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We introduce a new regularization iterative algorithm for equilibrium and fixed point problems of
nonexpansive mapping. Then, we prove a strong convergence theorem for nonexpansive
mappings to solve a unique solution of the variational inequality and the unique sunny
nonexpansive retraction. Our results extend beyond the results of S. Takahashi and W. Takahashi
(2007), and many others.

1. Introduction

Let H be a real Hilbert space with inner product (-,-) and norm || - ||, respectively. let C be a
nonempty closed convex subset of H. Let ¢ be a bifunction of C x C into R, where R is the set
of real numbers. The equilibrium problem for ¢ : C x C — Ris to find x € C such that

p(x,y) >0, VyeC. (1.1)

The set of solutions of (1.1) is denoted by EP(¢). Given a mapping T : C — H, let ¢(x,y) =
(Tx,y — x) for all x,y € C. Then, z € EP(¢) if and only if (Tz,y —z) > 0 for all y € C, that
is, z is a solution of the variational inequality. Numerous problems in physics, optimization,
and economics reduce to find a solution of (1.1) . Some methods have been proposed to solve
the equilibrium problem; see, for instance, [1-6].

A mapping S of C into H is said to be nonexpansive if

|Sx-Sy| <||lx-v|| VYxyeC (1.2)
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We denote by F(S) the set of fixed points of S. The fixed point equation Tx = x is ill-posed (it
may fail to have a solution, nor uniqueness of solution) in general. Regularization therefore is
needed. Contractions can be used to regularize nonexpansive mappings. In fact, the following
regularization has widely been implemented ([7-9]). Fixing a point # € C and for each f €
(0,1), one defines a contraction T; : C — C by

Tix=tu+(1-t)Tx, xeC. (1.3)

In this paper we provide an alternative regularization method. Our idea is to shrink x first
and then apply T to the convex combination of the shrunk x and the anchor u (this idea
appeared implicitly in [10] where iterative methods for finding zeros of maximal monotone
operators were investigated). In other words, we fix an anchor u € C and t € (0,1) and define
a contraction Ty : C — C by

Tix=T({tu+(1-t)x), xe€C. (1.4)

Compared with (1.1), (1.4) looks slightly more compact in the sense that the mapping
T is more directly involved in the regularization and thus may be more convenient in
manipulations since the nonexpansivity of T is utilized first.

In 2000, Moudafi [11] proved the following strong convergence theorem.

Theorem 1.1 (Moudafi [11]). Let C be a nonempty closed convex subset of a Hilbert space H and
let S be a nonexpansive mapping of C into itself such that F(S) is nonempty. Let f be a contraction of
C into itself and let {x,} be a sequence defined as follows: x1 = x € C and

1 En
= — _— 1-
Xyl Tre Sx, + o gnf(xn) (1.5)

forall n € N, where {e,} C (0,1) satisfies
1 1

(o)
lime, =0, an = oo, lim
n=1

n—oo n— oo

=0.
Enyl  En (16)

Then, {x,} converges strongly to z € F(S), where z = Pr(s) f (z) and Prs) is the metric projection of
H onto F(S).

Such a method for approximation of fixed points is called the viscosity approximation
method.

In 2007, S. Takahashi and W. Takahashi [5] introduced and considered the following
iterative algorithm by the viscosity approximation method in the Hilbert space:

x1 € H,
¢ (un,y) + rl<y—un,un—xn> >0, VyeC, (1.7)
Xpi1 = A f (xn) + (1 — a,)Sutyy,
for all n € N, where {a,} C [0,1] and {r,} C (0,0) satisfy some appropriate conditions.

Furthermore, they proved that {x,} and {u,} converge strongly to z € F(S) N EP(¢), where
z = Pr(s)rep(g) f (2).
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In this paper, motivated and inspired by the above results, we introduce an iterative
scheme by the general iterative method for finding a common element of the set of solutions
of (1.1) and the set of fixed points of a nonexpansive mapping in Hilbert space.

Let S : C — C be a nonexpansive mapping. Starting with an arbitrary x;,u € H,
define sequences {x,} and {u,} by

¢ (un,y) + %l(y— U, Up —Xn) 20, VyeC,

X1 = Prf (Xn) + (1= o) T(qu+ (1 — ay)uy), n>1.

(1.8)

We will prove in Section 3 that if the sequences {a,}, {#,}, and {y,} of parameters satisfy
appropriate conditions, then the sequence {x,} and {u,} generated by (1.8) converges
strongly to the unique solution of the variational inequality

((I-f)z,x-2)>0, VxeF(S)NEP($), (1.9)

which is the optimality condition for the minimization problem

1
xeF(S)nEP(¢)2<x'x> h(x), (1.10)

where h is a potential function for f and at the same time, the sequence {x,} and {u,}
generated by (1.8) converges in norm to Q(u), where Q : C — Fix(T) is the sunny non-
expansive retraction.

2. Preliminaries

Throughout this paper, we consider H as the Hilbert space with inner product (-,-) and norm
| - |I, respectively, C is a nonempty closed convex subset of H. Consider a subset D of C and
amapping Q : C — D. Then we say that

(i) Qs a retraction provided Qx = x for x € D;
(ii) Q is a nonexpansive retraction provided Q is a retraction that is also nonexpansive;

(iii) Q is a sunny nonexpansive retraction provided Q is a nonexpansive retraction with
the additional property: Q(x + f(x — Qx)) = Qx whenever x + t(x — Qx) € C, where
xe€Candt>0.

Letnow T : C — C be a nonexpansive mapping. For a fixed anchor u € C and each
t € (0,1) recall that z; € C is the unique fixed point of the contraction C 3 x — T (tu+ (1-1t)x).
Namely, z; € C is the unique solution in C to the fixed point equation

zy =T(tu+ (1 -1)z). (2.1)

In the Hilbert space (either uniformly smooth or reflexive with a weakly continuous duality
map), then z; is strongly convergent should it is bounded as t — 0.
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We also know that for any sequence {x,} ¢ H with x,, — x, the inequality

lim inflx, — x| < lim inf[|x, - || (2.2)

holds for every y € H with x #y, (we usually call it Opial’s condition); see [12, 13] for more
details.

For solving the equilibrium problem for a bifunction ¢ : CxC — R, let us assume that
¢ satisfies the following conditions:

(A1) (x,x) =0, for all x € C;

(A2) ¢ is monotone, thatis, ¢(x,y) + ¢(y,x) <0, for all x,y € C;

(Az) Foreach x,y,z € C, limyjop(tz + (1 - t)x,y) < p(x,y);

(A4) For each x € C, the function y — ¢(x, y) is convex and lower semicontinuous.
The following lemma appeared implicitly in [14].

Lemma 2.1 (see [14]). Let C be a nonempty closed convex subset of H and let ¢ : Cx C — R bea
bifunction satisfying (A1)—(As). Let v > 0 and x € H, then, there exists z € C such that

zjb(z,y)+%<y—z, z-x)>0, VyeC (2.3)

Lemma 2.2 (see [6]). Assume that ¢ : C x C — R satisfies (A1)—(A4). For r > 0 and x € H, define
a mapping T, : H — C as follows:

Tr(x)={zEC:¢(z,y)+%<y—z, z—x}ZO,VyGC}, (2.4)

forall z € H. Then, the following hold:
(1) T; is single-valued;
(2) T, is firmly nonexpansive, that is, for any x,y € H,

|Tox - Ty | < (T,x - Try, x-y); (2.5)

(3) F(T;) =EP(¢9);
(4) EP(¢) is closed and convex.

Lemma 2.3 (see [15]). Let {a,} C [0,00), {bs} C [0,00) and {c,} C [0,1) be sequences of real
numbers such that

an1 <(1-cy)a,+b,, YneN,

& & 2.6
ch = oo, an < oo <or lim supb—" < O>, (26)
n=1 n=1 n—ow Cn

then, lim,, _, . a, = 0.
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Lemma 2.4 (see [9]). Suppose that X is a smooth Banach space. Then a retraction Q : C — D is
sunny nonexpansive if and only if

(x-Qx, J(y-Qx))<0, xeC, yeD. (2.7)

Lemma 2.5. Let X be a uniformly smooth Banach space, C a nonempty closed convex subset of X,
and T : C — C a nonexpansive mapping. Let z; be defined by (2.1). Then (z;) remains bounded as
t — 0if and only if Fix(T) # . Moreover, if Fix(T) #, then (z;) converges in norm, ast — 0%, toa
fixed point of T; and if one sets

Q(u) = lim z, (2.8)

then Q defines the unique sunny nonexpansive retraction from C onto Fix(T).

Lemma 2.6. In the Hilbert space, the following inequalities always hold

() lx+yl> < llxl* + 2y, x+y);
(ii) fltx + (1 = )ylI* < tllxl + (1 - DllylI*~

3. Main Results

Theorem 3.1. Let C be a nonempty closed convex subset of H, ¢ : C x C — oo be a bifunction
satisfying (A1)—-(Ag) and T : C — C be a nonexpansive mapping of C into H such that
F(T) NEP(¢) #0. Let f be a contraction of H into itself with a € (0,1), initially give an arbitrary
element x; € H and let {x,} and {u,} be sequences generated by (1.8), where {a,} C [0,1] and
{ra} C (0, 00) satisfy the following conditions:
(D) limy oy, =0, Do ay =00 and X774 |ane1 — ay| < oo;

() liminf, r, > 0 and 3774 |rpe1 — 1n| < o0;

(D) limy — oofn =0, Do P =00 and X721 |Brs1 — Pul < o0;

(Iv) hmnﬂoo(an/ﬁn) =0.
Then, the sequences {x,} and {u, } converge strongly to z € F(T)NEP(¢), where z = Pr(r)nep(y) f (2)
and converge in norm to Q(u), where Q : C — Fix(T) is the sunny nonexpansive retraction.

Proof. Let Q = Prs)nep(g)- Then Qf is a contraction of H into itself. In fact, there exists a €
[0,1) such that || f(x) — f(y)|l < allx — y|| for all x, y € H. So, we have that

1Qf (x) = Qf Wl < lf(x) = FW)|l < allx -yl 3.1)

for all x,y € H. So, Qf is a contraction of H into itself. Since H is complete, there exists a
unique element z € H such that z = Qf(z), such a z € H is an element of C. We divide the
proof into serval steps.

Step 1. {x,} and {u,} are all bounded. Let p € F(T) N EP(¢), Then from u, = T,,x,, we have

lun = p|| = | T, 200 = T, p| < ||xn =P (32)
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foralln € N.Puty, = a,u+ (1 — an)uy,, so {x,.1} can be rewritten as

Xn+l = pnf(xn) + (1 - ﬂn)T]/nr
[y =PIl = [lante + (1 = &n)un = p|

(3.3)
= [lan(u=p) + (A - a) (un - p) |
< anflu=pl| + (1 = an) lun - pl|
Therefore, from (3.2) we get
[y =PIl < aullu—pll + (0 = an) |20 = pl| < max{[Ju-pl|, |2 - pll}- (3.4)

If ||x, — p|| < |lu - pl|, then {x,} is bounded. So, we assume that ||x, — p|| > |lu —p||.
Therefore ||y, —pll < llxx - pll,

[|xn1 = pll = |Buf (xn) + (1= Bu) Ty — p||
= [|Bn(f ) =p) + (1= ) (Tym —p) ||
< Bull fGen) =Pl + (1= Pu) [y —
< prallen =l + (1= )=l + il 9) - -
- (1= (=)l —pll + a1~ o PP

||f(P) P|| “}

7

< max{ [EE

So, by induction, we have

} (3.6)

hence {x,} is bounded. we also obtain that {u,}, {Tu,}, {Tx,}, { f(x,)} and {y,} are bounded.

00— pl < max{ =l

Step 2. ||xps1 — x4]| = Oasn — oo,

et = %l = (1B f () + (1= Br) Ty~ Pucs f (ut) = (1= uct) Ty |
= ”ﬂn (f(xn) _f(xnfl)) + (ﬁn _ﬂnfl)f(xn—l) +TYn —TYn
~Prn(TYn = TYn-1) = (P = Pn1) Ty | (3.7)
< Puallotn = xn-all + |Bn = Puca || f (n-1) = Ty |
+ (1= ) [|yn =y |,
|y = Y| = llawu + (1 = an)uy — apau = (1 = ap1)tin|

= ”(an - an—l)u t Uy —Uy-1 — Ay (un - un—l) - (‘xn - an—l)”n—l” (38)

<lan = analllu = una || + (1= an)l[ttn — tna -
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On the other hand, from u,, = T, x, and 1,1 = Ty, Xn11, We have

¢ (un, y) + %(y—un, Uy —x,) >0, VyeC,

1
¢(Uni,y) + r—l(y ~Uns1, Uns1 = Xni1) 20, Yy €C.

Putting v = 1,41 in (3.9) and y = u, in (3.10), we have

1
¢(un/ un+1) + T_<un+1 —Up, Up — xn> > 0/
n

1
¢(un+1/ Up) + ; (Un — Ups1, Ups1 — Xne1) 2 0.

n+1

So, from (A;) we have

Up —Xn  Unsl — Xn+l
<un+1 — Uy, - 2 0/

n Tni1

and hence

T'n
Upsl — Up, Uy — Upsl + Ups1 — Xy — T_(un+1 —Xp41) ) 2 0.

n+1

(3.9)

(3.10)

(3.11)

(3.12)

(3.13)

Without loss of generality, let us assume that there exists a real number b such thatr, > b >0

for all n € N. Then, we have

r

n+l = Un = n+l = Un, An+l = An - n+l = An+l

||u | < {u Uy, X X+ (1 (u Xp41)
Tnt1

1-
.

n+1

<Hupar + un”{”xnﬂ — Xl + [ttp1 — xn+1||}/

and hence

”un+1 - un” < ”xn+1 - xn” + |rn+1 - rn|||un+1 - xn+1”

n+1
1
< lxns1 = Xl + Elrn+1 —1a|L,
where L = sup{||lu, — x,|| : n € N}. Then we obtain

1
ltn — || < |2 = xp-1 || + =170 = 71| L-

b

(3.14)

(3.15)

(3.16)
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So, put (3.8) and (3.16) into (3.7) we have

lxne1 = xnll < Puallxy — x| + |pn ~ Pna | ”f(xn—l) - T]/n—l”
1
# (1= ) (10 = gl = sl + (1= ) ([ =l + Gl = malL ) )

1
< (1 -(1- a)ﬁn)“xn = xna|l + E|rn+1 —1n|L

+ |‘xn - an—llKl + |ﬂn - ,Bn—l |K2/
(3.17)

where K := sup{||lu — u,||, Yn > 1} is a constant; K := sup{|| f (xu-1)|| + |Tyn-1ll, Yn >1}isa
constant.
Using Lemma 2.3 and conditions (I), (II), (III) we have

Jim [l2cs1 = x| = 0. (3.18)

From (3.15) and |r,,;1 — 1| — 0, we have

Jim flups1 = tnl| = 0. (3.19)

Since y, = apu + (1 — ap)uy, x4 = Puf (xn-1) + (1 = ) Tyn-1, we have

lyn — un|| = anllu —unll — 0, asn— oo, (3.20)

1260 = Tl < |30 = Tyna || + | Tyn-1 = Titpa || + 1 Tttn-1 = Ta|

< P || £ Gen1) + Tyma || + [[yn-1 = s || + |4 = tha || — 0, as n— oo
(3.21)

For p € F(T) N EP(¢), we have

”un - P”2 = ”Trnxn - TrV,P”2 < <Trnxn -T,,p, xu _P>

= (Un—p, Xn—p)
1 (3.22)
= 5 (ln =PI+ Il =PI = Nt = ),

it = pII” < Nl =PI =l = x>
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Therefore, we have
s =PI = 111 = ) (Tyn = p) + u(F Gen) = P) I
< (1=B) " ITyn = pII* + 2B0(f (xa) =P, x01 = p)

< (1= Ba)" (lyn = unll + 1w = p)°
+ 2Pnal|xn = pllllxnet = pll +2Bal1 £ (P) = Pl %1 = p

= (1= )’ [|un —pI”
19 =l (1= B)* (N1 = ]| + 2]l = )
+ 2Pna||xn = p|[|xner = || + 28 £ (P) = Pl |1 = |
= (1=B)" (1w =PI = Nt = xa?)
19 =l (1= B)* (N1 = ] + 2]l = )
+ 2Bnal|xn = p||[|xner = pl| +2Bull £ () = Pl |01 = Pl
= (1-2B0+ B2 l1xn = pII* = (1= )t =
11—l (1= )" ([l = el + 20|10 = p|)
+ 2Pna||xn = p||[|xner = || + 28| £ (P) = Pl |21 = I
(1= )’ llten = all* < [l = pII* = %01 - P|I”
+ Bu(Bullxa ~ I =2l 1) = (1= )t~ 3P
1=l (1= )" ([l = el + 2] 0 = p|)
+ 2Pna||xn = p||[|xne1 = Il + 28| £ () = Pl |01 = |
2w = xpet l{ |20 = p| + [ 2041 = p[}
+Bu(Pullxn = pII* = 2l = pI?) = (1= o)l =

41y = sl (1= B)” (Y = ] + 2] = ]I
+ 2Pnal|xn = pllllxnes =PIl + 264l £ (P) = Pl %51 = I
(3.23)

IN

By the above of what we have and the condition of lim,, _, .. 3, = 0, we get lim,, _, - || x,—1,|| = 0.
Since ||Tu, — uy|| < ||Tu, — xu|| + |2 — uy||, it follows that ||Tu,, — u,|| — O.

Step 3. we show that

limsup(f(z) -z, x,—z) <0, (3.24)

n—oo



10 Journal of Applied Mathematics

where z = Pr(s)nep(¢) f (2z). To show this inequality, we choose a subsequence {uy,} of {u,}
such that

limsup(f(z) — z, xn, — z) = limsup(f(z) - z, x, — z). (3.25)

i— o0 n— oo

Since {uy, } is bounded, there exists a subsequence {u"“i } of {u,,} which converges weakly to
w. Without loss of generality, we can assume that u,, — w. From ||Tu, — u,|| — 0, we obtain
Tu,, — w. Let us show w € EP(¢). By u,, = T, x,,, we have

d(un, y) + %(y —Up, Up—Xy) 20, YyeC. (3.26)

From (A;), we also have

1
r_<y —Un, Un — xn> Z (,b(]/, un)/ (327)
and hence
Uy, — X,
<y — Un,, " > > ¢(yruni)- (328)

Since uy, — X, /tn, — 0 and u,, — w, from (A4) we have 0 > ¢(y, w) for all y € C. For ¢t with
O<t<landyeC,lety, =ty + (1-t)w.Since y € C and w € C, we have y; € C and hence
¢(yr, w) <0.So, from (A1) and Ay we have

0=y, yt)
<tp(yy) + (1 - (1, w) (329)
<tdp(y.y),

and hence 0 < ¢(y;, y). From (A3z), we have 0 < ¢p(w, y) for all y € C, and hence w € EP(¢).
We will show that w € F(T). Assume that w ¢ F(T). Since u,,, — w and w # Tw, from Opial’s
theorem we have

liminf||u,, — w|| < liminf||u,, - Tw]|
1—00 1— 00
< liminf{ [y, = Tuty || + | Taty, = Tl (3:30)

< liminf||u,, — w||.
1— 00

This is a contradiction. So, we get w € F(T). Therefore, w € F(T) N EP(¢). Since z =
Pr(rynep(g) f (2), we have

limsup(f(z) -z, x, —z) = lim (f(z) -z, x, — 2)
n—oo i—oo (3.31)
=(f(z) -z, w-2z)<0.
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From x,41 — 2= (1 = n)(Tyn — 2) + Bn(f (xn) — z), we have
||xn+1 - Z||2 < (1 - ﬂn)zn]/n - Z”2 + 2ﬂn<f(xn) —Z, Xp+l — Z>

< (1= o) llan(u—2) + (1 - ay) (xa — 2)|I?

+ 2natlxn = Zllxner = 21+ 2Ba(f(2) = Z, Xn1 —2)
< (1= ) (aallu—zIP + (1 - )l - zIP)
+ Bua (Il = 217 + ns = 2I7) + 2B f (2) = 2, %1 - 2)
< [ =) (1= ) + a1 - 2P
+Pualxner = 2l + (1= o) anlle = 21 + 26,(f(2) = 2, X1 - 2),

((1=p)* + pua)

v = 2l < Sl — 2
(1 ﬁn) an ||u—Z||2+ﬂ<f(z)—z X —z>
1- aﬁ 1-ap, s Xnl
< [1 20 a)ﬁ"]ll X — 2| + ﬂzﬂ [E
+ (11__[5;‘)6"“” ||M—Z||2+ ~Z, Xpa _Z>
2(1 a)ﬁn 2(1 2(1-a)pn
< [1- g - -
ﬂ” (1 _ﬂn) Xy 1
x {2(1_a)M+ 20 - a)p, lu-z|* + 1_Dc<f(z)—z, xnﬂ—z)}

= (1-064)llxn - Z||2 + OnGn,
(3.32)

where M = sup{||x, — z|>:neN}, 6, =2(1 - a)pu/1—ap, and &, := fn/2(1 —a)M + (1 -
ﬁn)zzxn/Z(l—zx)ﬁnllu - z||2+1/1—(x(f(z) ~Z, Xps1—2). Itis easy to see that 6, — 0, =% ,6, = o0
and limsup, _, ¢./6, < 0by (3.31) and the conditions. Hence, by Lemma 2.3, the sequence
{xn} converges strongly to z.

If z; is definition as (2.1), then, from Lemma 2.5, we have ||z; —g|| — Oast — 0, and
if we set Q(u) = lim; _, 0z, then Q defines the unique sunny nonexpansive retraction from C
onto Fix(T). So, if we replace t with a,,, the corollary still holds. and it is that z, = T'(a,,u + (1 -
a,)zy) is a fixed point sequence and ||z, —q|| — Oasn — oo, and if we set Q(u) := lim, _, o, Zy,
then Q defines the unique sunny nonexpansive retraction from C onto Fix(T). In the iterative
algorithm of Theorem 3.1, we can take z, to replace Ty, in particular. Then, we have x,.; =
Pnf(xn) + (1 = Pn)zn, 5O ||Xni1 — Zull = Pullf(xn) — zull — 0asn — oo. By the uniqueness
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of limit, we have z = g, that is, z = Q(u), where Q defines the unique sunny nonexpansive
retraction from C onto Fix(T). O

Remark. We notice that u,, = T}, x,, has not influence on x,,, u, — z = Prm)nep(p) f (2).
As direct consequences of Theorem 3.1, we obtain corollary.

Corollary 3.2. Let C be a nonempty closed convex subset of H, S : C — C be a nonexpansive
mapping of C into H such that F(S) #0. Let f be a contraction of H into itself and let {x, } and {u,}
be sequences generated initially by an arbitrary elements x1 € H and then by

Xnt1 = ﬂnf(xn) + (1 - ﬁn)s(anu + (1 -a,)Pcxy) (3.33)

foralln € N, where {a,} C (0, o) satisfies the following conditions:

(D) limy, oy =0, >0 an =00 and > |ne1 — | < o0;
(II) limy s 00n = 0, 302 P = 00 and Doy |Pus1 — Pl < oo;
(1) limy,—, w0,/ Pn = 0.

Then, the sequences {x,} converge strongly to z € F(S), where z = Pr(s) f ().

Proof. Put ¢(x,y) =0, forall x,y € C and r,, = 1, for all n € N in Theorem 3.1.
Then we have u,, = Pcx,. So, from Theorem 3.1, the sequence x, generated by x; € H
and

X1 = Puf (xn) + (1= Bu) S(anu + (1 — ay) Pexy) (3.34)

for all n € N converges strongly to z € F(S), where z = Pr(s) f (2). O

4. Application for Zeros of Maximal Monotone Operators

We adapt in this section the iterative algorithm (3.1) to find zeros of maximal monotone oper-
ators and find EP(¢). Let us recall that an operator A with domain D(A) and range R(A) in
a real Hilbert space H with inner product (:,-) and norm || - || is said to be monotone if the
graph of A,

G(T)={(x,y)e HxH :xeD(T), y € Tx} (4.1)
is a monotone set. Namely,
(x-x, y-vy') >0, (x,y), (x,y) € G(A). (4.2)

A monotone operator A is said to be maximal monotone of the graph G(T) is not
properly contained in the graph of any other monotone defined in H. See Brezis [16] for
more details on maximal monotone operators.
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In this section we always assume that A is maximal monotone and the set of zeros of
A, N(A) = {x € D(A) : 0 € Ax}, is nonempty so that the metric projection Pny4) from H
onto N (A) is well-defined.

One of the major problems in the theory of maximal operators is to find a point in the
zero set N (A) because various problems arising from economics, convex programming, and
other applied areas can be formulated as finding a zero of maximal monotone operators.
The proximal point algorithm (PPA) of Rockafellar [17] is commonly recognized as the most
powerful algorithm in finding a zero of maximal monotone operators. This (PPA) generates,
starting with any initial guess xo € H, a sequence {x,} according to the inclusion:

Xp + ep € Xpp1 + CnA(Xns1), (4.3)

where {e,} is a sequence of errors and {c,} is a sequence of positive regularization
parameters. Equivalently, we can write

Xn+l = ]cAn (xn + en)r (44)

where for ¢ >0, | ;“ denotes the resolvent of A,

JA =T +cA)7, (4.5)

with I being the identity operator on the space H.

Rockafellar [17] proved the weak convergence of his algorithm (4.4) provided the
regularization sequence {c,} remains bounded away from zero and the error sequence {e,}
satisfies the condition

> llenll < oo. (4.6)
n=0

The aim of this section is to combine algorithm (3.1) with algorithm (4.4). Our
algorithm generates a sequence {x, } and {u, } be sequences generated initially by an arbitrary
elements x; € H and then by

1
¢ (un, y) +r—<y—un, Uy —x,) >0, VyeC, 47)

Xnt = uf (n) + (1= B) JA (agts + (1 = @)ty + ),

where a, and ¢, are sequences of positive real numbers. Furthermore, we prove that {x,}
and {u,} converge strongly to z € N(A) N EP(¢), where z = Px(a)nep(g) f (2)-

Before stating the convergence theorem of the algorithm (4.7), we list some properties
of maximal monotone operators.

Proposition 4.1. Let A be a maximal monotone operator in H and let JA = (I + cA)™ denote the
resolvent, where ¢ > 0,

(a) JA is nonexpansive for all ¢ > 0;
(b) N(A) = F(J.) forall ¢ > 0;
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(c) Forc>c >0, ||J2 = x|l <2||JA - x|| for x € H;

(d) (The Resolvent Identity) For A\, u > 0, there holds the identity:

JTx = ],f(%x +(1- %)]}x), xeH. (4.8)

Theorem 4.2. Let C be a nonempty closed convex subset of H, ¢ : C x C — oo be a bifunction
satisfying (A1)—(As) and A be a maximal monotone operator such that N (A) N EP(¢) #0. Let f be
a contraction of H into itself and let {x,} and {u,} be sequences generated initially by an arbitrary
elements xo € H and then by

¢(umy)+—<y Un, Un—Xn) 20, Vy€C, 49)
Xpal = ﬂnf(xn)+(1 Bn) J& (anu + (1 = ap)uy + en),

foralln € N, where {a,} C [0,1] and {r,} C (0, o0) satisfy the following conditions:

(D) limy, , a, =0, 2% a, = 00 and X2 |ap41 — | < o0;

() limy, — o (cnv1/cn) = 1;

)
(ID) liminf,r, > 0 and 2% | |1y — 14| < 00;
)
(IV) limy, oo = 0, 22, B = 00, % | Brs1 — Pul < o0, and limy, . o (an/ Pn) = 0.

Then, the sequences {x,} and {u,} converge strongly to z € N(A) N EP(¢), where z =
Pnayepg) f(2)-

Proof. Below we write J. = J2 for simplicity. Setting

wy =au+ (1—ay)u, +ey,, Yn = Jo,Wn, (4.10)

we rewrite x,,,1 of (4.7) as
Xn+l = ,ﬁnf(xn) + (1 _ﬂn)]c,,wn = ,an(xn) + (1 - ,ﬁn)]/n' (411)

Because the proof is similar to Theorem 3.1, here we just give the main steps as follows:
(1) {xy} is bounded;
(2) Ixps1 = x4l| — 0,asn — 0;
() lltn = Jo,unll — 0,asn — 0;
(4) |lxn —unll — 0,asn — 0;
)
)

(5) limsup, _,_(f(z) —z,x,-2z) <0;

(6) xp,u, — z,asn — z. O
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5. Application for Optimization Problem

In this section, we study a kind of optimization problem by using the result of this paper. That
is, we will give an iterative algorithm of solution for the following optimization problem with
nonempty set of solutions

min h(x),

xeC, (5.1)
where h(x) is a convex and lower semicontinuous functional defined on a closed convex
subset C of a Hilbert space H. We denoted by B the set of solutions of (5.1). Let ¢ be a
bifunction from C x C to R defined by ¢(x,y) = h(y) — h(x). We consider the following
equilibrium problem, that is, to find x € C such that

p(x,y) >0, VYyeC. (5.2)

It is obvious that EP(¢) = B, where EP(¢) denotes the set of solutions of equilibrium
problem (5.2). In addition, it is easy to see that ¢(x, y) satisfies the conditions (A1)—(A4) in
the Section 2. Therefore, from Theorem 3.1, we know that the following iterative algorithm:

h(y) — h(u,) + %(y— U, Un—Xn) >0, VYyeC,

. (5.3)
X1 = Prf (xn) + (1 = Bn) T (e + (1 — ay)uy),

for any initial guess x1, converges strongly to a solution z = P f(z) of optimization problem
(5.1), where {a,} C [0,1], {B.} € [0,1], and {r,} C [0, oo) satisfy

[ee] [ee]
lima, =0, Z a, = oo, Z|an+1 —ay,| < oo,
e n=1 n=1
[ee] [ee] a
. . n
nh_rgoﬁn =0, ; Pn = oo, r§|ﬁn+1 - ﬁn| < o, nlgl;loﬂ—n =0, (5.4)
[ee]
liminfr, >0, Z|rn+1 — 7| < o0.

e n=1

For a special case, we pick f(x) =1, forally € H,and r, =1, f, =1/2 and a, = 0 for
all n > 1, then x,.1 = (1/2)Tu, + (1/2)n, from (5.3), we get the special iterative algorithm as
follows:

h(y) - h(u,) + <y — Uy, Uy — (%11 + %Tun>> >0, VyeC n>2,

2 (55)
h(y) - h(u1) + <y —uq, U — <§71 + zTu1>> >0, VyeC

Then {u,} converges strongly to a solution z = Pg# of optimization problem (5.1).
In fact, z is the minimum norm point from 7 onto the B, furthermore, if 77 = 0, then z
is the minimum norm point on the B.
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