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We consider an extension of the notion of well-posedness by perturbations, introduced by Zolezzi
(1995, 1996) for a minimization problem, to a class of generalized mixed variational inequalities
in Banach spaces, which includes as a special case the class of mixed variational inequalities.
We establish some metric characterizations of the well-posedness by perturbations. On the other
hand, it is also proven that, under suitable conditions, the well-posedness by perturbations of a
generalized mixed variational inequality is equivalent to the well-posedness by perturbations of
the corresponding inclusion problem and corresponding fixed point problem. Furthermore, we
derive some conditions under which the well-posedness by perturbations of a generalized mixed
variational inequality is equivalent to the existence and uniqueness of its solution.

1. Introduction

Let X be a real Banach space and f : X → R ∪ {+∞} a real-valued functional on
X. In 1966, Tikhonov [1] first introduced the classical notion of well-posedness for a
minimization problem minx ∈Xf(x), which has been known as the Tikhonov well-posedness.
A minimization problem is said to be Tikhonov well-posed if it has a unique solution toward
which every minimizing sequence of the problem converges. It is obvious that the notion
of Tikhonov well-posedness is inspired by the numerical methods producing optimizing
sequences for optimization problems and plays a crucial role in the optimization theory.
The notion of generalized Tikhonov well-posedness is also introduced for a minimization
problem having more than one solution, which requires the existence of solutions and the
convergence of some subsequence of every minimizing sequence toward some solution.
Another important notion of well-posedness for a minimization problem is the well-
posedness by perturbations or extended well-posedness due to Zolezzi [2, 3]. The notion
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of well-posedness by perturbations establishes a form of continuous dependence of the
solutions upon a parameter. There are many other notions of well-posedness in optimization
problems. For more details, we refer the readers to [1–7] and the references therein.

On the other hand, the concept of well-posedness has been generalized to other
variational problems, such as variational inequalities [4, 8–14], saddle point problems [15],
Nash equilibrium problems [14, 16–18], equilibrium problems [19], inclusion problems
[20, 21], and fixed point problems [20–22]. An initial notion of well-posedness for a
variational inequality is due to Lucchetti and Patrone [4]. They introduced the notion
of well-posedness for variational inequalities and proved some related results by means
of Ekeland’s variational principle. Since then, many papers have been devoted to the
extensions of well-posedness of minimization problems to various variational inequalities.
Lignola and Morgan [12] generalized the notion of well-posedness by perturbations to
a variational inequality and established the equivalence between the well-posedness by
perturbations of a variational inequality and the well-posedness by perturbations of the
corresponding minimization problem. Lignola and Morgan [14] introduced the concepts
of α-well-posedness for variational inequalities. Del Prete et al. [13] further proved that
the α-well-posedness of variational inequalities is closely related to the well-posedness of
minimization problems. Recently, Fang et al. [9] generalized the notions of well-posedness
and α-well-posedness to a mixed variational inequality. In the setting of Hilbert spaces, Fang
et al. [9] proved that under suitable conditions the well-posedness of a mixed variational
inequality is equivalent to the existence and uniqueness of its solution. They also showed
that the well-posedness of a mixed variational inequality has close links with the well-
posedness of the corresponding inclusion problem and corresponding fixed point problem
in the setting of Hilbert spaces. Subsequently, the notions of well-posedness and α-well-
posedness for a mixed variational inequality in [9] are extended by Ceng and Yao [11] to
a generalized mixed variational inequality in the setting of Hilbert spaces. Very recently,
Fang et al. [10] generalized the notion of well-posedness by perturbations to a mixed
variational inequality in Banach spaces. In the setting of Banach spaces, they established
some metric characterizations and showed that the well-posedness by perturbations of a
mixed variational inequality is closely related to the well-posedness by perturbations of the
corresponding inclusion problem and corresponding fixed point problem. They also derived
some conditions under which the well-posedness by perturbations of the mixed variational
inequality is equivalent to the existence and uniqueness of its solution.

In this paper, we further extend the notion of well-posedness by perturbations to a
class of generalized mixed variational inequalities in Banach spaces, which includes as a
special case the class of mixed variational inequalities in [10]. Under very mild conditions,
we establish some metric characterizations for the well-posed generalized mixed variational
inequality and show that the well-posedness by perturbations of a generalized mixed
variational inequality is closely related to the well-posedness by perturbations of the
corresponding inclusion problem and corresponding fixed point problem. We also derive
some conditions under which the well-posedness by perturbations of the generalized mixed
variational inequality is equivalent to the existence and uniqueness of its solution.

2. Preliminaries

Throughout this paper, unless stated otherwise, we always suppose that X is a real reflexive
Banach space with its dual X∗ and the duality pairing 〈·, ·〉 between X and X∗. For
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convenience, we denote strong (resp., weak) convergence by → (resp., ⇀). Let F : X → 2X

be a nonempty-valued multifunction, A : X → X∗ a single-valued mapping, and f : X →
R ∪ {+∞} a proper, convex, and lower semicontinuous functional. Denote by dom f the
domain of f , that is,

dom f :=
{
x ∈ X : f(x) < +∞}

. (2.1)

The generalized mixed variational inequality associated with (A,F, f) is formulated
as follows:

GMVI
(
A,F, f

)
: find x ∈ X such that, for some u ∈ F(x),

〈
Au, x − y

〉
+ f(x) − f

(
y
) ≤ 0, ∀y ∈ X,

(2.2)

which has been studied intensively (see, e.g., [11, 23–25]).
In the following, we give some special cases of GMVI(A,F, f).

(i) Whenever F = I, the identity mapping ofX, GMVI(A,F, f) reduces to the following
mixed variational inequality associated with (A, f):

MVI
(
A, f

)
: find x ∈ X such that

〈
Ax, x − y

〉
+ f(x) − f

(
y
) ≤ 0, ∀y ∈ X, (2.3)

which has been considered in [8–11, 26].

(ii) Whenever f = δK, MVI(A, f) reduces to the following classical variational
inequality:

VI(A,K): find x ∈ K such that
〈
Ax, x − y

〉 ≤ 0, ∀y ∈ K, (2.4)

where δK denotes the indicator functional of a convex subset K of X.

(iii) Whenever A = 0, MVI(A, f) reduces to the global minimization problem:

MP
(
f,X

)
: min
x ∈X

f(x). (2.5)

Suppose that L is a parametric normed space, P ⊂ L is a closed ball with positive
radius, and p∗ ∈ P is a fixed point. The perturbed problem of GMVI(A,F, f) is always given
by

GMVIp
(
A,F, f

)
: find x ∈ X such that for some u ∈ F(x),
〈
Ã
(
p, u

)
, x − y

〉
+ f̃

(
p, x

) − f̃
(
p, y

) ≤ 0, ∀y ∈ X,
(2.6)

where Ã : P × X → X∗ is such that Ã(p∗, ·) = A and f̃ : P × X → R ∪ {+∞} is such that
f̃(p∗, ·) = f .

Now we recall some concepts and results.
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Definition 2.1 (see [26]). A mapping M : X → 2X
∗
is said to be

(i) monotone if

〈
g − h, x − y

〉 ≥ 0, ∀x, y ∈ DomM, g ∈ M(x), h ∈ M
(
y
)
; (2.7)

(ii) maximal monotone ifM is monotone and

〈
g −w,x − z

〉 ≥ 0, ∀x ∈ DomM, g ∈ M(x) =⇒ w ∈ M(z), (2.8)

where 2X
∗
denotes the family of all subsets ofX∗ and DomM = {x ∈ X : M(x)/= ∅}.

Definition 2.2 (see [11]). A nonempty-valued multifunction F : X → 2X is said to be
monotone with respect to a single-valued mapping A : X → X∗ if, for all x, y ∈ X,

〈
Au −Av, x − y

〉 ≥ 0, ∀u ∈ F(x), v ∈ F
(
y
)
. (2.9)

Proposition 2.3 (Nadler’s Theorem [27]). Let (X, ‖ · ‖) be a normed vector space and H(·, ·) the
Hausdorff metric on the collection CB(X) of all nonempty, closed, and bounded subsets of X, induced
by a metric d in terms of d(x, y) = ‖x − y‖, which is defined by H(U,V ) = max{e(U,V ), e(V,U)}
for U and V in CB(X), where e(U,V ) = supx ∈U d(x, V ) with d(x, V ) = infy ∈V ‖x − y‖. If U and
V lie in CB(X), then, for any ε > 0 and any u ∈ U, there exists v ∈ V such that ‖u − v‖ ≤ (1 +
ε)H(U,V ). In particular, wheneverU and V are compact subsets inX, one has ‖u−v‖ ≤ H(U,V ).

Definition 2.4. Let {Un} be a sequence of nonempty subsets of X. One says thatUn converges
to U in the sense of Hausdorff metric if H(Un,U) → 0. It is easy to see that e(Un,U) → 0 if
and only if d(xn,U) → 0 for all selection xn ∈ Un. For more details on this topic, the reader
is referred to [28].

Definition 2.5 (see [29]). A mapping A : X → X∗ is said to be

(i) coercive if

lim
‖x‖→∞

〈Ax, x〉
‖x‖ = +∞; (2.10)

(ii) bounded if A(B) is bounded for every bounded subset B of X;

(iii) hemicontinuous if, for any x, y ∈ X, the function t �→ 〈A(x + t(y − x)), y − x〉 from
[0, 1] into R is continuous at 0+;

(iv) uniformly continuous if, for any neighborhood V of 0 in X∗, there exists a
neighborhood U of 0 in X such that Ax −Ay ∈ V for all x, y ∈ U.

Clearly, the uniform continuity implies the continuity, and the continuity implies the
hemicontinuity, but the converse is not true in general.
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Definition 2.6. (i) A nonempty weakly compact-valued multifunction F : X → 2X is said to
beH-hemicontinuous if, for any x, y ∈ X, the function t �→ H(F(x+t(y−x)), F(x)) from [0, 1]
into R+ = [0,∞) is continuous at 0+, where H is the Hausdorff metric defined on CB(X).

(ii) A nonempty weakly compact-valued multifunction F : X → 2X is said to be H-
continuous at a point x ∈ X if, for any ε > 0, there exists δ > 0 such that, for all y ∈ X with
‖x−y‖ < δ, one hasH(F(x), F(y)) < ε, whereH is the Hausdorffmetric defined on CB(X). If
this multifunction F : X → 2X isH-continuous at each x ∈ X, then one says that F : X → 2X

isH-continuous.
(iii) A nonempty weakly compact-valued multifunction F : X → 2X is said to be

H-uniformly continuous if, for any ε > 0, there exists δ > 0 such that, for all x, y ∈ X with
‖x − y‖ < δ, one has H(F(x), F(y)) < ε, where H is the Hausdorff metric defined on CB(X).

Remark 2.7. If X = H a real Hilbert space, then Definition 2.6(i)–(iii) reduce to Definition 2.3
(ii)–(iv) in [11], respectively.

Lemma 2.8. Let A : X → X∗ be weakly continuous (i.e., continuous from the weak topology of X
to the weak topology of X∗), let F : X → 2X be a nonempty weakly compact-valued multifunction
which is H-hemicontinuous and monotone with respect to A, and let f : X → R ∪ {+∞} be proper
and convex. Then, for a given x ∈ X, the following statements are equivalent:

(i) there exists u ∈ F(x) such that 〈Au, x − y〉 + f(x) − f(y) ≤ 0, for all y ∈ X;

(ii) 〈Av, x − y〉 + f(x) − f(y) ≤ 0, for all y ∈ X, v ∈ F(y).

Proof. Suppose that, for some u ∈ F(x),

〈
Au, x − y

〉
+ f(x) − f

(
y
) ≤ 0, ∀y ∈ X. (2.11)

Since F is monotone with respect to A, one has

〈
Av, x − y

〉
+ f(x) − f

(
y
) ≤ 〈

Au, x − y
〉
+ f(x) − f

(
y
) ≤ 0, ∀y ∈ X, v ∈ F

(
y
)
. (2.12)

Consequently,

〈
Av, x − y

〉
+ f(x) − f

(
y
) ≤ 0, ∀y ∈ X, v ∈ F

(
y
)
. (2.13)

Conversely, suppose that the last inequality is valid. Given any y ∈ X, we define yt =
x + t(y − x) for all t ∈ (0, 1). Replacing y by yt in the left-hand side of the last inequality, one
derives, for each vt ∈ F(yt),

0 ≥ 〈
Avt, x − yt

〉
+ f(x) − f

(
yt

) ≥ t
[〈
Avt, x − y

〉
+ f(x) − f

(
y
)]
, (2.14)

which hence implies that

〈
Avt, x − y

〉
+ f(x) − f

(
y
) ≤ 0, ∀vt ∈ F

(
yt

)
, t ∈ (0, 1). (2.15)

Since F : X → 2X is a nonempty weakly compact-valued multifunction, both F(yt) and
F(x) are nonempty weakly compact and hence are nonempty, weakly closed, and weakly
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bounded. Note that the weak closedness of sets in X implies the strong closedness and that
the weak boundedness of sets inX is equivalent to the strong boundedness. Thus, it is known
that both F(yt) and F(x) lie in CB(X). From Proposition 2.3, it follows that, for each t ∈ (0, 1)
and each fixed vt ∈ F(yt), there exists a ut ∈ F(x) such that

‖vt − ut‖ ≤ (1 + t)H(
F
(
yt

)
, F(x)

)
. (2.16)

Since F(x) is weakly compact, it follows from the net {ut : t ∈ (0, 1)} ⊂ F(x) that there exists
some subnet which converges weakly to a point of F(x). Without loss of generality, we may
assume that ut ⇀ u ∈ F(x) as t → 0+. Since F is H-hemicontinuous, one deduces that as
t → 0+

‖vt − ut‖ ≤ (1 + t)H(
F
(
yt

)
, F(x)

)
= (1 + t)H(

F
(
x + t

(
y − x

))
, F(x)

) −→ 0. (2.17)

Observe that, for each ϕ ∈ X∗,

∣∣〈ϕ, vt − u
〉∣∣ =

∣∣〈ϕ, vt

〉 − 〈
ϕ, ut

〉
+
〈
ϕ, ut

〉 − 〈
ϕ, u

〉∣∣

≤ ∥∥ϕ
∥∥‖vt − ut‖ +

∣∣〈ϕ, ut − u
〉∣∣ −→ 0 as t −→ 0+,

(2.18)

that is, vt ⇀ u as t → 0+. Since A is weakly continuous, Avt ⇀ Au and hence, for y ∈ X,

〈
Avt, x − y

〉 −→ 〈
Au, x − y

〉
as t −→ 0+. (2.19)

Thus, letting t → 0+ in the left-hand side of (2.15), we obtain that

〈
Au, x − y

〉
+ f(x) − f

(
y
) ≤ 0, ∀y ∈ X. (2.20)

Finally let us show that the vector u in the last inequality is not dependent on y, that is,

〈Au, x − z〉 + f(x) − f(z) ≤ 0, ∀z ∈ X. (2.21)

Indeed, take a fixed z ∈ X arbitrarily, and define zt = x + t(z − x) for all t ∈ (0, 1). Utilizing
Proposition 2.3, for each t ∈ (0, 1) and ut ∈ F(x), there exists wt ∈ F(zt) such that

‖ut −wt‖ ≤ (1 + t)H(F(x), F(zt)). (2.22)

Since F isH-hemicontinuous, we deduce that as t → 0+

‖ut −wt‖ ≤ (1 + t)H(F(x), F(zt)) = (1 + t)H(F(x), F(x + t(z − x))) −→ 0. (2.23)

Thus, one has, for each ϕ ∈ X∗,

∣∣〈ϕ,wt − u
〉∣∣ =

∣∣〈ϕ,wt

〉 − 〈
ϕ, ut

〉
+
〈
ϕ, ut

〉 − 〈
ϕ, u

〉∣∣

≤ ∥∥ϕ
∥∥‖ut −wt‖ +

∣∣〈ϕ, ut − u
〉∣∣ −→ 0 as t −→ 0+.

(2.24)
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This shows that wt ⇀ u as t → 0+. Since A is weakly continuous, Awt ⇀ Au and hence, for
z ∈ X,

〈Awt, x − z〉 −→ 〈Au, x − z〉 as t −→ 0+. (2.25)

Replacing y, yt, and vt in (2.15) by z, zt, and wt, respectively, one concludes that

〈Awt, x − z〉 + f(x) − f(z) ≤ 0, ∀t ∈ (0, 1). (2.26)

This immediately implies that inequality (2.21) is valid. This completes the proof.

Corollary 2.9 (see [11, Lemma 2.2]). Let H be a real Hilbert space. Let A : H → H be weakly
continuous (i.e., continuous from the weak topology ofH to the weak topology ofH), let F : H → 2H

be a nonempty weakly compact-valued multifunction which isH-hemicontinuous and monotone with
respect toA, and let f : H → R∪{+∞} be proper and convex. Then, for a given x ∈ H, the following
statements are equivalent:

(i) there exists u ∈ F(x) such that 〈Au, x − y〉 + f(x) − f(y) ≤ 0, for all y ∈ H;

(ii) 〈Av, x − y〉 + f(x) − f(y) ≤ 0, for all y ∈ H,v ∈ F(y).

Definition 2.10 (see [30]). LetK be a nonempty, closed, and convex subset ofX. One says that
K is well-positioned if there exist x0 ∈ X and g ∈ X∗ such that

〈
g, x − x0

〉 ≥ ‖x − x0‖, ∀x ∈ K. (2.27)

Remark 2.11 (see [10, Remark 2.1]). (i) IfK is well-positioned, thenK + x∗ is well-positioned
for all x∗ ∈ X.

(ii)As pointed out in [30, Remark 2.2], every nonempty compact convex set of a finite-
dimensional space is well-positioned. Some useful properties and interesting applications
have been discussed in [30, 31]. The following result is exacted from Proposition 2.1 of [30].
Also see [31, Proposition 2.1].

Lemma 2.12. Let K be a nonempty, closed, and convex subset of a reflexive Banach space X. If K is
well-positioned, then there is no sequence {xn} ⊂ K with ‖xn‖ → +∞ such that origin is a weak limit
of {xn/‖xn‖}.

Definition 2.13 (see [28]). Let B be a nonempty subset of X. The measure of noncompactness
μ of the set B is defined by

μ(B) = inf

{

ε > 0: A ⊂
n⋃

i=1

Bi, diamBi < ε, i = 1, 2, . . . , n, for some integer n ≥ 1

}

,

(2.28)

where diam means the diameter of a set.

Lemma 2.14 (see [10, Lemma 2.3]). Let An, A be nonempty, closed, and convex subsets of a real
reflexive Banach space X, and let A be well-positioned. Suppose that e(An,A) → 0 as n → ∞ and
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x ∈ X. Then, there is no sequence an ∈ An with ‖an‖ → +∞ such that origin is a weak limit of
{(an − x)/‖an − x‖}.

3. Well-Posedness by Perturbations and Metric Characterizations

In this section, we generalize the concepts of well-posedness by perturbations to the
generalized mixed variational inequality and establish their metric characterizations. In the
sequel we always denote by → and ⇀ the strong convergence and weak convergence,
respectively. Let α ≥ 0 be a fixed number.

Definition 3.1. Let {pn} ⊂ P be with pn → p∗. A sequence {xn} ⊂ X is called an α-ap-
proximating sequence corresponding to {pn} for GMVI(A,F, f) if there exists a sequence
{un} ⊂ X with un ∈ F(xn) (for all n ≥ 1) and a sequence {εn} of nonnegative numbers
with εn → 0 such that

xn ∈ dom f̃
(
pn, ·

)
,

〈
Ã
(
pn, un

)
, xn − y

〉
+ f̃

(
pn, xn

) − f̃
(
pn, y

) ≤ α

2
∥∥xn − y

∥∥2 + εn, ∀y ∈ X, n ≥ 1.
(3.1)

Whenever α = 0, we say that {xn} is an approximating sequence corresponding to {pn}
for GMVI(A,F, f). Clearly, every α2-approximating sequence corresponding to {pn} is α1-
approximating corresponding to {pn} provided α1 > α2 ≥ 0.

Definition 3.2. One says that GMVI(A,F, f) is strongly (resp., weakly) α-well-posed by
perturbations if GMVI(A,F, f) has a unique solution and, for any {pn} ⊂ P with pn → p∗,
every α-approximating sequence corresponding to {pn} converges strongly (resp., weakly)
to the unique solution. In the sequel, strong (resp., weak) 0-well-posedness by perturbations
is always called strong (resp., weak) well-posedness by perturbations. If α1 > α2 ≥ 0, then
strong (resp., weak) α1-well-posedness by perturbations implies strong (resp., weak) α2-well-
posedness by perturbations.

Remark 3.3. (i) When X is a Hilbert space and pn = p∗ (for all n ≥ 1), Definitions 3.1 and
3.2 coincide with Definitions 3.1 and 3.2 of [11], respectively. (ii) When f = δK and F = I
the identity mapping of X, Definitions 3.1 and 3.2 reduce to the definitions of approximating
sequences of the classical variational inequality (see [12, 13]).

Definition 3.4. One says that GMVI(A,F, f) is strongly (resp., weakly) generalized α-well-
posed by perturbations if GMVI(A,F, f) has a nonempty solution set S and, for any {pn} ⊂ P
with pn → p∗, every α-approximating sequence corresponding to {pn} has some subsequence
which converges strongly (resp., weakly) to some point of S. Strong (resp., weak) generalized
0-well-posedness by perturbations is always called strong (resp., weak) generalized well-
posedness by perturbations. Clearly, if α1 > α2 ≥ 0, then strong (resp., weak) generalized α1-
well-posedness by perturbations implies strong (resp., weak) generalized α2-well-posedness
by perturbations.

Remark 3.5. (i) When X is a Hilbert space and pn = p∗ (for all n ≥ 1), Definition 3.4
coincides with Definition 3.3 of [11]. (ii) When f = δK and F = I the identity mapping of X,
Definition 3.4 reduces to the definition of strong (resp., weak) parametric α-well-posedness
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in the generalized sense for the classical variational inequality (see [12–14]). (iii)WhenA = 0
and α = 0, Definition 3.4 coincides with the definition of well-posedness by perturbations
introduced for a minimization problem [2, 3].

To derive the metric characterizations of α-well-posedness by perturbations, we
consider the following approximating solution set of GMVI(A,F, f):

Ωα(ε) =
⋃

p ∈B(p∗, ε)

{
x ∈ dom f̃

(
p, ·): there exists u ∈ F(x) such that

〈
Ã
(
p, u

)
, x − y

〉

+f̃
(
p, x

) − f̃
(
p, y

) ≤ α

2
∥
∥x − y

∥
∥2 + ε, ∀y ∈ X

}
, ∀ε ≥ 0,

(3.2)

where B(p∗, ε) denotes the closed ball centered at p∗ with radius ε. In this section, we always
suppose that x∗ is a fixed solution of GMVI(A,F, f). Define

θ(ε) = sup{‖x − x∗‖ : x ∈ Ωα(ε)}, ∀ε ≥ 0. (3.3)

It is easy to see that θ(ε) is the radius of the smallest closed ball centered at x∗ containing
Ωα(ε). Now, we give a metric characterization of strong α-well-posedness by perturbations
by considering the behavior of θ(ε)when ε → 0.

Theorem 3.6. GMVI(A,F, f) is strongly α-well-posed by perturbations if and only if θ(ε) → 0 as
ε → 0.

Proof. Repeating almost the same argument as in the proof of [10, Theorem 3.1], we can easily
obtain the desired result.

Remark 3.7. Theorem 3.6 improves Proposition 2.2 of [13], Theorem 3.1 of [9], and Theo-
rem 3.1 of [10].

Now, we give an example to illustrate Theorem 3.6.

Example 3.8. Let X = R, P = [−1, 1], p∗ = 0, α = 2, Ã(p, x) = x(p2 + 1), F(x) = {x, 0}, and
f̃(p, x) = x2 for all x ∈ X, p ∈ P . Clearly, x∗ = 0 is a solution of GMVI(A,F, f). For any ε > 0,
it follows that

Ωp
α(ε) =

{
x ∈ R: u

(
p2 + 1

)(
x − y

)
+ x2 − y2 ≤ (

x − y
)2 + ε, ∀y ∈ R, for some u ∈ F(x)

}

= Δ ∪Λ,

(3.4)

where

Δ =
{
x ∈ R: x

(
p2 + 1

)(
x − y

)
+ x2 − y2 ≤ (

x − y
)2 + ε, ∀y ∈ R

}
,

Λ =
{
x ∈ R: 0

(
p2 + 1

)(
x − y

)
+ x2 − y2 ≤ (

x − y
)2 + ε, ∀y ∈ R

}
.

(3.5)
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Observe that

Δ =

⎧
⎨

⎩
x ∈ R: − 2

(

y +
p2 − 1

4
x

)2

+

(
p2 + 3

)2

8
x2 ≤ ε, ∀y ∈ R

⎫
⎬

⎭

=

[

− 2
√
2ε

(
p2 + 3

) ,
2
√
2ε

(
p2 + 3

)

]

,

Λ =

{

x ∈ R:
(
y − x

2

)2
− x2

4
+
ε

2
≥ 0, ∀y ∈ R

}

=
[
−
√
2ε,

√
2ε

]
.

(3.6)

Thus, we obtain

Ωp
α(ε) = Δ ∪Λ =

[

− 2
√
2ε

(
p2 + 3

) ,
2
√
2ε

(
p2 + 3

)

]

∪
[
−
√
2ε,

√
2ε

]
=

[
−
√
2ε,

√
2ε

]
. (3.7)

Therefore,

Ωα(ε) =
⋃

p ∈B(0, ε)

Ωp
α(ε) =

[
−
√
2ε,

√
2ε

]

(3.8)

for sufficiently small ε > 0. By trivial computation, we have

θ(ε) = sup{‖x − x∗‖ : x ∈ Ωα(ε)} =
√
2ε −→ 0 as ε −→ 0. (3.9)

By Theorem 3.6, GMVI(A,F, f) is 2-well-posed by perturbations.

To derive a characterization of strong generalized α-well-posedness by perturbations,
we need another function q which is defined by

q(ε) = e(Ωα(ε), S), ∀ε ≥ 0, (3.10)

where S is the solution set of GMVI(A,F, f) and e is defined as in Proposition 2.3.

Theorem 3.9. GMVI (A,F, f) is strongly generalized α-well-posed by perturbations if and only if S
is nonempty compact and q(ε) → 0 as ε → 0.

Proof. Repeating almost the same argument as in the proof of [10, Theorem 3.2], we can
readily derive the desired result.

Example 3.10. Let X = R, P = [−1, 1], p∗ = 0, α = 2, Ã(p, x) = x(p2 + 1), F(x) = {x, 0}, and
f̃(p, x) = x2 for all x ∈ X, p ∈ P . Clearly, x∗ = 0 is a solution of GMVI(A,F, f). Repeating the
same argument as in Example 3.8, we obtain that, for any ε > 0,

Ωα(ε) =
⋃

p ∈B(0, ε)

Ωp
α(ε) =

[
−
√
2ε,

√
2ε

]

(3.11)
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for sufficiently small ε > 0. By trivial computation, we have

q(ε) = e(Ωα(ε), S) = sup
x(ε)∈Ωα(ε)

d(x(ε), S) −→ 0 as ε −→ 0. (3.12)

By Theorem 3.9, GMVI(A,F, f) is generalized α-well-posed by perturbations.

The strong generalized α-well-posedness by perturbations can be also characterized
by the behavior of the noncompactness measure μ(Ωα(ε)).

Theorem 3.11. Let L be finite dimensional, Ã : P × X → X∗ weakly continuous (i.e., continuous
from the product of the norm topology of P and weak topology of X to the weak topology of X∗),
F : X → 2X a nonempty weakly compact-valued multifunction which is H-continuous, and
f̃ : P × X → R ∪ {+∞} a continuous functional such that f̃(p, ·) is proper and convex. Then,
GMVI(A,F, f) is strongly generalized α-well-posed by perturbations if and only if Ωα(ε)/= ∅, for all
ε > 0 and μ(Ωα(ε)) → 0 as ε → 0.

Proof. First, we will prove that Ωα(ε) is closed for all ε ≥ 0. Let {xn} ⊂ Ωα(ε) with xn → x.
Then, there exist {pn} ⊂ B(p∗, ε) and {un} ⊂ X with un ∈ F(xn) (for all n ≥ 1) such that

〈
Ã
(
pn, un

)
, xn − y

〉
+ f̃

(
pn, xn

) − f̃
(
pn, y

) ≤ α

2
∥∥xn − y

∥∥2 + ε, ∀y ∈ X, n ≥ 1.

(3.13)

Without loss of generality, we may assume pn → p ∈ B(p∗, ε) since L is finite dimensional.
Since F : X → 2X is a nonempty weakly compact-valued multifunction, F(xn) and F(x) are
nonempty weakly compact and hence are nonempty, weakly closed, and weakly bounded.
Note that the weak closedness of sets in X implies the strong closedness and that the weak
boundedness of sets in X is equivalent to the strong boundedness. Thus, it is known that
F(xn) and F(x) lie in CB(X). According to Proposition 2.3, for each n ≥ 1 and un ∈ F(xn),
there exists vn ∈ F(x) such that

‖un − vn‖ ≤
(
1 +

1
n

)
H(F(xn), F(x)). (3.14)

Since F isH-continuous, one deduces that

‖un − vn‖ ≤
(
1 +

1
n

)
H(F(xn), F(x)) −→ 0 as n −→ ∞. (3.15)

Also, since F(x) is weakly compact, it follows from {vn} ⊂ F(x) that there exists some
subsequence of {vn} which converges weakly to a point of F(x). Without loss of generality,
we may assume that

vn ⇀ u ∈ F(x) as n −→ ∞. (3.16)
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Consequently, one has, for each ϕ ∈ X∗,

∣
∣〈ϕ, un − u

〉∣∣ ≤ ∣
∣〈ϕ, un − vn

〉∣∣ +
∣
∣〈ϕ, vn − u

〉∣∣

≤ ∥
∥ϕ

∥
∥‖un − vn‖ +

∣
∣〈ϕ, vn − u

〉∣∣ −→ 0 as n −→ ∞.
(3.17)

This implies that un ⇀ u as n → ∞. Taking into account the weak continuity of Ã, we
immediately obtain that

Ã
(
pn, un

)
⇀ Ã

(
p, u

)
as n −→ ∞, (3.18)

and hence, for each y ∈ X,

∣∣∣
〈
Ã
(
pn, un

)
, xn − y

〉
−
〈
Ã
(
p, u

)
, x − y

〉∣∣∣

≤
∣∣∣
〈
Ã
(
pn, un

)
, xn − y

〉
−
〈
Ã
(
pn, un

)
, x − y

〉∣∣∣

+
∣∣∣
〈
Ã
(
pn, un

)
, x − y

〉
−
〈
Ã
(
p, u

)
, x − y

〉∣∣∣

≤
∥∥∥Ã

(
pn, un

)∥∥∥‖xn − x‖ +
∣∣∣
〈
Ã
(
pn, un

) − Ã
(
p, u

)
, x − y

〉∣∣∣ −→ 0 as n −→ ∞,

(3.19)

that is,

〈
Ã
(
pn, un

)
, xn − y

〉
−→

〈
Ã
(
p, u

)
, x − y

〉
as n −→ ∞. (3.20)

Therefore, it follows from (3.13) and the continuity of f̃ that

〈
Ã
(
p, u

)
, x − y

〉
+ f̃

(
p, x

) − f̃
(
p, y

) ≤ α

2
∥
∥x − y

∥∥2 + ε, ∀y ∈ X. (3.21)

This shows that x ∈ Ωα(ε) and so Ωα(ε) is closed.
Second, we show that

S =
⋂

ε > 0

Ωα(ε). (3.22)

It is obvious that S ⊂ ⋂
ε > 0 Ωα(ε). Let x∗ ∈ ⋂

ε > 0 Ωα(ε). Let {εn} be a sequence of positive
numbers such that εn → 0. Then, x∗ ∈ Ωα(εn) and so there exist pn ∈ B(p∗, εn) and u∗

n ∈ F(x∗)
such that

〈
Ã
(
pn, u

∗
n

)
, x∗ − y

〉
+ f̃

(
pn, x

∗) − f̃
(
pn, y

) ≤ α

2
∥∥x∗ − y

∥∥2 + εn, ∀y ∈ X, n ≥ 1. (3.23)
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It is clear that pn → p∗ as n → ∞. Since F(x∗) is weakly compact, it follows from {u∗
n} ⊂

F(x∗) that there exists some subsequence of {u∗
n}which converges weakly to a point of F(x∗).

Without loss of generality, we may assume that

u∗
n ⇀ u∗ ∈ F(x∗) as n −→ ∞. (3.24)

Note that Ã is weakly continuous. Thus,

Ã
(
pn, u

∗
n

)
⇀ Ã

(
p∗, u∗), (3.25)

and hence, letting n → ∞ in the last inequality, we get

〈
A(u∗), x∗ − y

〉
+ f(x∗) − f

(
y
)
=

〈
Ã
(
p∗, u∗), x∗ − y

〉
+ f̃

(
p∗, x∗) − f̃

(
p∗, y

)

≤ α

2
∥∥x∗ − y

∥∥2
, ∀y ∈ X.

(3.26)

For any z ∈ X and t ∈ (0, 1), putting y = x∗ + t(z − x∗) in (3.26), we have

t
{〈A(u∗), x∗ − z〉 + f(x∗) − f(z)

} ≤ t〈A(u∗), x∗ − z〉 + f(x∗) − f(x∗ + t(z − x∗))

≤ αt2

2
‖x∗ − z‖2.

(3.27)

This implies that

〈A(u∗), x∗ − z〉 + f(x∗) − f(z) ≤ αt

2
‖x∗ − z‖2, ∀z ∈ X. (3.28)

Letting t → 0 in the last inequality, we get

〈A(u∗), x∗ − z〉 + f(x∗) − f(z) ≤ 0, ∀z ∈ X. (3.29)

Consequently, x∗ ∈ S and so (3.22) is proved.
Now, we suppose that GMVI(A,F, f) is strongly generalized α-well-posed by

perturbations. By Theorem 3.9, S is nonempty compact and q(ε) → 0. Then, Ωα(ε)/= ∅ since
S ⊂ Ωα(ε) for all ε > 0. Observe that, for all ε > 0,

H(Ωα(ε), S) = max{e(Ωα(ε), S), e(S,Ωα(ε))} = e(Ωα(ε), S). (3.30)

Taking into account the compactness of S, we get

μ(Ωα(ε)) ≤ 2H(Ωα(ε), S) = 2e(Ωα(ε), S) = 2q(ε) −→ 0. (3.31)
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Conversely, we suppose thatΩα(ε)/= ∅, for all ε > 0, and μ(Ωα(ε)) → 0 as ε → 0. Since
Ωα(ε) is increasing with respect to ε > 0, by the Kuratowski theorem [28, page 318], we have
from (3.22)

q(ε) = H(Ωα(ε), S) −→ 0 as ε −→ 0 (3.32)

and S is nonempty compact. By Theorem 3.9, GMVI(A,F, f) is strongly generalized α-well-
posed by perturbations.

Remark 3.12. Theorem 3.3 of [10] generalizes Theorem 3.2 of [9]. Theorem 3.11 generalizes
Theorem 3.2 of [11] from the case of strong generalized α-well-posedness in the setting of
Hilbert spaces to the case of strong generalized α-well-posedness by perturbations in the
setting of Banach spaces. Furthermore, Theorem 3.11 improves, extends, and develops [10,
Theorem 3.3] in the following aspects.

(i) The mixed variational inequality problem (MVI) in [10, Theorem 3.3] is extended
to develop the more general problem, that is, the generalized mixed variational
inequality problem (GMVI) with a nonempty weakly compact-valued multifunc-
tion in the setting of Banach spaces. Moreover, the concept of strong generalized
α-well-posedness by perturbations for MVI in [10, Theorem 3.3] is extended to
develop the concept of strong generalized α-well-posedness by perturbations for
GMVI.

(ii) Since the generalizedmixed variational inequality problem (GMVI) is more general
and more complicated than the mixed variational inequality problem (MVI), the
assumptions in Theorem 3.11 are very different from the ones in [10, Theorem 3.3];
for instance, in Theorem 3.11, let L be finite dimensional, Ã : P × X → X∗ weakly
continuous, and F : X → 2X a nonempty weakly compact-valued multifunction
which is H-continuous, but, in [10, Theorem 3.3], let L be finite dimensional, Ã :
P ×X → X∗ a continuous mapping.

(iii) The technique of proving strong generalized α-well-posedness by perturbations for
GMVI in Theorem 3.11 is very different from the one for MVI in [10, Theorem 3.3]
because our technique depends on the well-known Nadler’s Theorem [27], the H-
continuity of nonempty weakly compact-valued multifunction F and the property
of the Hausdorff metric H.

Remark 3.13. Clearly, any solution of GMVI(A,F, f) is a solution of the α problem: find x ∈ X
such that, for some u ∈ F(x),

〈
A(u), x − y

〉
+ f(x) − f

(
y
) ≤ α

2
∥∥x − y

∥∥2
, ∀y ∈ X, (3.33)

but the converse is not true in general. To show this, let X = R, A(x) = x, F(x) = {x, 0}, and
f(x) = −x2 for all x ∈ X. It is easy to verify that the solution set of GMVI(A,F, f) is empty
and 0 is the unique solution of the corresponding α problem with α = 2. If f is proper and
convex, then GMVI(A,F, f) and α problem have the same solution (this fact has been shown
in the proof of Theorem 3.11).
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4. Links with the Well-Posedness by Perturbations of
Inclusion Problems

Lemaire et al. [20] introduced the concept of well-posedness by perturbations for an
inclusion problem. In this section, we will show that the well-posedness by perturbations
of a generalized mixed variational inequality is closely related to the well-posedness by
perturbations of the corresponding inclusion problem. Let us recall some concepts. Let
M : X → 2X

∗
. The inclusion problem associated withM is defined by

IP (M): find x ∈ X such that 0 ∈ M(x). (4.1)

The perturbed problem of IP(M) is given by

IPp(M): find x ∈ X such that 0 ∈ M̃
(
p, x

)
, (4.2)

where M̃ : P ×X → 2X
∗
is such that M̃(p∗, ·) = M.

Definition 4.1 (see [20]). Let {pn} ⊂ P be with pn → p∗. A sequence {xn} ⊂ X is called an
approximating sequence corresponding to {pn} for IP (M) if xn ∈ Dom M̃(pn, ·) for all n ≥ 1
and d(0, M̃(pn, xn)) → 0, or, equivalently, there exists yn ∈ M̃(pn, xn) such that ‖yn‖ → 0 as
n → ∞.

Definition 4.2 (see [20]). One says that IP(M) is strongly (resp., weakly) well-posed by
perturbations if it has a unique solution and, for any {pn} ⊂ P with pn → p∗, every
approximating sequence corresponding to {pn} converges strongly (resp., weakly) to the
unique solution of IP(M). IP(M) is said to be strongly (resp., weakly) generalized well posed
by perturbations if the solution set S of IP(M) is nonempty and, for any {pn} ⊂ P with
pn → p∗, every approximating sequence corresponding to {pn} has a subsequence which
converges strongly (resp., weakly) to a point of S.

Let f : X → R ∪ {+∞} be a proper, convex, and lower semicontinuous functional.
Denote by ∂f and ∂εf the subdifferential and ε-subdifferential of f , respectively, that is,

∂f(x) =
{
x∗ ∈ X∗: f

(
y
) − f(x) ≥ 〈

x∗, y − x
〉
, ∀y ∈ X

}
, ∀x ∈ dom f,

∂εf(x) =
{
x∗ ∈ X∗: f

(
y
) − f(x) ≥ 〈

x∗, y − x
〉 − ε, ∀y ∈ X

}
, ∀x ∈ dom f.

(4.3)

It is known that ∂f is maximal monotone and ∂εf(x) ⊃ ∂f(x)/= ∅ for all x ∈ dom f and for all
ε > 0. In terms of ∂f , GMVI(A,F, f) is equivalent to the following inclusion problem:

IP
(
AF + ∂f

)
: find x ∈ X such that 0 ∈ AF(x) + ∂f(x). (4.4)

In other words, we have the following lemma.
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Lemma 4.3. Let x ∈ X be a fixed point, and let f : X → R ∪ {+∞} be a proper, convex, and lower
semicontinuous functional. Then, the following statements are equivalent:

(i) 〈Au, x − y〉 + f(x) − f(y) ≤ 0 for all y ∈ X and some u ∈ F(x);

(ii) 0 ∈ AF(x) + ∂f(x).

Proof. Observe that

〈
Au, x − y

〉
+ f(x) − f

(
y
) ≤ 0 ⇐⇒ f

(
y
) − f(x) ≥ 〈−Au, y − x

〉

⇐⇒ −Au ∈ ∂f(x)

⇐⇒ 0 ∈ Au + ∂f(x)

⇐⇒ 0 ∈ AF(x) + ∂f(x),

(4.5)

for all y ∈ X and some u ∈ F(x). The desired result follows immediately from the above
relations.

Naturally, we consider the perturbed problem of IP(AF + ∂f) as follows:

IPp

(
AF + ∂f

)
: find x ∈ X such that 0 ∈ Ã

(
p, F(x)

)
+ ∂f̃

(
p, ·)(x), (4.6)

where f̃ : P ×X → R∪{+∞} is such that f̃(p, ·) is proper, convex, and lower semicontinuous
for all p ∈ P , and f̃(p∗, ·) = f .

The following theorems establish the relations between the strong (resp., weak) well-
posedness by perturbations of generalized mixed variational inequalities and the strong
(resp., weak) well-posedness by perturbations of inclusion problems.

Theorem 4.4. Let Ã(·, y) : P → X∗ be continuous for each y ∈ X, let A(= A(p∗, ·)) : X → X∗ be
weakly continuous, let F : X → 2X be a nonempty weakly compact-valued multifunction which isH-
hemicontinuous and monotone with respect to Ã(p, ·) for each p ∈ P , and let f̃ : P ×X → R∪ {+∞}
be a continuous functional with respect to the product of the norm topology of P and weak topology of
X such that the following conditions hold:

(i) f̃(p, ·) is proper and convex for all p ∈ P ;

(ii) dom f is well-positioned and dom f ⊂ ⋂
p ∈P dom f̃(p, ·);

(iii) e(dom f̃(pn, ·),dom f) → 0 whenever pn → p∗, where e is defined as in Proposition 2.3.

Then, IP(AF + ∂f) is weakly well-posed by perturbations whenever GMVI(A,F, f) has a unique
solution.

Proof. Suppose that GMVI(A,F, f) has a unique solution x∗. Let {pn} ⊂ P be with pn → p∗,
and let {xn} be an approximating sequence corresponding to {pn} for IP(AF+∂f). Then, there
exists wn ∈ Ã(pn, F(xn)) + ∂f̃(pn, ·)(xn) such that ‖wn‖ → 0. Further, there exists un ∈ F(xn)
such that wn ∈ Ã(pn, un) + ∂f̃(pn, ·)(xn) with ‖wn‖ → 0. It follows that

f̃
(
pn, y

) − f̃
(
pn, xn

) ≥
〈
wn − Ã

(
pn, un

)
, y − xn

〉
, ∀y ∈ X, n ≥ 1. (4.7)
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We claim that {xn} is bounded. Indeed, if {xn} is unbounded, without loss of generality, we
may assume that ‖xn‖ → +∞. Let

tn =
1

‖xn − x∗‖ , zn = x∗ + tn(xn − x∗). (4.8)

By conditions (i)-(ii), we get zn ∈ dom f̃(pn, ·). Note that

‖zn‖ ≤ ‖x∗‖ + tn‖xn − x∗‖ = ‖x∗‖ + 1, ∀n ≥ 1. (4.9)

So, {zn} is bounded. Since X is reflexive, it follows from the boundedness of {zn} that there
exists some subsequence of {zn}which converges weakly to a point ofX. Hence, without loss
of generality, we may assume that tn ∈ (0, 1) and zn ⇀ z. It follows from Lemma 2.14 and
conditions (ii)-(iii) that z/=x∗. For any y ∈ X, observe that, for all v ∈ F(y),

〈
Ã
(
pn, v

)
, z − y

〉
=

〈
Ã
(
pn, v

)
, z − zn

〉
+
〈
Ã
(
pn, v

)
, zn − x∗

〉
+
〈
Ã
(
pn, v

)
, x∗ − y

〉

=
〈
Ã
(
pn, v

)
, z − zn

〉
+ tn

〈
Ã
(
pn, v

)
, xn − x∗

〉
+
〈
Ã
(
pn, v

)
, x∗ − y

〉

=
〈
Ã
(
pn, v

)
, z − zn

〉
+ tn

〈
Ã
(
pn, v

)
, xn − y

〉
+ (1 − tn)

〈
Ã
(
pn, v

)
, x∗ − y

〉
.

(4.10)

Since x∗ is the unique solution of GMVI(A,F, f), there exists some u∗ ∈ F(x∗) such that

〈
Au∗, x∗ − y

〉
+ f(x∗) − f

(
y
) ≤ 0, ∀y ∈ X. (4.11)

Also, since F is monotone with respect to Ã(pn, ·), we deduce that, for u∗ ∈ F(x∗), v ∈ F(y),
and un ∈ F(xn),

〈
Ã
(
pn, v

)
, x∗ − y

〉
≤

〈
Ã
(
pn, u

∗), x∗ − y
〉
,

〈
Ã
(
pn, v

)
, xn − y

〉
≤

〈
Ã
(
pn, un

)
, xn − y

〉
.

(4.12)

In addition, we have

f̃
(
pn, zn

) ≤ tnf̃
(
pn, xn

)
+ (1 − tn)f̃

(
pn, x

∗) (4.13)
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by virtue of the convexity of f̃(pn, ·). It follows from (4.7)–(4.13) that

〈
Ã
(
pn, v

)
, z − y

〉
≤

〈
Ã
(
pn, v

)
, z − zn

〉
+ tn

〈
Ã
(
pn, un

)
, xn − y

〉

+ (1 − tn)
〈
Ã
(
pn, u

∗), x∗ − y
〉

≤
〈
Ã
(
pn, v

)
, z − zn

〉
+ (1 − tn)

〈
Ã
(
pn, u

∗), x∗ − y
〉

+ tn
(
f̃
(
pn, y

) − f̃
(
pn, xn

))
+ tn

〈
wn, xn − y

〉

≤
〈
Ã
(
pn, v

)
, z − zn

〉
+ (1 − tn)

〈
Ã
(
pn, u

∗), x∗ − y
〉

+ tn
〈
wn, xn − y

〉
+ tnf̃

(
pn, y

)
+ (1 − tn)f̃

(
pn, x

∗) − f̃
(
pn, zn

)
.

(4.14)

Moreover, it is easy to see from wn → 0 that tn〈wn, xn − y〉 → 0. Further, since Ã(·, y) : P →
X∗ is continuous for each y ∈ X and zn ⇀ z, it is known that Ã(pn, v) → Ã(p∗, v) and {zn} is
bounded. Consequently,

∣∣∣
〈
Ã
(
pn, v

)
, z − zn

〉∣∣∣ =
∣∣∣
〈
Ã
(
pn, v

)
, z − zn

〉
−
〈
Ã
(
p∗, v

)
, z − zn

〉
+
〈
Ã
(
p∗, v

)
, z − zn

〉∣∣∣

≤
∣∣∣
〈
Ã
(
pn, v

) − Ã
(
p∗, v

)
, z − zn

〉∣∣∣ +
∣∣∣
〈
Ã
(
p∗, v

)
, z − zn

〉∣∣∣

≤
∥∥∥Ã

(
pn, v

) − Ã
(
p∗, v

)∥∥∥‖zn − z‖

+
∣∣∣
〈
Ã
(
p∗, v

)
, zn − z

〉∣∣∣ −→ 0 as n −→ ∞.

(4.15)

In the meantime, since f̃ : P × X → R ∪ {+∞}is a continuous functional with respect to the
product of the norm topology of P and weak topology of X, we conclude from pn → p∗ and
zn ⇀ z that f̃(pn, zn) → f̃(p∗, z) and f̃(pn, x∗) → f̃(p∗, x∗) as n → ∞. Now, letting n → ∞
in (4.14)we get

〈
Av, z − y

〉
=

〈
Ã
(
p∗, v

)
, z − y

〉

≤
〈
Ã
(
p∗, u∗), x∗ − y

〉
+ f̃

(
p∗, x∗) − f̃

(
p∗, z

)

=
〈
Au∗, x∗ − y

〉
+ f(x∗) − f(z), ∀y ∈ X.

(4.16)

Since x∗ is the unique solution of GMVI(A,F, f), from (4.16)we get

〈
Av, z − y

〉 ≤ 〈
Au∗, x∗ − y

〉
+ f(x∗) − f(z)

=
〈
Au∗, x∗ − y

〉
+ f(x∗) − f

(
y
)
+ f

(
y
) − f(z)

≤ f
(
y
) − f(z), ∀y ∈ X,

(4.17)
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which implies that

〈
Av, z − y

〉
+ f(z) − f

(
y
) ≤ 0, ∀y ∈ X, v ∈ F

(
y
)
. (4.18)

Note that A is weakly continuous, that f is proper and convex, and that F is a nonempty
weakly compact-valued multifunction which is H-hemicontinuous and monotone with
respect to A. Hence, all conditions of Lemma 2.8 are satisfied. Thus, it follows from
Lemma 2.8 that there exists w ∈ F(z) such that

〈
Aw, z − y

〉
+ f(z) − f

(
y
) ≤ 0, ∀y ∈ X. (4.19)

Therefore, z is a solution of GMVI(A,F, f), a contradiction. This shows that {xn} is bounded.
Let {xnk} be any subsequence of {xn} such that xnk ⇀ x as k → ∞. It follows from

(4.7) that

〈
Ã
(
pnk , unk

)
, xnk − y

〉
+ f̃

(
pnk , xnk

) − f̃
(
pnk , y

) ≤ 〈
wnk , xnk − y

〉
, ∀y ∈ X, k ≥ 1.

(4.20)

Since Ã(·, y) : P → X∗ is continuous for each y ∈ X and xnk ⇀ x, it is known that Ã(pnk , v) →
Ã(p∗, v) and {xnk} is bounded. Consequently,
∣∣∣
〈
Ã
(
pnk , v

)
, xnk − y

〉
−
〈
Ã
(
p∗, v

)
, x − y

〉∣∣∣

=
∣∣∣
〈
Ã
(
pnk , v

)
, xnk − y

〉
−
〈
Ã
(
p∗, v

)
, xnk − y

〉
+
〈
Ã
(
p∗, v

)
, xnk − y

〉
−
〈
Ã
(
p∗, v

)
, x − y

〉∣∣∣

≤
∣∣∣
〈
Ã
(
pnk , v

) − Ã
(
p∗, v

)
, xnk − y

〉∣∣∣ +
∣∣∣
〈
Ã
(
p∗, v

)
, xnk − x

〉∣∣∣

≤
∥∥∥Ã

(
pnk , v

) − Ã
(
p∗, v

)∥∥∥
∥∥xnk − y

∥∥ +
∣∣∣
〈
Ã
(
p∗, v

)
, xnk − x

〉∣∣∣ −→ 0 as n −→ ∞.

(4.21)

Moreover, since f̃ : P ×X → R ∪ {+∞}is a continuous functional with respect to the product
of the norm topology of P and weak topology of X, we conclude from pnk → p∗ and xnk ⇀ x

that f̃(pnk , xnk) → f̃(p∗, x) and f̃(pnk , y) → f̃(p∗, y) as k → ∞. Note that F is monotone
with respect to Ã(pnk , ·). Hence, it follows that for, unk ∈ F(xnk) and v ∈ F(y),

〈
Av, x − y

〉
+ f(x) − f

(
y
)
=

〈
Ã
(
p∗, v

)
, x − y

〉
+ f̃

(
p∗, x

) − f̃
(
p∗, y

)

= lim
k→∞

{〈
Ã
(
pnk , v

)
, xnk − y

〉
+ f̃

(
pnk , xnk

) − f̃
(
pnk , y

)}

≤ lim
k→∞

{〈
Ã
(
pnk , unk

)
, xnk − y

〉
+ f̃

(
pnk , xnk

) − f̃
(
pnk , y

)}

≤ lim
k→∞

〈
wnk , xnk − y

〉
= 0, ∀y ∈ X.

(4.22)
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This together with Lemma 2.8 yields that there exists u ∈ F(x) such that

〈
Au, x − y

〉
+ f(x) − f

(
y
) ≤ 0, ∀y ∈ X. (4.23)

Consequently, x solves GMVI(A,F, f). Wemust have x = x∗ since GMVI(A,F, f) has a unique
solution x∗. Therefore, {xn} converges weakly to x∗ and so IP(AF + ∂f) is weakly well-posed
by perturbations.

Remark 4.5. Theorem 4.4 improves, extends, and develops [10, Theorem 4.1] in the following
aspects.

(i) The mixed variational inequality problem (MVI) in [10, Theorem 4.1] is extended
to develop the more general problem, that is, the generalized mixed variational
inequality problem (GMVI) with a nonempty weakly compact-valued multifunc-
tion in the setting of Banach spaces. Moreover, the inclusion problem corresponding
to MVI in [10, Theorem 4.1] is extended to develop the more general problem, that
is, the inclusion problem corresponding to GMVI.

(ii) Since the generalizedmixed variational inequality problem (GMVI) is more general
and more complicated than the mixed variational inequality problem (MVI), the
assumptions in Theorem 4.4 are very different from the ones in [10, Theorem 4.1],
for instance, in Theorem 4.4, let Ã(·, y) : P → X∗ be continuous for each y ∈ X, let
A(= A(p∗, ·)) : X → X∗ be weakly continuous, and let F : X → 2X be a nonempty
weakly compact-valued multifunction which is H-hemicontinuous and monotone
with respect to Ã(p, ·) for each p ∈ P , but, in [10, Theorem 4.1], let Ã : P ×X → X∗

be a continuous mapping such that Ã(p, ·) : X → X∗ is monotone for all p ∈ P .

(iii) The technique of proving weak well-posedness by perturbations for inclusion
problem IP(AF + ∂f) in Theorem 4.4 is very different from the one for inclusion
problem IP(A + ∂f) in [10, Theorem 4.1] because our technique depends on
Lemma 2.8. Note that A is weakly continuous, that f is proper and convex,
and that F is a nonempty weakly compact-valued multifunction which is H-
hemicontinuous and monotone with respect to A. Hence, all the conditions of
Lemma 2.8 are satisfied. Recall that the proof of Lemma 2.8 depends on the well-
known Nadler’s Theorem [27]. Thus, our technique depends essentially on the
well-known Nadler’s Theorem [27], the H-hemicontinuity of nonempty weakly
compact-valued multifunction F and the monotonicity of F with respect to Ã(p, ·)
for each p ∈ P .

Theorem 4.6. Let Ã(·, y) : P → X∗ be continuous for each y ∈ X, let A : X → X∗ be weakly
continuous, let F : X → 2X be a nonempty weakly compact-valued multifunction which is H-
hemicontinuous and monotone with respect to Ã(p, ·) for each p ∈ P , and let f̃ : P ×X → R∪ {+∞}
be a continuous functional with respect to the product of the norm topology of P and weak topology of
X such that the following conditions hold:

(i) f̃(p, ·) is proper and convex for all p ∈ P ;

(ii) dom f is well-positioned and dom f ⊂ ⋂
p ∈P dom f̃(p, ·);

(iii) e(dom f̃(pn, ·),dom f) → 0 whenever pn → p∗.
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Then, GMVI(A,F, f) is weakly well-posed by perturbations whenever IP(AF + ∂f) has a unique
solution.

Proof. Let IP(AF+∂f) have a unique solution x∗. By Lemma 4.3, x∗ is also the unique solution
of GMVI(A,F, f). Let {pn} ⊂ P be with pn → p∗, and let {xn} be an approximating sequence
corresponding to {pn} for GMVI(A,F, f). Then, there exist {un} ⊂ X with un ∈ F(xn) (for all
n ≥ 1) and 0 < εn → 0 such that

〈
Ã
(
pn, un

)
, xn − y

〉
+ f̃

(
pn, xn

) − f̃
(
pn, y

) ≤ εn, ∀y ∈ X, n ≥ 1. (4.24)

We claim that {xn} is bounded. Indeed, if {xn} is unbounded, without loss of generality, we
may assume that ‖xn‖ → +∞. Let

tn =
1

‖xn − x∗‖ , zn = x∗ + tn(xn − x∗). (4.25)

By conditions (i)-(ii), we get zn ∈ dom f̃(pn, ·). Without loss of generality we may assume
that tn ∈ (0, 1) and zn ⇀ z. From Lemma 2.14 and conditions (ii)-(iii) we obtain that z/=x∗.
For any y ∈ X, observe that, for all v ∈ F(y),

〈
Ã
(
pn, v

)
, z − y

〉
=

〈
Ã
(
pn, v

)
, z − zn

〉
+
〈
Ã
(
pn, v

)
, zn − x∗

〉
+
〈
Ã
(
pn, v

)
, x∗ − y

〉

=
〈
Ã
(
pn, v

)
, z − zn

〉
+ tn

〈
Ã
(
pn, v

)
, xn − y

〉
+ (1 − tn)

〈
Ã
(
pn, v

)
, x∗ − y

〉
.

(4.26)

Since x∗ is the unique solution of GMVI(A,F, f), there exists some u∗ ∈ F(x∗) such that

〈
Ãu∗, x∗ − y

〉
+ f(x∗) − f

(
y
) ≤ 0, ∀y ∈ X. (4.27)

Also, since F is monotone with respect to Ã(pn, ·), we deduce that, for u∗ ∈ F(x∗), v ∈ F(y),
and un ∈ F(xn),

〈
Ã
(
pn, v

)
, x∗ − y

〉
≤

〈
Ã
(
pn, u

∗), x∗ − y
〉
,

〈
Ã
(
pn, v

)
, xn − y

〉
≤

〈
Ã
(
pn, un

)
, xn − y

〉
.

(4.28)

In addition, since f̃(pn, ·) is convex, we get

f̃
(
pn, zn

) ≤ tnf̃
(
pn, xn

)
+ (1 − tn)f̃

(
pn, x

∗). (4.29)
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It follows from (4.24)–(4.29) that

〈
Ã
(
pn, v

)
, z − y

〉
≤

〈
Ã
(
pn, v

)
, z − zn

〉
+ tn

〈
Ã
(
pn, un

)
, xn − y

〉

+ (1 − tn)
〈
Ã
(
pn, u

∗), x∗ − y
〉

≤
〈
Ã
(
pn, v

)
, z − zn

〉
+ (1 − tn)

〈
Ã
(
pn, u

∗), x∗ − y
〉

+ tn
(
f̃
(
pn, y

) − f̃
(
pn, xn

))
+ tnεn

≤
〈
Ã
(
pn, v

)
, z − zn

〉
+ (1 − tn)

〈
Ã
(
pn, u

∗), x∗ − y
〉

+ tnεn + tnf̃
(
pn, y

)
+ (1 − tn)f̃

(
pn, x

∗) − f̃
(
pn, zn

)
.

(4.30)

Letting n → ∞ in the last inequality we get

〈
Av, z − y

〉
=

〈
Ã
(
p∗, v

)
, z − y

〉

≤
〈
Ã
(
p∗, u∗), x∗ − y

〉
+ f̃

(
p∗, x∗) − f̃

(
p∗, z

)

=
〈
Au∗, x∗ − y

〉
+ f(x∗) − f(z), ∀y ∈ X.

(4.31)

By using (4.31) and the same argument as in the proof of Theorem 4.4, we can prove that z is
a solution of GMVI(A,F, f), a contradiction. Thus, {xn} is bounded.

The rest follows from the similar argument to that in the proof of Theorem 4.4 and so
is omitted.

By Lemma 4.3 and Theorems 4.4 and 4.6, we have the following result.

Theorem 4.7. Let Ã(·, y) : P → X∗ be continuous for each y ∈ X, let A : X → X∗ be weakly
continuous, let F : X → 2X be a nonempty weakly compact-valued multifunction which is H-
hemicontinuous and monotone with respect to Ã(p, ·) for each p ∈ P , and let f̃ : P ×X → R∪ {+∞}
be a continuous functional with respect to the product of the norm topology of P and weak topology of
X such that the following conditions hold:

(i) f̃(p, ·) is proper and convex for all p ∈ P ;

(ii) dom f is well-positioned and dom f ⊂ ⋂
p ∈P dom f̃(p, ·);

(iii) e(dom f̃(pn, ·),dom f) → 0 whenever pn → p∗.

Then, the following statements are equivalent:

(i) GMVI(A,F, f) is weakly well posed by perturbations;

(ii) IP(AF + ∂f) is weakly well posed by perturbations;

(iii) GMVI(A,F, f) has a unique solution;

(iv) IP(AF + ∂f) has a unique solution.



Journal of Applied Mathematics 23

Remark 4.8. Theorem 4.7 improves Theorems 4.1, 4.2, and 6.1 of [9], Theorems 4.1–4.3 of [10],
and Theorems 4.1, 4.2, and 6.1 of [11].

Now we give the following example as an application of Theorem 4.7.

Example 4.9. Let X = R, P = [−1, 1], and p∗ = 0. Let Ã(p, x) = x + p, F(x) = x3 for all x ∈ X,
p ∈ P , and

f̃
(
p, x

)
=

⎧
⎨

⎩

(
p2 + 1

)
x2, x ∈ [−1, 1],

+∞, otherwise,
(4.32)

for all p ∈ P . Clearly, Dom Ã(p, ·) = R and Dom f = Dom f̃(p, ·) = [−1, 1] for all p ∈ P .
It is easy to see that Ã and f̃ are continuous, f̃(p, ·) is proper and convex, and F is H-
hemicontinuous and monotone with respect to Ã(p, ·) for each p ∈ P . By (ii) of Remark 2.7,
Dom f is well-positioned. Hence, all the assumptions of Theorem 4.7 are satisfied. Let S be
the solution set of GMVI(A,F, f). It follows that

S =
{
x ∈ [−1, 1] : x3(x − y

)
+ x2 − y2 ≤ 0, ∀y ∈ [−1, 1]

}

=

⎧
⎨

⎩
x ∈ [−1, 1] : −

(

y +
x3

2

)2

+
x6

4
+ x4 + x2 ≤ 0, ∀y ∈ [−1, 1]

⎫
⎬

⎭

= {0}.

(4.33)

So x∗ = 0 is the unique solution of GMVI(A,F, f). By Theorem 4.7, GMVI(A,F, f) is well-
posed by perturbations.

Next, we discuss the relationships between the generalized well-posedness by
perturbations of GMVI(A,F, f) and the generalized well-posedness by perturbations of
IP(AF + ∂f).

Theorem 4.10. Let Ã : P × X → X∗ be a uniformly continuous mapping, let F : X → 2X

be a nonempty weakly compact-valued multifunction which is H-uniformly continuous, and let f̃ :
P ×X → R∪ {+∞} be a functional such that f̃(p, ·) is proper, convex, and lower semicontinuous for
each p ∈ P . Then, GMVI(A,F, f) is strongly (resp., weakly) generalized well-posed by perturbations
whenever IP(AF + ∂f) is strongly (resp., weakly) generalized well-posed by perturbations.

Proof. Let {pn} ⊂ P be with pn → p∗, and let {xn} be an approximating sequence
corresponding to {pn} for GMVI(A,F, f). Then, there exist {un} ⊂ X with un ∈ F(xn) (for
all n ≥ 1) and 0 < εn → 0 such that

〈
Ã
(
pn, un

)
, xn − y

〉
+ f̃

(
pn, xn

) − f̃
(
pn, y

) ≤ εn, ∀y ∈ X, n ≥ 1. (4.34)
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Define ϕn : X → R ∪ {+∞} as follows:

ϕn

(
y
)
= f̃

(
pn, y

)
+
〈
Ã
(
pn, un

)
, y − xn

〉
, ∀y ∈ X, n ≥ 1. (4.35)

Clearly, ϕn is proper, convex, and lower semicontinuous and 0 ∈ ∂εnϕn(xn) for all n ≥ 1. By
the Brondsted-Rockafellar theorem [32], there exist xn ∈ X and

wn ∈ ∂ϕn(xn) = Ã
(
pn, un

)
+ ∂f̃

(
pn, ·

)
(xn) (4.36)

such that

‖xn − xn‖ ≤ √
εn , ‖wn‖ ≤ √

εn. (4.37)

Since F : X → 2X is a nonempty weakly compact-valued multifunction, both F(xn) and
F(xn) are nonempty weakly compact and hence are nonempty, weakly closed, and weakly
bounded. Note that the weak closedness of sets in X implies the strong closedness and that
the weak boundedness of sets inX is equivalent to the strong boundedness. Thus, it is known
that both F(xn) and F(xn) lie in CB(X) for each n ≥ 1. By Proposition 2.3, for each n ≥ 1 and
un ∈ F(xn), there exists un ∈ F(xn) such that

‖un − un‖ ≤
(
1 +

1
n

)
H(F(xn), F(xn)). (4.38)

Since F isH-uniformly continuous, we have from (4.37)

‖un − un‖ ≤
(
1 +

1
n

)
H(F(xn), F(xn)) −→ 0 as n −→ ∞. (4.39)

It follows from (4.36) that

wn + Ã
(
pn, un

) − Ã
(
pn, un

) ∈ Ã
(
pn, un

)
+ ∂f̃

(
pn, ·

)
(xn). (4.40)

Since Ã is a uniformly continuous, from (4.37)we get

∥∥∥wn + Ã
(
pn, un

) − Ã
(
pn, un

)∥∥∥ ≤ ‖wn‖ +
∥∥∥Ã

(
pn, un

) − Ã
(
pn, un

)∥∥∥ −→ 0. (4.41)

So {xn} is an approximating sequence corresponding to {pn} for IP(AF + ∂f).
By the strong (resp., weak) generalized well-posedness by perturbations of IP(AF +

∂f), there exists some subsequence {xnk} of {xn} such that xnk → x∗ (resp., xnk ⇀ x∗), where
x∗ is some solution of IP(AF + ∂f). By Lemma 4.3, x∗ is also a solution of GMVI(A,F, f).
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Case i. IP(AF+∂f) is strongly generalized well-posed by perturbations. It follows from (4.37)
that

‖xnk − x∗‖ ≤ ‖xnk − xnk‖ + ‖xnk − x∗‖ −→ 0 (4.42)

and so GMVI(A,F, f) is strongly generalized well-posed by perturbations.

Case ii. IP(AF +∂f) is weakly generalized well-posed by perturbations. For any ϕ ∈ X∗, from
(4.37)we have

∣
∣〈ϕ, xnk − x∗〉∣∣ ≤ ∣

∣〈ϕ, xnk − xnk

〉∣∣ +
∣
∣〈ϕ, xnk − x∗〉∣∣

≤ ∥
∥ϕ

∥
∥√εnk +

∣
∣〈ϕ, xnk − x∗〉∣∣ −→ 0.

(4.43)

Thus, GMVI(A,F, f) is weakly generalized well-posed by perturbations.

Theorem 4.11. Let Ã : P × X → X∗ and F : X → 2X , and let f̃ : P × X → R ∪ {+∞} be a
functional such that f̃(p, ·) is proper, convex, and lower semicontinuous for each p ∈ P . Then, IP(AF+
∂f) is strongly (resp., weakly) generalized well-posed by perturbations whenever GMVI(A,F, f) is
strongly (resp., weakly) generalized 1-well-posed by perturbations.

Proof. Let {pn} ⊂ P be with pn → p∗, and let {xn} be an approximating sequence
corresponding to {pn} for IP(AF + ∂f). Then, there exists wn ∈ Ã(pn, F(xn)) + ∂f̃(pn, ·)(xn)
such that ‖wn‖ → 0. It follows that there exists a sequence {un} ⊂ X with un ∈ F(xn) (for all
n ≥ 1) such that

wn ∈ Ã
(
pn, un

)
+ ∂f̃

(
pn, ·

)
(xn), ∀n ≥ 1, (4.44)

and hence

〈
Ã
(
pn, un

)
, xn − y

〉
+ f̃

(
pn, xn

) − f̃
(
pn, y

) ≤ 〈
wn, xn − y

〉

≤ 1
2
∥∥xn − y

∥∥2 +
1
2
‖wn‖2, ∀y ∈ X, n ≥ 1.

(4.45)

This together with ‖wn‖ → 0 implies that {xn} is a 1-approximating sequence corresponding
to {pn} for GMVI(A,F, f). Since GMVI(A,F, f) is strongly (resp., weakly) generalized 1-
well-posed by perturbations, {xn} converges strongly (resp., weakly) to some solution x∗ of
GMVI(A,F, f). By Lemma 4.3, x∗ is also a solution of IP(AF + ∂f). So IP(AF + ∂f) is strongly
(resp., weakly) generalized well-posed by perturbations.

Remark 4.12. When pn = p∗ (for all n ≥ 1) and F = I the identity mapping ofX, Theorems 4.10
and 4.11 coincide with Theorems 4.3 and 4.4 of [9], respectively. Also, when F = I, Theorems
4.10 and 4.11 coincide with Theorems 4.4 and 4.5 of [10], respectively. Furthermore, it can be
found that Theorems 4.10 and 4.11 also improve and extend Theorems 4.3 and 4.4 of [11],
respectively. In the meantime, Theorems 4.10 and 4.11 partially generalize Theorem2.1 of
Lemaire et al. [20].
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5. Links with the Well-Posedness by Perturbations of
Fixed Point Problems

Lemaire et al. [20] also considered the concepts of well-posedness by perturbations for
a (single-valued) fixed point problem. In this section, we consider the concepts of well-
posedness by perturbations for a (set-valued) fixed point problem. Let T : X → 2X be a
set-valued mapping. The fixed point problem associated with T is defined by

FP(T): find x ∈ X such that x ∈ T(x). (5.1)

The perturbed problem of FP(T) is given by

FPp(T): find x ∈ X such that x ∈ T̃
(
p, x

)
, (5.2)

where T̃ : P ×X → 2X is such that T̃(p∗, ·) = T .

Definition 5.1. Let {pn} ⊂ P be with pn → p∗. A sequence {xn} ⊂ X is called an approximating
sequence corresponding to {pn} for FP(T) if there exists a sequence {yn} ⊂ X with yn ∈ T(xn)
(for all n ≥ 1) such that ‖xn − yn‖ → 0 as n → ∞.

Definition 5.2. One says that FP(T) is strongly (resp., weakly) well-posed by perturbations
if FP(T) has a unique solution and, for any {pn} ⊂ P with pn → p∗, every approximating
sequence corresponding to {pn} for FP(T) converges strongly (resp., weakly) to the unique
solution. FP(T) is said to be strongly (resp., weakly) generalized well-posed by perturbations
if FP(T) has a nonempty solution set S and, for any {pn} ⊂ P with pn → p∗, every
approximating sequence corresponding to {pn} for FP(T) has a subsequence which converges
strongly (resp., weakly) to some point of S.

In particular, whenever T is a single-valued mapping, we can readily see that
Definitions 5.1 and 5.2 reduce to the corresponding definitions in [20]. It is known that in
the setting of Hilbert spaces a generalized mixed variational inequality can be transformed
into a fixed point problem (see [11, Proposition 2.1]). Utilizing this result, Ceng and Yao
[11] proved that in the setting of Hilbert spaces the well-posedness of a generalized mixed
variational inequality is equivalent to the well-posedness of the corresponding fixed point
problem. In this section, we will further show that the well-posedness by perturbations
of a generalized mixed variational inequality is closely related to the well-posedness by
perturbations of the corresponding fixed point problem in the setting of Banach spaces. Let
us first recall some concepts.

Let U = {x ∈ X : ‖x‖ = 1} be the unit sphere. A Banach space X is said to be

(a) strictly convex if, for any x, y ∈ U,

x /=y =⇒
∥∥∥∥
x + y

2

∥∥∥∥ < 1, (5.3)
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(b) smooth if the limit

lim
t→ 0

∥
∥x + ty

∥
∥ − ‖x‖
t

(5.4)

exists for all x, y ∈ U.

The modulus of convexity of X is defined by

δX(ε) = inf
{
1 −

∥
∥
∥
∥
x + y

2

∥
∥
∥
∥ : x, y ∈ U,

∥
∥x + y

∥
∥ ≥ ε

}
, (5.5)

and the modulus of smoothness of X is defined by

ρX(τ) = sup
{
1
2
(∥∥x + y

∥∥ +
∥∥x − y

∥∥) − 1 : x ∈ U,
∥∥y

∥∥ ≤ τ

}
. (5.6)

In the sequel we always suppose that q > 1 and s > 1 are fixed numbers. A Banach space X is
said to be

(c) uniformly convex if δX(ε) > 0 for all ε ∈ (0, 2),

(d) q-uniformly convex if there exists a constant c > 0 such that δX(ε) ≥ cεq for all
ε ∈ [0, 2],

(e) uniformly smooth if

ρX(τ)
τ

−→ 0 as τ −→ 0, (5.7)

(f) q-uniformly smooth if there exists a constant k > 0 such that

ρX(τ) ≤ kτq. (5.8)

It is well known that the Lebesgue Lq(q ≥ 2) spaces are q-uniformly convex and 2-
uniformly smooth and Lq(1 < q < 2) is 2-uniformly convex and q-uniformly smooth.

The generalized duality mapping Jq : X → 2X
∗
is defined by

Jq(x) =
{
jq(x) ∈ X∗ :

〈
jq(x), x

〉
= ‖x‖q,∥∥jq(x)

∥∥ = ‖x‖q−1
}
. (5.9)

In particular, J = J2 is called the normalized dualitymapping. Jq has the following properties:

(i) Jq is bounded;

(ii) if X is smooth, then Jq is single-valued;

(iii) if X is strictly convex, then Jq is one-to-one and strictly monotone.

For more details, we refer the readers to [29, 33] and the references therein.
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Lemma 5.3 (see [34]). Let X be a q-uniformly smooth Banach space. Then, there exists a constant
Lq > 0 such that

∥
∥Jq(x) − Jq

(
y
)∥∥ ≤ Lq

∥
∥x − y

∥
∥q−1

, ∀x, y ∈ X. (5.10)

Lemma 5.4 (see [34]). Let X be a q-uniformly convex Banach space. Then, there exists a constant
kq > 0 such that

〈
Jq(x) − Jq

(
y
)
, x − y

〉 ≤ kq
∥
∥x − y

∥
∥q

, ∀x, y ∈ X. (5.11)

Lemma 5.5 (see [10, Lemma 5.3]). LetX be a q-uniformly convex Banach space andM : X → 2X
∗

a maximal monotone operator. Then, for every λ > 0 and s > 1, (M+λJs)
−1 is well-defined and single-

valued.

The following result indicates that, under suitable conditions, the mappingΠf

λ : X∗ →
X is Lipschitz continuous, where Πf

λ = (Jq + λ∂f)−1.

Lemma 5.6 (see [10, Lemma 5.4]). LetX be a q-uniformly convex Banach space andM : X → 2X
∗

a maximal monotone operator. Then, for every λ > 0,

∥∥∥Π
f

λ(w1) −Πf

λ(w2)
∥∥∥ ≤

(
1

λkq

)1/(q−1)
‖w1 −w2‖1/(q−1), ∀w1, w2 ∈ X∗. (5.12)

By means of Lemma 5.5, we can transform GMVI(A,F, f) into a (set-valued) fixed
point problem.

Lemma 5.7. Let X be a q-uniformly convex Banach space, and let A : X → X∗ and F : X → 2X .
Let f : X → R ∪ {+∞} be a proper, convex, and lower semicontinuous functional. Then, x ∈ X is a
solution of GMVI(A,F, f) if and only if it is a solution of the following fixed point problem:

FP
(
Πf

λ

(
Jq − λAF

))
: find x ∈ X such that x ∈ Πf

λ

(
Jq(x) − λAF(x)

)
. (5.13)

Proof. The conclusion follows directly from the definitions of ∂f and Πf

λ
and Lemma 5.5.

Naturally, the perturbed problem of FP(Πf

λ(Jq − λAF)) is given by

FPp

(
Πf

λ

(
Jq − λAF

))
: find x ∈ X such that x ∈ Πf̃(p, ·)

λ

(
Jq(x) − λÃ

(
p, F(x)

))
. (5.14)

Theorem 5.8. Let X be an s-uniformly convex and q-uniformly smooth Banach space. Let Ã : P ×
X → X∗ be uniformly continuous, and let F : X → 2X be a nonempty weakly compact-valued
multifunction which isH-uniformly continuous and monotone with respect to Ã(p, ·) for each p ∈ P .
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Let f̃ : P × X → R ∪ {+∞} be a continuous functional with respect to the product of the norm
topology of P and weak topology of X such that the following conditions hold:

(i) f̃(p, ·) is proper and convex for all p ∈ P ;

(ii) dom f is well-positioned and dom f ⊂ ⋂
p ∈P dom f̃(p, ·);

(iii) e(dom f̃(pn, ·),dom f) → 0 whenever pn → p∗.

Then, FP(Πf

λ(Jq − λAF)) is weakly well-posed by perturbations whenever GMVI(A,F, f) has a
unique solution.

Proof. By Lemma 5.5, Πf̃(pn,·)
λ

= (Jq + λ∂f̃(pn, ·))−1 is well-defined and single-valued. Suppose
that GMVI(A,F, f) has a unique solution x∗. Then, by Lemma 5.7, x∗ is also the unique
solution of FP(Πf

λ
(Jq−λAF)). Let {pn} ⊂ P bewith pn → p∗, and let {xn} be an approximating

sequence corresponding to {pn} for FP(Πf

λ
(Jq−λAF)). Then, there exists a sequence {yn} ⊂ X

with yn ∈ Πf̃(pn,·)
λ (Jq(xn)− λÃ(pn, F(xn))) (for all n ≥ 1) such that ‖xn − yn‖ → 0. Further, it is

known that there exists a sequence {un} ⊂ X with un ∈ F(xn) (for all n ≥ 1) such that

yn = Πf̃(pn,·)
λ

(
Jq(xn) − λÃ

(
pn, un

))
, ∀n ≥ 1. (5.15)

By the definition of Πf̃(pn, ·)
λ

,

Jq(xn) − Jq
(
yn

)

λ
− Ã

(
pn, un

) ∈ ∂f̃
(
pn, ·

)(
yn

)
. (5.16)

It follows that

f̃
(
pn, y

) − f̃
(
pn, yn

) ≥
〈

Jq(xn) − Jq
(
yn

)

λ
− Ã

(
pn, un

)
, y − yn

〉

, ∀y ∈ X, n ≥ 1. (5.17)

From (5.17) we get yn ∈ dom f̃(pn, ·). We claim that {yn} is bounded. Indeed, if {yn} is
unbounded, without loss of generality, we may assume that ‖yn‖ → +∞. Let

tn =
1

∥∥yn − x∗∥∥ , zn = x∗ + tn
(
yn − x∗). (5.18)

From conditions (i)-(ii), we have zn ∈ dom f̃(pn, ·). Note that

‖zn‖ ≤ ‖x∗‖ + tn
∥∥yn − x∗∥∥ = ‖x∗‖ + 1, ∀n ≥ 1. (5.19)

So, {zn} is bounded. Since X is reflexive, it follows from the boundedness of {zn} that there
exists some subsequence of {zn} which converges weakly to a point of X. Hence, without
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loss of generality, we may assume that tn ∈ (0, 1) and zn ⇀ z. By Lemma 2.14 and conditions
(ii)-(iii), we get z/=x∗. For any y ∈ X, observe that, for all v ∈ F(y),

〈
Ã
(
pn, v

)
, z − y

〉
=

〈
Ã
(
pn, v

)
, z − zn

〉
+
〈
Ã
(
pn, v

)
, zn − x∗

〉
+
〈
Ã
(
pn, v

)
, x∗ − y

〉

=
〈
Ã
(
pn, v

)
, z − zn

〉
+ tn

〈
Ã
(
pn, v

)
, yn − y

〉
+ (1 − tn)

〈
Ã
(
pn, v

)
, x∗ − y

〉
.

(5.20)

Since x∗ is the unique solution of GMVI(A,F, f), there exists some u∗ ∈ F(x∗) such that

〈
Au∗, x∗ − y

〉
+ f(x∗) − f

(
y
) ≤ 0, ∀y ∈ X. (5.21)

Also, since F : X → 2X is a nonempty weakly compact-valued multifunction, both F(xn) and
F(yn) are nonempty weakly compact and hence are nonempty, weakly closed, and weakly
bounded. Note that the weak closedness of sets in X implies the strong closedness and that
the weak boundedness of sets in X is equivalent to the strong boundedness. So, it is known
that both F(xn) and F(yn) lie in CB(X). According to Proposition 2.3, for each n ≥ 1 and
un ∈ F(xn), there exists vn ∈ F(yn) such that

‖un − vn‖ ≤
(
1 +

1
n

)
H(

F(xn), F
(
yn

))
. (5.22)

Note that F isH-uniformly continuous. Thus, it follows that

‖un − vn‖ ≤
(
1 +

1
n

)
H(

F(xn), F
(
yn

)) −→ 0 as n −→ ∞. (5.23)

Furthermore, since F is monotone with respect to Ã(pn, ·), one concludes that, for u∗ ∈ F(x∗),
v ∈ F(y), and vn ∈ F(yn),

〈
Ã
(
pn, v

)
, x∗ − y

〉
≤

〈
Ã
(
pn, u

∗), x∗ − y
〉
,

〈
Ã
(
pn, v

)
, yn − y

〉
≤

〈
Ã
(
pn, vn

)
, yn − y

〉
.

(5.24)

It follows from (5.20) and (5.24) that

〈
Ã
(
pn, v

)
, z − y

〉
≤

〈
Ã
(
pn, v

)
, z − zn

〉
+ tn

〈
Ã
(
pn, vn

)
, yn − y

〉
+ (1 − tn)

〈
Ã
(
pn, u

∗), x∗ − y
〉

=
〈
Ã
(
pn, v

)
, z − zn

〉
+ tn

〈
Ã
(
pn, vn

) − Ã
(
pn, un

)
, yn − y

〉

+ tn
〈
Ã
(
pn, un

)
, yn − y

〉
+ (1 − tn)

〈
Ã
(
pn, u

∗), x∗ − y
〉
.

(5.25)
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In addition, we have

f̃
(
pn, zn

) ≤ tnf̃
(
pn, yn

)
+ (1 − tn)f̃

(
pn, x

∗) (5.26)

since f̃(pn, ·) is convex. It follows from (5.17), (5.25), and (5.26) that

〈
Ã
(
pn, v

)
, z − y

〉
≤

〈
Ã
(
pn, v

)
, z − zn

〉
+ tn

〈
Ã
(
pn, vn

) − Ã
(
pn, un

)
, yn − y

〉

+
tn
λ

〈
Jq(xn) − Jq

(
yn

)
, yn − y

〉
+ tnf̃

(
pn, y

) − tnf̃
(
pn, yn

)

+ (1 − tn)
〈
Ã
(
pn, u

∗), x∗ − y
〉

=
〈
Ã
(
pn, v

)
, z − zn

〉
+ tn

〈
Ã
(
pn, vn

) − Ã
(
pn, un

)
, yn − y

〉

+
tn
λ

〈
Jq(xn) − Jq

(
yn

)
, yn − y

〉
+ (1 − tn)

〈
Ã
(
pn, u

∗), x∗ − y
〉

+ tnf̃
(
pn, y

)
+ (1 − tn)f̃

(
pn, x

∗) −
{
tnf̃

(
pn, yn

)
+ (1 − tn)f̃

(
pn, x

∗)
}

≤
〈
Ã
(
pn, v

)
, z − zn

〉
+ tn

〈
Ã
(
pn, vn

) − Ã
(
pn, un

)
, yn − y

〉

+
tn
λ

〈
Jq(xn) − Jq

(
yn

)
, yn − y

〉
+ (1 − tn)

〈
Ã
(
pn, u

∗), x∗ − y
〉

+ tnf̃
(
pn, y

)
+ (1 − tn)f̃

(
pn, x

∗) − f̃
(
pn, zn

)
.

(5.27)

Note that ‖yn‖ → +∞ and

∥∥tn
(
yn − y

)∥∥ ≤
∥∥yn − x∗∥∥ +

∥∥x∗ − y
∥∥

∥∥yn − x∗∥∥ = 1 +

∥∥x∗ − y
∥∥

∥∥yn − x∗∥∥ . (5.28)

It is easy to see that {tn(yn − y)} is bounded. Since ‖xn − yn‖ → 0, by Lemma 5.3,

∥∥Jq(xn) − Jq
(
yn

)∥∥ ≤ Lq

∥∥xn − yn

∥∥q−1 −→ 0. (5.29)

In the meantime, on account of ‖un − vn‖ → 0, we have

∥∥∥Ã
(
pn, vn

) − Ã
(
pn, un

)∥∥∥ −→ 0 (5.30)
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by means of the uniformly continuity of Ã. Consequently, letting n → ∞we obtain that

∣
∣
∣tn

〈
Ã
(
pn, vn

) − Ã
(
pn, un

)
, yn − y

〉∣
∣
∣ ≤

∥
∥
∥A

(
pn, vn

) − Ã
(
pn, un

)∥∥
∥
∥
∥tn

(
yn − y

)∥∥ −→ 0,

∣
∣
∣
∣
tn
λ

〈
Jq(xn) − Jq

(
yn

)
, yn − y

〉
∣
∣
∣
∣ ≤

∥
∥Jq(xn) − Jq

(
yn

)∥∥

λ

∥
∥tn

(
yn − y

)∥∥ −→ 0,

(1 − tn)
〈
Ã
(
pn, u

∗), x∗ − y
〉
−→

〈
Ã
(
p∗, u∗), x∗ − y

〉
.

(5.31)

Moreover, also observe that

∣
∣
∣
〈
Ã
(
pn, v

)
, z − zn

〉∣
∣
∣ =

∣
∣
∣
〈
Ã
(
pn, v

) − Ã
(
p∗, v

)
, z − zn

〉
+
〈
Ã
(
p∗, v

)
, z − zn

〉∣
∣
∣

≤
∥
∥∥Ã

(
pn, v

) − Ã
(
p∗, v

)∥∥∥‖zn − z‖

+
∣∣∣
〈
Ã
(
p∗, v

)
, zn − z

〉∣∣∣ −→ 0 as n −→ ∞.

(5.32)

Further, since f̃ : P × X → R ∪ {+∞} is a continuous functional with respect to the product
of the norm topology of P and weak topology of X, we get that, as n → ∞,

tnf̃
(
pn, y

) −→ 0, (1 − tn)f̃
(
pn, x

∗) −→ f̃
(
p∗, x∗), f̃

(
pn, zn

) −→ f̃
(
p∗, z

)
. (5.33)

Therefore, letting n → ∞ in (5.27) we conclude that

〈
Av, z − y

〉
=

〈
Ã
(
p∗, v

)
, z − y

〉

≤
〈
Ã
(
p∗, u∗), x∗ − y

〉
+ f̃

(
p∗, x∗) − f̃

(
p∗, z

)

=
〈
Au∗, x∗ − y

〉
+ f(x∗) − f(z), ∀y ∈ X, v ∈ F

(
y
)
.

(5.34)

By using (5.34) and the same argument as in the proof of Theorem 4.4, we can prove that z is
a solution of GMVI(A,F, f), a contradiction. Thus, {yn} is bounded and so is {xn}.

By using (5.17) and the similar argument to that in the proof of Theorem 4.4, we can
prove that {xn} converges weakly to x∗. Since x∗ is the unique solution of FP(Πf

λ
(Jq − λAF)),

FP(Πf

λ(Jq − λAF)) is weakly well-posed by perturbations.

Remark 5.9. Theorem 5.8 generalizes Theorem 5.1 of [9] and Theorem 5.1 of [11] since every
Hilbert space is 2-uniformly convex and 2-uniformly smooth. Theorem 5.8 improves, extends,
and develops [10, Theorem 5.1] in the following aspects.

(i) The mixed variational inequality problem (MVI) in [10, Theorem 5.1] is extended
to develop the more general problem, that is, the generalized mixed variational
inequality problem (GMVI) with a nonempty weakly compact-valued multifunc-
tion in the setting of Banach spaces. In themeantime, the (single-valued) fixed point
problem corresponding to MVI in [10, Theorem 5.1] is extended to develop the
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more general problem, that is, the (set-valued) fixed point problem corresponding
to GMVI. Furthermore, the concept of weakwell-posedness by perturbations for the
(single-valued) fixed point problem corresponding to MVI is extended to develop
the concept of weak well-posedness by perturbations for the (set-valued) fixed
point problem corresponding to GMVI.

(ii) Since the generalizedmixed variational inequality problem (GMVI) is more general
and more complicated than the mixed variational inequality problem (MVI), the
assumptions in Theorem 5.8 are very different from the ones in [10, Theorem 5.1];
for instance, in Theorem 5.8, let Ã : P × X → X∗ be uniformly continuous, and
let F : X → 2X be a nonempty weakly compact-valued multifunction which is H-
uniformly continuous and monotone with respect to Ã(p, ·) for each p ∈ P , but, in
[10, Theorem 5.1], let Ã : P × X → X∗ be a uniformly continuous mapping such
that Ã(p, ·) : X → X∗ is monotone for all p ∈ P .

(iii) The technique of proving weak well-posedness by perturbations for (set-valued)
fixed point problem FP(Πf

λ
(Jq − λAF)) in Theorem 5.8 is very different from the

one for (single-valued) fixed point problem FP(Πf

λ
(Jq − λA)) in [10, Theorem 5.1]

because our technique depends on the well-known Nadler’s Theorem [27], the H-
uniformly continuity of nonempty weakly compact-valuedmultifunction F and the
monotonicity of F with respect to Ã(p, ·) for each p ∈ P .

Now we give the following example as an application of Theorem 5.8.

Example 5.10. Let X = R, P = [−1, 1], and p∗ = 0. Let Ã(p, x) = x + p, F(x) = x − sinx for all
x ∈ X, p ∈ P , and let

f̃
(
p, x

)
=

⎧
⎨

⎩

0, x ∈ K
(
p
)
,

+∞, otherwise,
(5.35)

for all p ∈ P , whereK(p) = [−1, 1]+{p}. Then, Dom Ã(p, ·) = R, Dom f = [−1, 1], Dom f̃(p, ·) =
K(p) for all p ∈ P . Clearly, if pn → p∗, then e(Dom f̃(pn, ·),Dom f) → 0. By the above
definitions, it is easy to see that Ã is uniformly continuous, F is H-uniformly continuous
and monotone with respect to Ã(p, ·) for each p ∈ P , and f̃(p, ·) is proper and convex. By
(ii) of Remark 2.7, Dom f is well-positioned. It is known that R is 2-uniformly convex and
2-uniformly smooth. Hence, all the assumptions of Theorem 5.8 are satisfied. Let S be the
solution set of GMVI(A,F, f). It follows that

S =
{
x ∈ [−1, 1] : (x − sinx)

(
x − y

) ≤ 0, ∀y ∈ [−1, 1]} = {0}. (5.36)

So x∗ = 0 is the unique solution of GMVI(A,F, f). By Theorem 5.8, FP(Πf

λ
(Jq − λAF)) is well-

posed by perturbations.

Based on Theorems 4.7 and 5.8 and Lemma 5.7, we have the following result.

Theorem 5.11. Let X be an s-uniformly convex and q-uniformly smooth Banach space. Let Ã :
P ×X → X∗ be uniformly continuous, let A : X → X∗ be weakly continuous, and let F : X → 2X
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be a nonempty weakly compact-valued multifunction which isH-uniformly continuous and monotone
with respect to Ã(p, ·) for each p ∈ P . Let f̃ : P × X → R ∪ {+∞} be a continuous functional with
respect to the product of the norm topology of P and weak topology of X such that the following
conditions hold:

(i) f̃(p, ·) is proper and convex for all p ∈ P ;

(ii) dom f is well-positioned and dom f ⊂ ⋂
p ∈P dom f̃(p, ·);

(iii) e(dom f̃(pn, ·),dom f) → 0 whenever pn → p∗.

Then, the following statements are equivalent:

(i) GMVI(A,F, f) is weakly well-posed by perturbations;

(ii) IP(AF + ∂f) is weakly well-posed by perturbations;

(iii) FP(Πf

λ
(Jq − λAF)) is weakly well-posed by perturbations;

(iv) GMVI(A,F, f) has a unique solution;

(v) IP(AF + ∂f) has a unique solution;

(vi) FP(Πf

λ
(Jq − λAF)) has a unique solution.

Next we consider the case of generalized well-posedness by perturbations.

Theorem 5.12. Let X be an s-uniformly convex and q-uniformly smooth Banach space. Let Ã :
P × X → X∗ be uniformly continuous, and let F : X → 2X be a nonempty weakly compact-valued
multifunction which isH-uniformly continuous and monotone with respect to Ã(p, ·) for each p ∈ P .
Let f̃ : P × X → R ∪ {+∞} be a continuous functional with respect to the product of the norm
topology of P and weak topology of X such that f̃(p, ·) is proper and convex. Then, FP(Πf

λ
(Jq −

λAF)) is strongly (resp., weakly) generalized well-posed by perturbations whenever GMVI(A,F, f)
is strongly (resp., weakly) generalized (1 + 1/λ)-well-posed by perturbations.

Proof. Suppose that GMVI(A,F, f) is strongly (resp., weakly) generalized (1 + 1/λ)-well-
posed by perturbations. Let {pn} ⊂ P be with pn → p∗, and let {xn} be an approximating
sequence corresponding to {pn} for FP(Πf

λ(Jq−λAF)). Then, there exists a sequence {yn} ⊂ X

with yn ∈ Πf̃(pn,·)
λ (Jq(xn)− λÃ(pn, F(xn))) (for all n ≥ 1) such that ‖xn − yn‖ → 0. Further, it is

known that there exists a sequence {un} ⊂ X with un ∈ F(xn) (for all n ≥ 1) such that

yn = Πf̃(pn, ·)
λ

(
Jq(xn) − λÃ

(
pn, un

))
, ∀n ≥ 1. (5.37)

By the definition of Πf̃(pn,·)
λ

,

Jq(xn) − Jq
(
yn

)

λ
− Ã

(
pn, un

) ∈ ∂f̃
(
pn, ·

)(
yn

)
. (5.38)

It follows that

f̃
(
pn, y

) − f̃
(
pn, yn

) ≥
〈

Jq(xn) − Jq
(
yn

)

λ
− Ã

(
pn, un

)
, y − yn

〉

, ∀y ∈ X, n ≥ 1. (5.39)
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Furthermore, since F : X → 2X is a nonempty weakly compact-valued multifunction, both
F(xn) and F(yn) are nonempty weakly compact and hence are nonempty, weakly closed, and
weakly bounded. Note that the weak closedness of sets in X implies the strong closedness
and that the weak boundedness of sets in X is equivalent to the strong boundedness. So, it is
known that both F(xn) and F(yn) lie in CB(X). According to Proposition 2.3, for each n ≥ 1
and un ∈ F(xn) there exists vn ∈ F(yn) such that

‖un − vn‖ ≤
(
1 +

1
n

)
H(

F(xn), F
(
yn

))
. (5.40)

Note that F isH-uniformly continuous. Thus, one deduces that

‖un − vn‖ ≤
(
1 +

1
n

)
H(

F(xn), F
(
yn

)) −→ 0 as n −→ ∞. (5.41)

Now utilizing (5.39)we have

〈
Ã
(
pn, vn

)
, yn − y

〉
+ f̃

(
pn, yn

) − f̃
(
pn, y

)

≤
〈

Jq(xn) − Jq
(
yn

)

λ
, yn − y

〉

+
〈
Ã
(
pn, vn

) − Ã
(
pn, un

)
, yn − y

〉

≤ 1
2

(
1 +

1
λ

)∥∥yn − y
∥∥2 +

1
2
εn, ∀y ∈ X, n ≥ 1,

(5.42)

where

εn =
1
λ

∥∥Jq(xn) − Jq
(
yn

)∥∥2 +
∥∥∥Ã

(
pn, vn

) − Ã
(
pn, un

)∥∥∥
2

≤ Lq

λ

∥∥xn − yn

∥∥2(q−1) +
∥∥∥Ã

(
pn, vn

) − Ã
(
pn, un

)∥∥∥
2 −→ 0.

(5.43)

Therefore, {yn} is a (1 + 1/λ)-approximating sequence corresponding to {pn} for
GMVI(A,F, f). By the strong (resp., weak) generalized (1 + 1/λ)-well-posedness by
perturbations, {yn} has some subsequence which converges strongly (resp., weakly) to a
solution x∗ of GMVI(A,F, f). By Lemma 5.7, x∗ is also a solution of FP(Πf

λ(Jq − λAF)).

Consequently, FP(Πf

λ(Jq − λAF)) is strongly (resp., weakly) generalized well-posed by
perturbations.

Remark 5.13. Theorem 5.12 generalizes Theorem 5.3 of [9] and Theorem 5.3 of [11]. In
addition, whenever F = I the identity mapping of X, Theorem 5.12 reduces to Theorem 5.3
of [10].

Theorem 5.14. Let X be a q-uniformly convex Banach space. Let Ã : P × X → X∗ be uniformly
continuous, and let F : X → 2X be a nonempty weakly compact-valued multifunction which is H-
uniformly continuous. Let f̃ : P ×X → R∪ {+∞} be a functional such that f̃(p, ·) is proper, convex,
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and lower semicontinuous for each p ∈ P . Then,GMVI(A,F, f) is strongly (resp., weakly) generalized
well-posed by perturbations whenever FP(Πf

λ
(Jq −λAF)) is strongly (resp., weakly) generalized well-

posed by perturbations.

Proof. Let {pn} ⊂ P be with pn → p∗, and let {xn} be an approximating sequence
corresponding to {pn} for GMVI(A,F, f). Then, there exist {un} ⊂ X with un ∈ F(xn) (for
all n ≥ 1) and 0 < εn → 0 such that

〈
Ã
(
pn, un

)
, xn − y

〉
+ f̃

(
pn, xn

) − f̃
(
pn, y

) ≤ εn, ∀y ∈ X, n ≥ 1. (5.44)

Define ϕn : X → R ∪ {+∞} as follows:

ϕn

(
y
)
= f̃

(
pn, y

)
+
〈
Ã
(
pn, un

)
, y − xn

〉
, ∀y ∈ X, n ≥ 1. (5.45)

Clearly, ϕn is proper, convex, and lower semicontinuous and 0 ∈ ∂εnϕn(xn) for all n ≥ 1. By
the Brondsted-Rockafellar theorem [32], there exist xn ∈ X and

wn ∈ ∂ϕn(xn) = Ã
(
pn, un

)
+ ∂f̃

(
pn, ·

)
(xn) (5.46)

such that

‖xn − xn‖ ≤ √
εn, ‖wn‖ ≤ √

εn. (5.47)

Since F is a nonempty weakly compact-valued multifunction, both F(xn) and F(xn) lie in
CB(X) for each n ≥ 1. By Proposition 2.3, for each n ≥ 1 and un ∈ F(xn) there exists un ∈ F(xn)
such that

‖un − un‖ ≤
(
1 +

1
n

)
H(F(xn), F(xn)). (5.48)

Since F isH-uniformly continuous, we obtain from (5.47) that

‖un − un‖ ≤
(
1 +

1
n

)
H(F(xn), F(xn)) −→ 0 as n −→ ∞. (5.49)

Utilizing (5.46) we have

xn = Πf̃(pn, ·)
λ

[
λwn + Jq(xn) − λÃ

(
pn, un

)]
. (5.50)

Since Ã is uniformly continuous, it follows from (5.47) and (5.50) that

∥∥∥
[
λwn + Jq(xn) − λÃ

(
pn, un

)] −
[
Jq(xn) − λÃ

(
pn, un

)]∥∥∥

≤ λ‖wn‖ + λ
∥∥∥Ã

(
pn, un

) − Ã
(
pn, un

)∥∥∥ −→ 0.
(5.51)
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By Lemma 5.6 and (5.50) and (5.51),

∥
∥
∥
∥xn −Πf̃(pn, ·)

λ

[
Jq(xn) − λÃ

(
pn, un

)]
∥
∥
∥
∥ −→ 0. (5.52)

Thus, {xn} is an approximating sequence corresponding to {pn} for FP(Πf

λ
(Jq − λAF)).

Repeating the same argument as in the proof of Theorem 4.10, we can deduce that {xn} has
some subsequence {xnk} which converges strongly (resp., weakly) to some solution x∗ of
FP(Πf

λ(Jq −λAF)). By Lemma 5.7, x∗ is also a solution of GMVI(A,F, f). Thus, GMVI(A,F, f)
is strongly (resp., weakly) generalized well-posed by perturbations.

Remark 5.15. Theorem 5.14 generalizes Theorem 5.4 of [9] and Theorem 5.4 of [11]. In
addition, whenever F = I the identity mapping of X, Theorem 5.14 reduces to Theorem 5.4
of [10].
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