 0 · · · λ λ − Cμ −QPiμr

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

,

AC
1 =

⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

β Piμr · · · 0 0

λ β − Piμr · · · 0 0

0 λ · · · 0 0

...
...

. . .
...

...

0 0 · · · (Q − 1)Piμr λ

0 0 · · · β − (Q − 1)Piμr QPiμr − 3λ

0 0 · · · λ 2λ − Cμ −QPiμr

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

,

(3.22)

where β = −λ − Cμ.
In general, if the extrapolation is done with n ≤ Q + 1 points, the matrix AC

1 is given as

AC
1 =

⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

β Piμr · · · 0 λc
(n)
Q

λ β − Piμr · · · 0 λc
(n)
Q−1

0 λ · · · 0 λc
(n)
Q−2

...
...

. . .
...

...

0 0 · · · (Q − 1)Piμr λc
(n)
2

0 0 · · · β − (Q − 1)Piμr QPiμr + λc
(n)
1

0 0 · · · λ −λ − Cμ −QPiμr + λc
(n)
0

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

, (3.23)
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Figure 4: Computation cost when solving p performance parameters simultaneously.

where

c
(n)
l =

⎧
⎪⎪⎨

⎪⎪⎩

(−1)l
⎛

⎝
n

l + 1

⎞

⎠ if l < n,

0 if l ≥ n.

(3.24)

Note that the size of matrix T does not depend on the order of the polynomial used to
perform the extrapolation; only the last column in the matrix AC

1 depends on the polynomial
adjustment. This characteristic has the advantage that there will not be any difference in the
computation cost when using higher order of extrapolation.

The main drawback of the value extrapolation technique is that this technique is only
able to compute one performance parameter each time we solve the system. Notwithstand-
ing, we can overcome this drawback in the following way. In a general manner, the solution
of the system xT = b can be obtained using the inverse matrix of T by doing x = bT−1. Note
also that choosing a different performance parameter to solve will only affect to the values in
b. Therefore, computing a second performance parameter will only increase the computation
expenses by the cost of the product bT−1, as the rest of the process (specifically the com-
putation of the inverse matrix T−1) is solved only once. Similarly, we can compute several per-
formance parameters with a marginal increase in the computation cost using LU factoriza-
tion, as the first part of the procedure (the factorization, which represents the most com-
putationally expensive part) is done only once for the T matrix. This characteristic of the
value extrapolation technique can be observed in Figure 4, where we show that the compu-
tation time (results have been obtained using Matlab running on an Intel Pentium IV 3 GHz)
is only marginally increased when we compute additional performance parameters.
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4. Results

In order to evaluate and compare the proposed technique, we have studied its performance in
several scenarios. Letting ρ = λ/(Cμ), we have studied different system loads by modifying
λ and keeping C = 50 resource units and μ−1 = 180 s. The retrial phenomenon has been con-
figured with μ−1

r = 100 s and Pi = 0.2. Although only one configuration of the retrial orbit
has been chosen, there will be fairly different working points, as the system load is widely
modified.

For obtaining the results, we have used the relative error of different performance
parameters, defined for a generic performance parameter Ψ by εΨ = |Ψapprox − Ψexact|/Ψexact.
In order to obtain an accurate enough estimate of Ψ which can be used as Ψexact, we ran all
techniques with increasing and sufficiently high values of Q so that the value of Ψ had stabi-
lized up to the 14th decimal digit. As expected all techniques converged to the same value in
the performance parameters under study, Ψ ∈ {Pb, Pns,Nret}.

4.1. Value Extrapolation Evaluation

Table 2 shows the minimum value of Q needed to obtain a relative error lower than 10−8 for
different performance parameters and loads (columns) and for different orders of the extra-
polation polynomials (rows). Note that VEx denotes the use of an extrapolation polynomial
of order x = (n − 1). The number in bold indicates the lowest truncation level of all the
polynomials studied. Finally, the last row of Table 2 shows the exact value of the studied per-
formance parameter for that scenario.

From Table 2 we conclude that there is not a clear choice in the order of the best
polynomial. In general, neither the lowest nor the highest order polynomials are recommend-
able, so we recommend to use the intermediate cases. Furthermore, the fact that using VEx
enforces us to use a model with Q ≥ x (see Section 3.2) must be considered in the choice of
the polynomial. For that reason we can conclude that, for the problem and scenario of interest
and for the relative accuracy we want to achieve, VE8 represents a good tradeoff between
accuracy and value of Q needed. Therefore, hereafter we will use the polynomial of order 8
(VE8) and we will simply denote it as VE.

4.2. Comparison with Other Techniques

In this section we compare the performance of value extrapolation with other techniques
based on the traditional approach of solving the steady state probabilities using the balance
equations for later computing the performance parameters of interest. Although other
approaches exist, we have chosen the technique proposed in [8], referred to hereafter as FM,
and the one proposed by Neuts and Rao in [11], referred to as NR. Note that we have not com-
pared the results with the technique proposed by Artalejo and Pozo [6] as this last technique
does not include the impatience phenomenon, so it is not directly applicable. A similar rea-
soning can be done for the technique proposed by Falin [10].

In Table 3 we show the minimum values of Q needed to obtain a relative error low-
er than 10−8 for different performance parameters and for the aforementioned techniques.
Results show that value extrapolation clearly outperforms classical techniques as it needs a
much lower value of Q to achieve a certain accuracy in all the scenarios under study and for
all the parameters studied. Similarly, in Figures 5, 6 and 7, we plot the relative error for Pb, Pns



14 Journal of Applied Mathematics

Table 2: Minimum value of Q to obtain relative errors (ε) lower than 10−8.

εPb < 10−8 εPns < 10−8 εNret < 10−8

ρ 0.5 0.7 0.9 0.5 0.7 0.9 0.5 0.7 0.9
VE1 20 32 61 25 41 64 22 37 57
VE2 14 31 53 21 35 58 17 32 54
VE3 15 18 48 19 31 53 16 26 50
VE4 12 25 47 17 30 48 14 26 47
VE5 12 24 44 12 24 44 9 18 43
VE6 10 20 41 14 26 44 11 22 39
VE7 7 21 39 11 24 42 8 21 40
VE8 8 17 39 11 23 36 8 19 39
VE9 9 19 38 10 22 39 9 13 34
VE10 10 16 35 10 21 39 10 17 35
VE11 11 18 31 11 16 37 11 18 37
VE12 12 15 40 12 20 42 12 17 42
VE13 13 14 43 14 19 43 13 18 43
VE14 14 23 48 26 25 48 14 24 48
VE15 15 25 56 15 29 56 15 25 56
VE16 16 27 56 18 29 57 28 27 57
Exact Value 3.89 · 10−6 0.0045 0.1353 6.05 · 10−8 1.34 · 10−4 0.0110 5.74 · 10−5 0.0981 4.4789

Table 3: Minimum Q value to obtain relative errors (ε) lower than 10−8.

εPb < 10−8 εPns < 10−8 εNret < 10−8

ρ = 0.5 ρ = 0.7 ρ = 0.9 ρ = 0.5 ρ = 0.7 ρ = 0.9 ρ = 0.5 ρ = 0.7 ρ = 0.9
FM 23 39 68 29 46 70 25 42 53
NR 20 31 61 25 41 64 22 38 65
VE8 8 17 39 11 23 36 8 19 39

and Nret, respectively, when ρ = 0.7 and for the different techniques deployed. Results show
that, for a same value of Q, VE is able to obtain lower relative errors than NR and FM. The
difference in the relative errors is around 4 to 5 orders of magnitude, which supposes a very
clear improvement.

4.3. Computation Cost

Although it is shown that VE clearly outperforms NR and FM techniques, it is interesting to
study their associated computation cost. In Figures 8, 9, and 10, we plot the time needed to
achieve a certain relative error for Pb, Pns, and Nret using the different techniques under study.
Note also that, although it has been obtained using VE8, choosing a diferrent order for the
extrapolation polynomial would not change the computation cost, as the linear system of
equations to be solved remains of the same size. However, results should be interpreted
carefully, because computation costs highly depend on the algorithm used to solve the re-
sulting system of equations. More concretely, for solving the systems obtained in the FM
and NR techniques, we have made use of the efficient algorithm described in [16] that
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Figure 6: Relative error in Pns for different techniques.

takes advantage of the block-tridiagonal structure that presents the infinitesimal generator.
Unfortunately, the linear system of equations obtained in VE has no longer such a block-
tridiagonal structure, and therefore we must use a more general and less efficient algorithm.
More concretely, we have used LU factorization. Figures 8–10 show that VE achieves a certain
accuracy faster than the other techniques under study.

5. Conclusions

Multiserver retrial systems have not an exact solution when the number of servers is higher
than two, as their state space presents space heterogeneity along an infinite dimension. For
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that reason, it is mandatory to develop approximate techniques in order to solve these sys-
tems. To the best of our knowledge, all the techniques studied in the literature to solve these
systems are based on their steady state probabilities. In this paper we propose an alternative
technique based on a different metric: the relative state values and the Howard equations that
relate them, instead of the balance equations. With this technique, truncation of the state space
can be done in a more efficient way, as the state values outside the truncated state space are
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Figure 10: Relative error in Nret versus computation cost.

extrapolated from some known state values. In order to preserve the linearity of the resulting
system of equations, we have only used polynomials as extrapolation functions.

In a first part, we have studied the use of different orders for the extrapolation poly-
nomials. Later, we have compared the new technique with two well-known approaches ap-
peared in the literature [8, 11] in terms of accuracy and computational cost. Results show that
the proposed technique highly improves the previous approaches in terms of computational
cost and, specially, in terms of accuracy, so its use is highly recommended.
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