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This paper is concerned with a common element of the set of fixed point for an asymptotically
pseudocontractive mapping in the intermediate sense and the set of solutions of the mixed
equilibrium problems in Hilbert spaces. The strong convergence theorem for the above two sets is
obtained by a general iterative scheme based on the shrinking projection method, which extends
and improves that of Qin et al. (2010) and many others.

1. Introduction

Throughout this paper, we always assume that C be a nonempty closed convex subset of a
real Hilbert space H with inner product and norm denoted by (:,-) and || - ||, respectively. For
a sequence {x,} in H, we denote the strong convergence and the weak convergence of {x,}
tox € H by x, — x and x,, — x, respectively. The domain of the function ¢ : C — R U {+oo}
is the set

domg = {x € C: p(x) < +o0}. (1.1)

Let ¢ : C — RU {+co} be a proper extended real-valued function, and let @ be a bifunction
from C x C into R such that C N dom ¢ #(, where R is the set of real numbers. The so-called
the mixed equilibrium problem is to find x € C such that

D(x,y) +9(y) —9(x) 20, VYyeC. (1.2)
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The set of solution of problem (1.2) is denoted by MEP(®, ¢), that is,

MEP(®,¢) = {x € C: ®(x,y) +9(y) - 9(x) 20, Yy € C}. (1.3)

It is obvious that if x is a solution of problem (1.2) then x € dom ¢. As special cases of problem
(1.2), we have the following.

(i) If ¢ = 0, then problem (1.2) is reduced to find x € C such that

®(x,y) >0, VyeC. (1.4)

We denote by EP(®) the set of solutions of equilibrium problem, which problem (1.4)
was studied by Blum and Oettli [1].

(ii) If d(x, y) = (Bx,y — x) for all x,y € C where a mapping B: C — H, then problem
(1.4) is reduced to find x € C such that

(Bx,y-x)>0, VYyeC. (1.5)

We denote by VI(C, B) the set of solutions of wvariational inequality problem, which
problem (1.5) was studied by Hartman and Stampacchia [2].

(iii) If @ = 0, then problem (1.2) is reduced to find x € C such that
9(y) —p(x) >0, VyeC (1.6)

We denote by Argmin(yp) the set of solutions of minimize problem.

Recall that Pc is the metric projection of H onto C; that is, for each x € H there exists
the unique point in Pcx € C such that |x — Pcx|| = minyec|lx — y||. A mapping T : C — C
is called nonexpansive if ||Tx — Ty|| < ||x — y|| for all x,y € C, and uniformly L-Lipschitzian if
there exists a constant L > 0 such that for each n € N, || T"x - T"y|| < L||x — y|| forall x,y € C,
and a mapping f : C — Cis called a contraction if there exists a constant a € (0,1) such that
If(x) = fW)|l < allx —y| forall x,y € C. A point x € Cis a fixed point of T provided Tx = x.
We denote by F(T) the set of fixed points of T; thatis, F(T) = {x € C: Tx = x}.If Cisa
nonempty bounded closed convex subset of H and T is a nonexpansive mapping of C into
itself, then F(T) is nonempty (see [3]).

Iterative methods are often used to solve the fixed point equation Tx = x. The
most well-known method is perhaps the Picard successive iteration method when T is a
contraction. Picard’s method generates a sequence {x,} successively as x,.1 = Tx, for all
n € N with x; = x chosen arbitrarily, and this sequence converges in norm to the unique
fixed point of T. However, if T is not a contraction (for instance, if T is a nonexpansive), then
Picard’s successive iteration fails, in general, to converge. Instead, Mann's iteration method
for a nonexpansive mapping T (see [4]) prevails, generates a sequence {x,} recursively by

Xpi1 = AnXy + (1 —a,)Tx,, VYneN, (1.7)

where x; = x € C chosen arbitrarily and the sequence {a,} lies in the interval [0,1]. Recall
that a mapping T : C — C is said to be
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(i) asymptotically pseudocontractive [5, 6] if there exists a sequence k, C [1,00) with
lim,, _, ,k, = 1 such that

(T"x -T"y,x—y) <kallx-y||>, Vx,yeC VneN; (1.8)
it is easy to see that (1.8) is equivalent to
I =Ty < @ho = Dllx = ylF+ -T2 - T =T, VayeC, (9

foralln e N,

(ii) asymptotically pseudocontractive in the intermediate sense [7] if there exists a sequence
kn C [1, 00) with lim,, _, .k, = 1 such that

lim sup sup ((T"x ~T"y,x —y) — kn||x - y||2> <0; (1.10)

n— oo X,yEC

if we define

T, = max{O, sup <(T"x -T'y,x—y) —kn|lx - y||2> }, (1.11)
x,yeC

then lim,, _, .7, = 0 and it follows that (1.10) is reduced to
(T'x =Ty, x-y) <ky||x-y|* +70, Vx,y€C VneN; (1.12)
it is easy to see that (1.12) is equivalent to
|T"x - T"y||* < k= V|| x = y||* + || T - THx = I =Ty’ +27,, Vx,yeC,  (1.13)

for all n € N; it is obvious that if 7, = 0 for all n € N, then the class of asymptotically
pseudocontractive mappings in the intermediate sense is reduced to the class of
asymptotically pseudocontractive mappings.

The Mann’s algorithm for nonexpansive mappings has been extensively investigated
(see [8-10] and the references therein). One of the well-known results is proven by Reich [10]
for a nonexpansive mapping T on C, which asserts the weak convergence of the sequence
{xn} generated by (1.7) in a uniformly convex Banach space with a Frechet differentiable
norm under the control condition 7, a,(1 — a,) = co. It is known that the Mann’s iteration
(1.7) is in general not strongly convergent (see [11]). The strong convergence guaranteed has
been proposed by Nakajo and Takahashi [12], they modified the Mann’s iteration method
(1.7) which is to find a fixed point of a nonexpansive mapping by a hybrid method, which
called that the shrinking projection method (or the CQ method) as the following theorem.
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Theorem NT. Let C be a nonempty closed convex subset of a real Hilbert space H. Let T be a
nonexpansive mapping of C into itself such that F(T) # 0. Suppose that x1 = x € C chosen arbitrarily
and {x,} the sequence defined by

Yn :anxn+(1_an)Txn/
Co={z€C:|lyn—z| < llxn—zl},

(1.14)
Qn=1{z€C:{(xy-z,x1—-x,) 20},

Xne1 = Pe,ng, (x1), Vn €N,

where 0 < a, < a < 1. Then {x,} converges strongly to Pr(r)(x1).

Subsequently, Schu [5] modified Ishikawa’s iteration method (see [13]) for the class of
asymptotically pseudocontractive mappings as the following theorem.

Theorem S. Let C be a nonempty bounded closed convex subset of a real Hilbert space H.
Let T : C — C be a completely continuous uniformly L-Lipschitzian such that L > 0 and
asymptotically pseudocontractive mapping defined as in (1.9) with the sequence {k,} C [1, ) such
that lim, _, o, k, = 1. Let g, = 2k, — 1 for all n € N. Suppose that x; = x € C chosen arbitrarily and
{x} the sequence defined by

Yn = ﬁnTnxn + (1 - ﬂn)xn/

Xni1 = &y T"yYn + (1 - ap)x,, VneN,

(1.15)

where {an}, {Pn} C (0,1) such that € < a, < B, < b for some e > 0and b € (0,L72(vV1+ L2 - 1))
and 372 (g% — 1) < co. Then {x,} converges strongly to some fixed point of T.

Quite recently, Zhou [14] showed that every uniformly L-Lipschitzian and asymptot-
ically pseudocontractions which are also uniformly asymptotically regular has a fixed point
and the fixed point set is closed and convex, and he also introduced iterative scheme to find a
fixed point of a uniformly L-Lipschitzian and asymptotically pseudocontractive mapping as
the following theorem.

Theorem Z. Let C be a nonempty bounded closed convex subset of a real Hilbert space H. Let T :
C — C bea uniformly L-Lipschitzian such that L > 0 and asymptotically pseudocontractive mapping
with a fixed point defined as in (1.8) with the sequence {k,} C [1,00) such that lim,_, o k, = 1.
Suppose that x1 = x € C chosen arbitrarily and {x,} the sequence defined by

Yn=1—-an)x, +a,T"x,,

C, = {z € C:ap(1—(1+L)ay)|xn — T"ul* < (X0 — 2, Y = ")

+(kn — 1)(diam C)Z},
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Qn=1{z€C:(x,~-2z,x1-x,) 20},

Xn+1 = Pc,ng, (x1), Vn €N,
(1.16)

where {a,} C [a,b] such that 0 < a <b <1/(1+ L). Then {x,} converges strongly to Prr)(x1).

To be more precisely, Qin et al. [7] showed in the framework of a real Hilbert spaces
H for the uniformly L-Lipschitzian and asymptotically pseudocontractive mapping in the
intermediate sense that the fixed point set is closed and convex (see Lemma 1.4 in [7]) and the
demiclosedness principle holds (see Lemma 1.5 in [7]), and they also introduced an iterative
scheme to find a fixed point of a uniformly L-Lipschitzian such that L > 0 and asymptotically
pseudocontractive mapping in the intermediate sense on a nonempty bounded closed convex
C C H defined as in (1.13) with the sequences {k,} C [1,00) and {7,} C [0, 00) such that
lim, o k, =1and lim,_, 7, =0, and let g, = 2k, — 1 for all n € N as follows:

x1 = x € C chosen arbitrarily,
zn = (1= Pp)xn + BT xy,

Yn=1—-an)x,+a,T"z,,

Co={z€C: lyn -2l < llxa - 2l + @0, (1.17)

+tufa(Budn + P + B = 1) IT"x0 = x|},
Qn={z€C:(xn—z,x1—x,) 20},

Xni1 = Pe,ng, (x1), Vn €N,

where 0, = (q,[1+fn(g.—1)] - 1) - (diam C)? +2(Pnqn + 1)1, < 0. They proved that under the
sequences {a,}, {#.} C (0,1) suchthata < a, < B, < bforsomea >0andb € (0,L72(V1 + L?-
1)), if F(T) is nonempty, then the sequence {x,} generated by (1.17) converges strongly to a
fixed point of T.

Inspired and motivated by the works mentioned above, in this paper, we introduce a
general iterative scheme (3.1) below to find a common element of the set of fixed point for an
asymptotically pseudocontractive mapping in the intermediate sense and the set of solutions
of mixed equilibrium problems in Hilbert spaces. The strong convergence theorem for the
above two sets is obtained by a general iterative scheme based on the shrinking projection
method which extends and improves Qin et al. [7] and many others.

2. Preliminaries

Let C be a nonempty closed convex subset of a real Hilbert space H. For solving the mixed
equilibrium problem, let us assume that the bifunction @ : C x C — R, the function¢ : C —
R U {+0oo} and the set C satisfy the following conditions:

(A1) @(x,x) =0forall x € C;
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(A2) @ is monotone; that is, D(x,y) + D(y,x) <O forall x,y € C;
(A3) foreach x,y,z € C,

ltilr(r)ld)(tz +(1-t)x,y) <D(x,y); (2.1)

(A4) for each x € C,y — ®D(x, y) is convex and lower semicontinuous;
(A5) for each y € C, x — ®(x,y) is weakly upper semicontinuous;

(B1) for each x € C and r > 0, there exists a bounded subset D, C C and y, € C such
that for any z € C \ Dy,

D(z,yx) +p(yx) —p(z) + %(yx—z,z—x> <0; (2.2)

(B2) Cis a bounded set.

Lemma 2.1 (see [15]). Let H be a Hilbert space. For any x,y € H and A € R, we have
[l + (1= Dy = Mxll? + A= D]ly|* =20 = )||x - y||*. (2.3)

Lemma 2.2 (see [3]). Let C be a nonempty closed convex subset of a Hilbert space H. Then the fol-
lowing inequality holds:

(x=Pcx,Pcx-y) >0, VxeH,yeC. (2.4)

Lemma 2.3 (see [16]). Let C be a nonempty closed convex subset of a Hilbert space H, ® : CxC —
R satisfying the conditions (A1)—(A5), and let ¢ : C — R U {+o0} be a proper lower semicontinuous
and convex function. Assume that either (B1) or (B2) holds. For r > 0, define a mapping S, : C — C
as follows:

S, (x) = {z €eC:D(z,y)+o(y) —(z) + %(y—z,z—x) >0,Vy € C}, (2.5)

forall x € C. Then, the following statement hold:

(1) for each x € C, S,(x) #0;
(2) S, is single-valued;
(3) S, is firmly nonexpansive; that is, for any x,y € C,

||Srx - Sry”2 <(Sx-Sy,x-y); (2.6)

(4) F(Sy) = MEP(®, ¢);
(5) MEP(®, ¢) is closed and convex.
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Lemma 2.4 (see [3]). Every Hilbert space H has Radon-Riesz property or Kadec-Klee property, that
is, for a sequence {x,} C H with x, — x and ||x,|| — ||x|| then x, — x.

Lemma 2.5 (see [7]). Let C be a nonempty closed convex of a real Hilbert space H, and let T : C —
C be a uniformly L-Lipschitz and asymptotically pseudocontractive mapping in the intermediate sense
such that F(T) is nonempty. Then I — T is demiclosed at zero. That is, whenever {x,} is a sequence
in C weakly converging to some x € C and the sequence {(I —T)x,} strongly converges to some y, it
follows that (I - T)x = y.

3. Main Results

Theorem 3.1. Let C be a nonempty closed convex subset of a real Hilbert space H, @ a bifunction
from C x C into R satisfying the conditions (A1)—(A5), and ¢ : C — R U {+oo} a proper lower
semicontinuous and convex function with either (B1) or (B2) holds. Let T : C — C be a uniformly L
-Lipschitzian such that L > 0 and asymptotically pseudocontractive mapping in the intermediate sense
defined as in (1.13) with the sequences {k,} C [1,00) and {T,} C [0, o) such that lim, .o, k, =1
and lim, .o, 7, = 0. Let g, = 2k, — 1 for all n € N. Assume that Q = F(T) N MEP(®, ¢) be a
nonempty bounded subset of C. For x1 = x € C chosen arbitrarily, suppose that {x,}, {yn}, {za}, and
{u,} are generated iteratively by

u, € C such that
1
D(ttn, y) + @(y) = Paan) + —(y = thn, tn = X) 20, Yy €C,
zn = (1= Bn)ttn + B T"un,
Yn = (1 -an)up +a,T"z,,

Cu1 = {Z €CyiNQy: ”]/n - 2”2 <lxn - Z||2 + a0y (3.1)

40 (B + BLL? + = 1) 1T = wa]* |,
Que1 = (z€CinNQy:{(xy—2z,x1—x,) >0},
Ci=0Q1=¢C,

Xn+1 = PCn+1an+l (xl)/ Vn € N/

where 6, = (gn[1 + Pn(gn —1)] - 1) - Aft +2(Pugn + )Ty and A, = sup{||x, — z|| : z € Q} <
satisfying the following conditions:

(C1) {an}, {Bu} C (0,1) such that a < a, < P, < b for some a > 0and b € (0,L7>(v1 + L2 -
1)

(C2) {ry} C [r, o0) for somer > 0;
(C3) Zf:l |rn+1 - Tnl < co.

Then the sequences {xn}, {Yn}, {zn}, and {u,} converge strongly to w = Pg(x1).
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Proof. Pick p € Q. Therefore, by (3.1) and the definition of S,, in Lemma 2.3, we have

U, = Sy, x, € dome, (3.2)

and by Tp = p, and Lemma 2.3 (4), we have
T'p=p=S,p. (3.3)

By (3.2), (3.3), and the nonexpansiveness of S,,, we have

lun = pll = |Sr, %0 = Srp|| < |20 = p]|- (3.4)

By (3.3), Lemma 2.1, the uniformly L-Lipschitzian of T, and the asymptotically pseudocon-
tractive mapping in the intermediate sense of T, we have

[ = PI7 = 1|1 = @) (= p) + aa (T2~ )|
= (1= ) [ttn — P + @[ T2 = p||* = (1 = @) [ T2, — ]
< (= an)lun = pl* + & (Gullza = pI” + 120 = T"20)1> + 27
— (1= )| T2, = a1,
(3.5)
20 = T" 20> = || (1 = Bu) (tn = T"20) + (Tt — T"z,) ||
= (1= ) lttn = T" 2> + Bull T 1t = T" 2|
= Bu (1= B IT" s = 1|
< (1= ) ltn = T"zal* + BuL |1t = 2o (3.6)
= B (1= ) 1T 1ty — 0|
= (1= Bu)lltn — Tz
4 Bu(BRL% 4 B = 1) T = ],
llzn =plI* = |(1=B0) (= p) + Bu(T"n = p)|I”
= (1= Ba) lttn = pII* + Bull T = PII* = (1 = B IT" 4 = 10
< (=Pl =PI + Pu(ullen = pI* + 1t = T + 27, (3.7)
= Bu (1= B IT" = 1|

= [14 Bulgn = D] ||t = p||* + BT st = ttul* + 2B T
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Substituting (3.6) and (3.7) into (3.5), and by the condition (C1) and (3.4), we have

lyn =PI <l =pII* + @0 (Gu[1 + fu(gn = D] = 1) n ~ p|
+ 20 (B + 1) T + @uf (B + BRL> + P = 1) IT"un = 10|
— (= @) [1tn = T"2,|°
< [t =pII* + an ((@a[1 + Bu(@n = 1] = D) [n — p|*
$2(Budn + 1)) + @ (Budn + L2+ = 1) [Tty — 10,
< Jlun = pII” + @us
+ @uf(Budn + BRL> + = 1) IT" sty =
< [lw = pII* + 26
+ anu (Bt + BL* + B = 1) [T = P,

(3.8)

where 0, := (gu[1+ Bu(gn —1)] = 1) - A2 + 2(Bng, + 1)7, and A, := sup{||x, — z|| : z € Q}.

Firstly, we prove that C, N Q, is closed and convex for all n € N. It is obvious that
C1 N Qs is closed, and by mathematical induction that C,, N Q,, is closed for all n > 2, that is
CnNQy is closed for all n € N. Let €, = 2,0y, + anf(Bugn + PAL* + B — 1)||T" 14, — u,||*. Since
forany z € C, ||y, — z|] < ||xn — z|* + €n is equivalent to

lyn —xn||2+2(yn —Xp, Xp—2) — €, <0, (3.9)
for all n € N. Therefore, for any zi,z> € Cs1 N Qpi1 CC, N Q, and € € (0,1), we have
Y0 = Xl + 2{yn = Xn, X0 — (€21 + (1 — €)22) ) — €n
= ey =3l + 2y~ X0 - 21) - ) @10
+(1- e)(”y,1 - x,,||2 +2(Yn — Xp, X — 22) — en> <0,
for all n € N, and we have

(xp—(ez1+ (1 —€)z2),x1 —xn) = €(Xn— 21, X1 —Xp) + (1 =€) (x4 — 20, X1 —x) 20, (3.11)

for all n € N. Since C; N Q; is convex, and by putting n = 1 in (3.9), (3.10), and (3.11), we
have C, N Q; is convex. Suppose that xi is given and Ci N Qy is convex for some k > 2. It
follows by putting n = k in (3.9), (3.10), and (3.11) that Cg.1 N Qx4 is convex. Therefore, by
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mathematical induction, we have C,, N Q,, is convex for all n > 2, that is, C,, N Q,, is convex for
all n € N. Hence, we obtain that C,, N Q,, is closed and convex for all n € N.

Next, we prove that Q ¢ C, N Q, for all n € N. Itis obvious thatp e Q c C = C; N Q.
Therefore, by (3.1) and (3.8), we have p € C,, and note thatp € C = Q», and sop € C; N Q.
Hence, we have Q ¢ C, N Q». Since C; N Q, is a nonempty closed convex subset of C, there
exists a unique element x, € C; N Q> such that x; = Pc,ng, (x1). Suppose that x; € C, N Q is
given such that xx = Pc,ng, (x1), and p € Q C Ci N Qi for some k > 2. Therefore, by (3.1) and
(3.8), we have p € Cy,q. Since xx = Pc,n, (x1), therefore, by Lemma 2.2, we have

(xk—z,x1—xr) 20, (3.12)

for all z € C, N Q. Thus, by (3.1), we have p € Qk.1, and so p € Ci.1 N Q1. Hence, we have
Q C Cis1 N Qg4 Since Cii1 N Qi1 is a nonempty closed convex subset of C, there exists a
unique element xx.1 € Ciy1 N Qp1 such that x4 = Pe,, 00, (x1). Therefore, by mathematical
induction, we obtain Q ¢ C, N Q, foralln > 2, and so Q ¢ C, N Q,, for all n € N, and we
can define x,,1 = Pc,.,n0,,, (x1) for all n € N. Hence, we obtain that the iteration (3.1) is well
defined.

Next, we prove that {x,} is bounded. Since x,, = Pc,ng, (x1) for all n € N, we have

llon = 1]l < llz = x4, (3.13)

forall z € C, N Q,. It follows by p € Q C C,, N Q, that |[x, — x1|| < |[p — x1]| for all n € N. This
implies that {x,} is bounded, and so are {y,}, {z,}, and {u,}.

Next, we prove that ||x, — x4l — 0and ||u, — ty]| — 0asn — oo. Since x4 =
Pe,.;n0na (x1) € Che1NQpa1 € C,NQy, therefore, by (3.13), we have ||x, — x1|| < ||xp41 — x1|| for
all n € N. This implies that {||x, — x1]|} is a bounded nondecreasing sequence; there exists the
limit of ||x;, — x1]|, that is

lim e, — 21| = m, (3.14)

for some m > 0. Since x,+1 € Qy+1, therefore, by (3.1), we have

(Xn — Xns1, X1 — X)) > 0. (3.15)
It follows by (3.15) that

1260 = %ot I = [|(oen = x1) + (31 = X1 |1
= ”xn - x1||2 + 2<xn - X1,X1 — xn>
. (3.16)
+2(xy — X1, Xn = Xpa1) + || Xne1 — x1]|

< ot = x> = 1260 = 1]
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Therefore, by (3.14), we obtain

|7 — Xp41]l — O as n— co.

Indeed, from (3.1) we have
1
O(un, y) +@(y) — p(un) + r—(y —Up,Up—Xy) 20, VyeC,
1
O(tpe1,y) + @(y) — @(une1) + r—1<y — Upi1, Uni1 — Xni1) 20, Yy eGC;
n+
substituting v = 1,4 into (3.18) and y = u, into (3.19), we have

1
D(Up, tns1) + Q(Uni1) — () + T—<un+1 — Uy, Uy — Xp) 20,
n

D(Ups1, Un) + (Un) — @(Ups1) + (Un = Uns1, Uns1 — Xns1) > 0.

Tni1
Therefore, by the condition (A2), we get

0 < DUy, Uns1) + D(Ups1, Un)

Un = Xn  Un+l = X+l >

+ <un+1 — Uy,
Tn Tt

< Up —Xn  Un+l — Xntl
S Un+l — Uy, - .
n Tn+l

It follows that

,
0< <un+1 = U, (Un — Uns1) + (Uns1 — Xn) — r—"(um - xn+1)>
n+l1

= (un+1 —Unp,Up — un+1>

r
+ <un+1 = U, (Uns1 — Xns1) + (Xns1 — Xn) — ’ nl (Uns1 — xn+1)>~
n+

Thus, we have

r
[ttpe1 — un||2 < <un+] — Uy, (Xpe1 — Xn) + <1 - >(un+1 - xn+l)>

Tn+1

,
< Mt =l (et = 5l + |1 = 2t = ] ).

n+1

11

(3.17)

(3.18)

(3.19)

(3.20)

(3.21)

(3.22)

(3.23)
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It follows by the condition (C2) that

|rn+1 - rnl

||un+1 - un” < ||xn+1 - xn” + ”un+1 - xn+1”

n+l

(3.24)

M
< |xpe1 = Xl + - [Tne1 = Tul,

where M = sup, _, [[un — xn|| < co. Therefore, by the condition (C3) and (3.17), we obtain

ltn — ups1|| — 0 as n— oo. (3.25)

Next, we prove that ||T"u,—u,|| — 0and ||Tu,—u,|| — 0Oasn — oo.Since x,41 € Cye1,
by (3.1), we have

”yn - xn+1”2 S ||xn - xn+1”2 + anen

, (3.26)
4 @af(Botin + BrL? + o= 1) IT"t0n = |,
it follows by the condition (C1) that
a?(1-bgy — b*L? - b) || T"uy, — u,|?
< anﬂn(l - ﬂnqn - :6121L2 - ﬁn)HT"un - ”n”2 (3 27)

< lxn = xn+1”2 + a0, - ”yn — Xn+l ”2

< || — Xpar||* + b6,

Since limy, ., g, = 1 and the condition (C1), we have lim,, _, (1—bqn—b2L2—b) =1-2b-b*L?* >
0. Therefore, from (3.27) by (3.17) and lim,, ., 8, = 0, we obtain

IT"uy — uyl| — 0 as n — oo. (3.28)

By the uniformly L-Lipschitzian of T, we have

+ nTn+1un+l _ T"+1un

n+1
Uny1 — T Upi

ln = Tunl|l < [|un — unaa || +

+ | Ty, - Tu, (3.29)

< (14 L)||ttn — thpn || + | et — Tt || + LIT 100 — 10

Therefore, by (3.25) and (3.28), we obtain

lun — Tuyl| — 0 as n — oo. (3.30)
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Next, we prove that ||y, — x,4|| — O, [[uy — z4|| — Oand |ju, —x,|| = Oasn — co.
From (3.26), by the condition (C1), we have

[y = 2wl <l = 2> + b6, + b2 (b + b?L2 + b = 1) [Tt = 0| (3.31)

it follows that

N9 = 2%all” = || (Y = Xns1) + a1 = x0) ||
= 1Y = Xnet [|* + 2(Yn = X1, Xner = %) + [1Xs1 = Xl
< [y = Xt ||” + 2{[yn = X [t =l + s = xal? (3.32)
< 2|1 = Xall (12ns1 = Xl + [[Yn = xwa]|) + 06,

- b2(1 — bg, - P*L? - b) Tt — 10

Therefore, by (3.17), lim,,_, o, 6, = 0, and lim,_, ,, (1 — bg,, = b*’L? = b) = 1 - 2b — b*L? > 0, we
obtain

lyn = xu|]| — 0 as n— oo. (3.33)

From (3.1), we have ||u,, — z,|| = Bullun — T"uy||; therefore, by (3.28), we obtain

|ty — zy|| — 0 as n — oo. (3.34)
By (3.2), (3.3), and the firmly nonexpansiveness of S,,, we have

it = P|I> < (Sr.2n = S, Xn = P) = (1t = p, Xn = P)

1 . . i (3.35)
= 2l = I + s = I - s~ %,1P),
it follows that
[t = pII* < lloen = PIP = lltn = 2a]|*. (3.36)
Therefore, from (3.8), we have
Y = pI* < llitn = pII* + 2,6,
4 @af(Botin + BRL? + = 1) IT" st = |
(3.37)

< lxn = p”2 = [lun - xn“2 + a0,

+ (Bt + BEL2 + B = 1) IT" 10, = 10,
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it follows by the condition (C1) that

1w = xull® < [|20 = pII* = |y = PI* + 20

+ ufn (P + PrL* + B = 1) Tt =
(3.38)

< lxn = yall ([l = Pl + [ly= = pI) + b6n
=52 (1 - bgy = b2 = b) [Ty — .

Therefore, by (3.33), lim,,—, o, 6, = 0, and lim,_, ,, (1 — bg,, - b*’L? = b) = 1 - 2b — b*L? > 0, we
obtain

|y, — xp]| — 0 as n— oo. (3.39)

Since {u,} is bounded, there exists a subsequence {u,,} of {u,} which converges weakly to
w. Next, we prove that w € Q. From u,, — w and |lu,, — Tu,,|| — 0asi — oo by (3.30),
therefore, by Lemma 2.5, we obtain @ € F(T). From (3.1), we have

1
0< D (un,y) +9(y) = @) + = (y = thn,thn = Xn), Yy €C; (3.40)
n
it follows by the condition (A2) that

1
Dy, tn) < Oy, un) + @, y) + ¢(y) = Pn) + (Y =, thn = Xn), ¥y €C
n

. (3.41)
<o(y) - o(u,) + r—(y —Up, Uy — Xn), YyeC.
Hence,
Up, — X,
o(y) — @(uy,) + <y S > >®(y,u,), VYyeC (3.42)
Therefore, from (3.39) and by u,, — w asi — oo, we obtain
O(y,w) +¢pw) -¢p(y) <0, VyeC. (3.43)

For a constant t with 0 <t <1land y € C, let y; = ty + (1 — t)w. Since y,w € C, thus, y; € C.
So, from (3.43), we have

O (y:, @) + (@) - ¢p(y:) < 0. (3.44)
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By (3.44), the conditions (A1) and (A4), and the convexity of ¢, we have

0=y, ye) + (i) - ¢(vr)
< (t0(yry) + (1-HD(y, w)) + (tp(y) + (1 - (@) - ¢(vr)

(3.45)
=t @y y) + o) —¢y) + 1 - (P(yt, W) + (@) - 9(yt))
<HO(yuy) + o) —9(y));
it follows that
D(yi, y) +o(y) =9 (ye) 2 0. (3.46)

Therefore, by the condition (A3) and the weakly lower semicontinuity of ¢, we have ®(w, y)+
p(y) —p(w) >0ast — 0 forall y € C, and hence, we obtain w € MEP(®, ¢), and so w € Q.
Since Q is a nonempty closed convex subset of C, there exists a unique w € Q such
that w = Pqo(x;1). Next, we prove that x, — w asn — oo. Since w = Pg(x1), we have
[[x1 = w|| < ||x1 — z|| for all z € Q; it follows that
lIx1 - wll < [lx1 —0]|. (3.47)

Since w € Q C C,, N Q,, therefore, by (3.13), we have

llx1 = x| < flx1 = 20| (3.48)

Since ||xy, —uy,|| — 0by (3.39) and u,, — w, we have x,,, — wasi — oo. Therefore, by (3.47),
(3.48) and the weak lower semicontinuity of norm, we have

lloe1 = 2ol < [l2e1 — 2ol < liminf floey = x| < limsup [lacg =2 || < [|l201 = 20]]. (3.49)
— o0

It follows that

Iy = 20| = lim [lx1 = x| = I}x1 - . (3.50)

Since x,, — w asi — oo, therefore, we have
(x1 —xp,) = (X1 —w) asi— oo. (3.51)
Hence, from (3.50), (3.51), Kadec-Klee property, and the uniqueness of w = Po(x1), we obtain
X, — W=w asi— oo. (3.52)

i

It follows that {x,} converges strongly to w and so are {y,}, {z,}, and {u,}. This completes
the proof. O
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Remark 3.2. The iteration (3.1) is the difference with the iterative scheme of Qin et al. [7] as
follows.

(1) The sequence {x,} is a projection sequence of x; onto C,NQ,, for all n € N such that

CiNQ1o2CNQ0---2C,NQ, DD Q. (3.53)

(2) A solving of a common element of the set of fixed point for an asymptotically
pseudocontractive mapping in the intermediate sense and the set of solutions of
the mixed equilibrium problems by iteration is obtained.

We define the condition (B3) as the condition (B1) such that ¢ = 0. If ¢ = 0, then
Theorem 3.1 is reduced immediately to the following result.

Corollary 3.3. Let C be a nonempty closed convex subset of a real Hilbert space H, and let @ a
bifunction from C x C into R satisfying the conditions (A1)—(A5) with either (B2) or (B3) holds. Let
T : C — C bea uniformly L-Lipschitzian such that L > 0 and asymptotically pseudocontractive
mapping in the intermediate sense defined as in (1.13) with the sequences {k,} C [1, 00) and {7,} C
[0, 00) such that lim,, _, o, k, = 1 and lim,,_, o, T, = 0. Let g, = 2k, — 1 for all n € N. Assume that
Q := F(T) N EP(D) be a nonempty bounded subset of C. For x1 = x € C chosen arbitrarily, suppose
that {x,}, {yn}, {zn}, and {u,} are generated iteratively by

uy € C such that ®(u,y) + rl<y —Un, Uy —Xn) 20, VyeC,
n

zn = (1= Bp)un + BT un,

Yn=(1—an)u, +a,T"z,,

Cunt = {2€ CanQu t[lyn = 21" < llxa — 2l + @6, (3.54)

0B (Budn + BLL? + Bu = 1) IT"uy — ]I},
Quin={z€CyuNQy:(xy—2,x1—x,) 20},
Ci=0Q1=¢C,

xn+] = PcmannH (xl)l Vn S N/

where 0y = (gu[1+ Bu(gn — 1] = 1) - A2 + 2(Bugn + 1)1 and A, = sup{||x, — z|| : z € Q} < o0
satisfying the following conditions:

(C1) {an}, {Bu} C (0,1) such that a < a, < B, < b for some a > 0and b € (0,L72(v1+ L2 -
1),

(C2) {r,} C [r, o0) for some r > 0;
(C3) X1 [rne1 — 1l < 0.

Then the sequences {xn}, {yn}, {zn}, and {u,} converge strongly to w = Pg(x1).

If @ = 0, then Corollary 3.3 is reduced immediately to the following result.
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Corollary 3.4. Let C be a nonempty closed convex subset of a real Hilbert space H. Let T : C — C
be a uniformly L-Lipschitzian such that L > 0 and asymptotically pseudocontractive mapping in the
intermediate sense defined as in (1.13) with the sequences {k,} C [1,00) and {T,} C [0, 00) such
that lim, , o k, = 1 and lim,,_, o, 7, = 0. Let g, = 2k, — 1 for all n € N. Assume that F(T) be a
nonempty bounded subset of C. For x1 = x € C chosen arbitrarily, suppose that {x,}, {y,}, and {z,}
are generated iteratively by

zn = (1= Bn)xn + PuT"xp,

Yn=(1-an)x, + anT"z,,

Cpi1 = {Z €ChnNQy: “yn - lez < ||xn - Z”2 + a0,

setuu(Pud + L2 + P = 1) 7", — ), (3.55)

Qn+1 = {Zecann : (xn_zlxl _xn> 20}/
Ci=0Q:1=¢C,

Xn+l = Pcn+1an+l (xl)/ Vn €N,

where 0, = (gu[1+ Pu(gn —1)] = 1) - A2 + 2(Bugn + 1)Tn, Ay = sup{|lx, — 2| : z € F(T)} < co and
{an}, {Bn} C (0,1) such that a < a,, < B, < b for some a > 0and b € (0,L72(v1+ L2 - 1)). Then
the sequences {x}, {yn} and {z,} converge strongly to w = Pr(r)(x1).

We introduce the equilibrium problem to the optimization problem:

ming(x), (3.56)

xeC

where C is a nonempty closed convex subset of a real Hilbert space H and let { : C —
R U {+o0} is a proper convex and lower semicontinuous. We denote by Argmin(¢) the set
of solution of problem (3.56). We define the condition (B4) as the condition (B3) such that
@ : C x C — Ris a bifunction defined by ®(x,y) = {(y) — {(x) for all x,y € C. Observe that
EP(®) = Argmin({). We obtain that Corollary 3.3 is reduced immediately to the following
result.

Corollary 3.5. Let C is a nonempty closed convex subset of a real Hilbert space H, and { : C —
R U {+oo} be a proper lower semicontinuous and convex function with either (B2) or (B4) holds. Let
T : C — C be a uniformly L-Lipschitzian such that L > 0 and asymptotically pseudocontractive
mapping in the intermediate sense defined as in (1.13) with the sequences {k,} C [1,00) and {T,} C
[0, 00) such that lim, o, k, = 1 and lim,,_, x T, = 0. Let g, = 2k,, — 1 for all n € N. Assume that
Q = F(T) n Argmin(¢) be a nonempty bounded subset of C. For x1 = x € C chosen arbitrarily,
suppose that {xn}, {yn}, {zn} and {u,} are generated iteratively by

uy € C such that {(y) — {(uy) + %(y —Up, Uy —X) 20, VyeC,

zn = (1= Bp)un + BT y,
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Yn=1A-an)u, +a,T"z,,

Cut = {2 €CanQu [lyn = 2|I* < 1w = I + 2,6,

4o (Padn + BrL? + o = 1) IT"wn = 1]},
Qn+1 = {Z € Cann : <xn - Z,X1 _xn> > 0}/
Ci=Q1=¢C,

Xn+1 = PCn+1ﬁQn+1 (xl)r Vn €N,
(3.57)

where 0, = (gu[1+ Pu(gn — 1] = 1) - A2 + 2(Bugn + 1)1y and A, = sup{||x, —z|| : z € Q} < o0
satisfying the following conditions:

(C1) {an}, {Bu} C (0,1) such that a < a, < P, < b for some a > 0and b € (0,L>(v/1 + L2 -
1)

(C2) {rn} C [r, o0) for some r > 0;
(C3) X0ii [Tne1 — 1| < 0.

Then the sequences {xn}, {Yn}, {zn}, and {u,} converge strongly to w = Pg(x1).
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