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For submanifolds tangent to the structure vector field in Sasakian space forms, we establish a
Chen’s basic inequality between the main intrinsic invariants of the submanifold (namely, its
pseudosectional curvature and pseudosectional curvature on one side) and the main extrinsic
invariant (namely, squared pseudomean curvature on the other side) with respect to the Tanaka-
Webster connection. Moreover, involving the pseudo-Ricci curvature and the squared pseudo-
mean curvature, we obtain a basic inequality for submanifolds of a Sasakian space form tangent to
the structure vector field in terms of the Tanaka-Webster connection.

1. Introduction

One of the basic interests in the submanifold theory is to establish simple relationship
between intrinsic invariants and extrinsic invariants of a submanifold. Gauss-Bonnet
Theorem, Isoperimetric inequality, and Chern-Lashof Theorem are those such kind of study.

Chen [1] established a nice basic inequality-related intrinsic quantities and extrinsic
ones of submanifolds in a space form with arbitrary codimension. Moreover, he studied the
basic inequalities of submanifolds of complex space forms and characterize submanifolds
when the equality holds.

In this paper, we introduce pseudosectional curvatures and pseudo-Ricci curvature
for the Tanaka-Webster connection in a Sasakian space form. After then, we study basic
inequalities for submanifolds of a Sasakian space form of a constant pseudosectional
curvature and a pseudo-Ricci curvature in terms of the Tanaka-Webster connection.
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2. Preliminaries

Let ˜M be an odd-dimensional Riemannian manifold with a Riemannian metric g̃ satisfying

η(ξ) = 1, ϕ2 = −I + η ⊗ ξ, η(X) = g̃(X, ξ),

g̃
(

ϕX, ϕY
)

= g̃(X,Y ) − η(X)η(Y ).
(2.1)

Then (ϕ, ξ, η, g̃) is called the almost contact metric structure on ˜M. Let Φ denote the
fundamental 2 form in ˜M given by Φ(X,Y ) = g̃(X,ϕY ) for all X,Y ∈ T˜M, the set of vector
fields of ˜M. If Φ = dη, then ˜M is said to be a contact metric manifold. Moreover, if ξ is a
Killing vector field with respect to g̃, and the contact metric structure is called a K-contact
structure. Recall that a contact metric manifold isK-contact if and only if

˜∇Xξ = −ϕX (2.2)

for anyX ∈ T˜M, where ˜∇ is the Levi-Civita connection of ˜M. The structure of ˜M is said to be
normal if [ϕ, ϕ] + 2dη ⊗ ξ − 0, where [ϕ, ϕ] is the Nijenhuis torsion of ϕ. A Sasakian manifold
is a normal contact metric manifold. In fact, an almost contact metric structure is Sasakian if
and only if

(

˜∇Xϕ
)

Y = g(X,Y )ξ − η(Y )X (2.3)

for all vector fields X and Y . Every Sasakian manifold is aK-contact manifold.
Given a Sasakian manifold ˜M, a plane section π in Tp˜M is called a ϕ-section if it is

spanned by X and ϕX, where X is a unit tangent vector field orthogonal to ξ. The sectional
curvature ˜K(π) of a ϕ-section π is called ϕ-sectional curvature. If a Sasakian manifold ˜M has
constant ϕ-sectional curvature c, ˜M is called a Sasakian space form, denoted by ˜M(c). (For
more details, see [2]).

Now let M be a submanifold immersed in (˜M,ϕ, ξ, η, g). We also denote by g the
induced metric onM. Let TM be the Lie algebra of vector fields inM and T⊥M the set of all
vector fields normal toM. We denote by h the second fundamental form ofM and byAv the
Weingarten endomorphism associated with any v ∈ T⊥M. We put hr

ij = g(h(ei, ej), er) for any
orthonormal vector ei, ej ∈ TM and er ∈ T⊥M. The mean curvature vector field H is defined
by H = (1/dimM)trace(h). M is said to be totally geodesic if the second fundamental form
vanishes identically.

From now on, we assume that the dimension of M is n + 1, and that of the ambient
manifold ˜M is 2m + 1 (m ≥ 2). We also assume that the structure vector field ξ is tangent to
M. Hence, if we denote byD the orthogonal distribution to ξ in TM, we have the orthogonal
direct decomposition of TM by TM = D ⊕ span{ξ}. For any X ∈ TM, we write ϕX = TX +
NX, where TX (NX, resp.) is the tangential (normal, resp.) component of ϕX. If ϕM is a
K-contact manifold, (2.2) gives

h(X, ξ) = −NX, (2.4)
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for anyX in TM. Given a local orthonormal frame {e1, . . . , en} ofD, we can define the squared
norms of T and N by

‖T‖2 =
n
∑

i,j=1

g
(

ei, Tej
)2
, ‖N‖2 =

n
∑

i,j=1

g
(

ei,Nej
)2
, (2.5)

resepectively. It is easy to show that both ‖T‖2 and ‖N‖2 are independent of the choice of
the orthonormal frames. The submanifold M is said to be invariant if N is identically zero,
that is, ϕX ∈ TM for any X ∈ TM. On the other hand, M is said to be an anti-invariant
submanifold if T is identically zero, that is, ϕX ∈ T⊥M for any X ∈ TM.

3. The Tanaka-Webster Connection for Sasakian Space Form

The Tanaka-Webster connection [3, 4] is the canonical affine connection defined on a
nondegenerate pseudo-Hermitian CR-manifold. Tanno [5] defined the Tanaka-Webster
connection for contact metric manifolds by the canonical connection which coincides with
the Tanaka-Webester connection if the associated CR-structure is integrable. We define
the Tanaka-Webster connection for submanifolds of Sasakian manifolds by the naturally
extended affine connection of Tanno’s Tanaka-Webster connection. Nowwe recall the Tanaka-
Webster connection ̂∇ for contact metric manifolds

̂∇XY = ˜∇XY + η(X)ϕY +
(∇Xη

)

(Y )ξ − η(Y )∇Xξ, (3.1)

for all vector fields X,Y ∈ T˜M. Together with (2.1), ̂∇ is written by

̂∇XY = ˜∇XY + η(X)ϕY + η(Y )ϕX − g̃
(

Y, ϕ(X)
)

ξ. (3.2)

Also, by using (2.1) and (2.3), we can see that

̂∇η = 0, ̂∇ξ = 0, ̂∇ϕ = 0, ̂∇g̃ = 0. (3.3)

We define the Tanaka-Webster curvature tensor of ˜R (in terms of ˜∇) by

̂R(X,Y )Z = ̂∇X
̂∇YZ − ̂∇Y

̂∇YZ − ̂∇[X,Y ]Z, (3.4)

for all vector fields X, Y , and Z in ˜M.
Let ˜M(c) be a Sasakian space form of constant sectional curvature c and M a sub-

manifold of ˜M(c). Then, we have the following Gauss’ equation:

̂R(X,Y )Z =
c + 3
4
[{

g(Y,Z) − η(Y )η(Z)
}

X − {g(X,Z) − η(X)η(Z)
}

Y

+
{

g(X,Z)η(Y ) − g(Y,Z)η(X)
}

ξ + 2g
(

X,ϕY
)

ϕZ
]

+
c + 7
4
{

g
(

Z,ϕY
)

ϕX − g
(

Z,ϕX
)

ϕY
}

(3.5)

for any tangent vector fields X, Y, Z tangent toM.
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Let us define the connection
◦
∇ on M induced from the Tanaka-Webster connection ̂∇

on ˜M given by

◦
∇XY =

◦
∇XY + ̂h(X,Y ), (3.6)

for any X,Y ∈ Γ(TM), where ̂h is called the lightlike second fundamental form of M with

respect to the induced connection
◦
∇. In the view of (3.2) and (3.6),

◦
∇XY + ̂h(X,Y ) = ∇XY + h(X,Y ) + η(X)ϕY + η(Y )ϕX − g

(

Y, ϕX
)

ξ. (3.7)

From (3.7), we obtain

◦
∇XY = ∇XY + η(X)TY + η(Y )TX − g

(

Y, ϕX
)

ξ, (3.8)

̂h(X,Y ) = h(X,Y ) + η(X)NY + η(Y )NX, (3.9)

where ϕX = TX +NX.
From (3.3), (3.8), and (3.9) it is easy to verify the following:

◦
∇η = 0,

◦
∇ξ = 0,

◦
∇ϕ = 0,

◦
∇g = 0. (3.10)

Moreover, for the induced connection ∇, we have the following

∇Xξ = −TX, h(X, ξ) = −NX. (3.11)

From the definition of ̂R, together with (3.5), we have

g

( ◦
R(X,Y )Z,W

)

=
c + 3
4
[{

g(Y,Z) − η(Y )η(Z)
}

g(X,W) − {g(X,Z) − η(X)η(Z)
}

g(Y,W)

+
{

g(X,Z)η(Y ) − g(Y,Z)η(X)
}

g(ξ,W) + 2g
(

X,ϕY
)

g
(

ϕZ,W
)]

+
c + 7
4
{

g
(

Z,ϕY
)

g
(

ϕX,W
) − g

(

Z,ϕX
)

g
(

ϕY,W
)}

+ g
(

̂h(X,W), ̂h(Y,Z)
)

− g
(

̂h(X,Z), ̂h(Y,W)
)

,

(3.12)

for any X,Y,Z,W ∈ TM.
For an orthonormal basis {e1, . . . , en+1} of the tangent space TpM, p ∈ M, the pseu-

doscalar curvature τ̂ at p is defined by

τ̂ =
∑

i<j

̂K
(

ei ∧ ej
)

, (3.13)
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where ̂K(ei∧ej) denotes the pseudosectional curvature ofM associatedwith the plane section
spanned by ei and ej for the Tanaka-Webster connection ̂∇. In particular, if we put en+1 = ξp,
then (3.13) implies that

2τ̂ =
∑

i /= j

̂K
(

ei ∧ ej
)

+ 2
n
∑

i=1

̂K(ei ∧ ξ). (3.14)

Moreover, from (3.9), we have

̂hr
ij = hij , i, j ∈ {1, . . . , n},

̂hr
in+1 = 0, j ∈ {1, . . . , n + 1}.

(3.15)

The pseudomean curvature vector fieldH is defined bŷH = (1/dimM)trace(̂h).M is said to
be totally pseudogeodesic if the second fundamental ̂h form vanishes identically. From (2.5),
(3.12) and (3.14), we obtain the following relationship between the pseudoscalar curvature
and the pseudomean curvature ofM,

2τ̂ = (n + 1)2
∥

∥

∥

̂H
∥

∥

∥

2 −
∥

∥

∥

̂h
∥

∥

∥

2
+ n(n − 1)

c + 3
4

+
3c + 13

4
‖T‖2. (3.16)

We now recall the Chen’s lemma.

Lemma 3.1 (see [6]). Let a1, . . . , an, c be n + 1 (n ≥ 2) real numbers such that

(

n
∑

i=1

ai

)2

= (n − 1)

(

n
∑

i=1

a2
i + c

)

. (3.17)

Then, 2a1a2 ≥ c, with the equality holding if and only if a1 + a2 = a3 = · · · = an.

Let p ∈ M and let π be a plane section of TpM which is generated by orthonormal
vectors X and Y . We can define a function α(π) of tangent space TpM into [0, 1] by

α(π) = g(TX, Y )2, (3.18)

which is well defined.
Now, we prove the following.

Theorem 3.2. LetM be an (n+ 1)-dimensional (n ≥ 2) submanifold isometrically immersed in am-
dimensional Sasakian space form ˜M(c) such that the structure vector field ξ is tangent toM in terms
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of the Tanaka-Wester connection ̂∇. Then, for each point p ∈ M and each plane section π ⊂ TpM, we
have the following:

τ̂ − ̂K(π) ≤ (n + 1)2(n − 1)
2n

∥

∥

∥

̂H
∥

∥

∥

2
+
1
8
(n + 1)(n + 2)(c + 3)

+
3c + 13

8
‖T‖2 − 3c + 13

4
α(π).

(3.19)

Equality in (3.19) holds at p ∈ M if and only if there exist an orthonormal basis {e1, . . . , en+1} of
TpM and an orthonormal basis {en+2, . . . , em} of T⊥

pM such that (a) π = Span{e1, e2} and (b) the
shape operators Ar = Aer , r = n + 2, . . . , m, take the following forms:

A =

⎛

⎜

⎝

a 0 0
0 −a 0

0 0 0n−1

⎞

⎟

⎠,

A =

⎛

⎜

⎝

hr
11 hr

12 0

hr
12 −hr

11 0

0 0 0n−1

⎞

⎟

⎠, r = n + 3, . . . , m.

(3.20)

Proof. Let Mn+1 be a submanifold of ˜M(c). We introduce

ρ̂ = 2τ̂ − (n + 1)2(n − 1)
2n

∥

∥

∥

̂H
∥

∥

∥

2 − (n + 1)(n + 2)
c + 3
4

− 3c + 13
4

‖T‖2. (3.21)

Then, from (3.16) and (3.21), we get

(n + 1)
∥

∥

∥

̂H
∥

∥

∥

2
= n

∥

∥

∥

̂h
∥

∥

∥

2
+ n

(

ρ̂ − 2(c + 3)
4

)

. (3.22)

Let p be a point of M and let π ⊂ TpM be a plane section at p. We choose an orthonormal
basis {e1, . . . , en+1} for TpM and {en+2, . . . , em} for T⊥

pM such that en+1 = ξ, π = Span{e1, e2},
and the pseudomean curvature vector ̂H is parallel to en+2. Then, from (3.22), we get

(

n+1
∑

i=1

̂hn+2
ii

)2

= n

⎛

⎝

n+1
∑

i=1

(

̂hn+2
ii

)2
+
∑

i /= j

(

̂hn+2
ij

)2
+

m
∑

r=n+3

∑

i,j

(

̂hr
ij

)2
+ ρ̂ − 2(c + 3)

4

⎞

⎠ (3.23)

and so, by applying Lemma 3.1, we obtain

2̂hn+2
11
̂hn+2
22 ≥

∑

i /= j

(

̂hn+2
ij

)2
+

m
∑

r=n+3

∑

i,j

(

̂hr
ij

)2
+ ρ̂ − 2(c + 3)

4
. (3.24)
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On the other hand, from (3.12), we have

̂K(π) = ̂hn+2
11
̂hn+2
22 −

(

̂hn+2
12

)2
+

m
∑

r=n+3

(

̂hr
11
̂hr
22 −

(

̂hr
12

)2
)

c + 3
4

+
3c + 13

4
g2(e1, ϕe2

)

. (3.25)

Then, from (3.24) and (3.25), we get

̂K(π) =
ρ

2
+
3c + 13

4
g2(e1, ϕe2

)

+
m
∑

r=n+2

∑

j>2

(

(

̂hr
1j

)2
+
(

̂hr
2j

)2
)

+
1
2

∑

i /= j>2

(

̂hn+2
ij

)2
(3.26)

+
1
2

m
∑

r=n+3

∑

i,j>2

(

̂hr
ij

)2
+
1
2

m
∑

r=n+3

(

̂hr
11 + ̂h

r
22

)2

≥ ρ

2
+
3c + 13

4
α(π).

(3.27)

Combining (3.21) and (3.27), the inequality (3.19) yields. If the equality in (3.19) holds, then
the inequalities given by (3.24) and (3.27) become equalities. In this case, we have

̂hn+2
1j = ̂hn+2

2j = ̂hn+2
ij = 0, i /= j > 2,

̂hr
1j = ̂h

r
2j = ̂hij

r = 0, r ∈ {n + 3, . . . , m}; i, j ∈ {3, . . . , n + 1},
̂hn+3
11 + ̂hn+3

22 = · · · = ̂hm
11 + ̂h

m
22 = 0.

(3.28)

Moreover, choosing e1 and e2 such that hn+2
12 = 0, from (3.11), we also have the following

̂hn+2
11 + ̂hn+2

22 = ̂hn+2
33 = · · · = ̂hn+2

n+1n+1 = 0. (3.29)

Thus, with respect to the chosen orthonormal basis {e1, . . . , em}, the shape operators of M
take the forms.

We now define a well-defined function ̂δM on M by using (inf ̂K)(p) = inf{ ̂K(π) |
π is a plane section ⊂ TpM} in the following manner:

̂δM = τ̂ − inf ̂K. (3.30)

If c = −13/3, then we obtain directly from (3.19) the following result.

Corollary 3.3. Let M be an (n + 1)-dimensional (n ≥ 2) submanifold isometrically immersed in a
m-dimensional Sasakian space form ˜M(−13/3) such that the structure vector field ξ is tangent to
M in terms of the Tanaka-Wester connection ̂∇. Then, for each point p ∈ M and each plane section
π ⊂ TpM, we have the following:

̂δM ≤ (n + 1)2(n − 1)
2n

∥

∥

∥

̂H
∥

∥

∥

2 − 1
6
(n + 1)(n + 2). (3.31)

The equality in (3.31) holds if and only ifM is a anti-invariant submanifold with rank(T) = 2.
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Proof. In order to estimate ̂δM, we minimize ‖T‖2 − 2α(π) in (3.19). For an orthonormal basis
{e1, . . . , en+1} of TpM with π = Span{e1, e2}, we write

‖T‖2 − 2α(π) =
n+1
∑

i,j=3

g2(ei, ϕej
)

+ 2
n+1
∑

j=3

{

g2(e1, ϕej
)

+ g2(e2, ϕej
)

}

. (3.32)

Thus, we see that the minimum value of ‖T‖2 − 2α(π) is zero, provided that π = Span{e1, e2}
is orthogonal to ξ, and span{ϕej | j = 3, . . . , n} is orthogonal to TpM. Thus we have (3.31)
with equality case holding if and only ifM is anti-invariant such that rank(T) = 2.

4. A Pseudo-Ricci Curvature for Sasakian Space Form

We denote the set of unit vectors in TpM by T1
pM by

T1
pM =

{

X ∈ TpM | g(X,X) = 1
}

. (4.1)

Let {e1, . . . , ek}, 2 ≤ k ≤ n, be an orthonormal basis of a k-place section Πk of TpM. If k = n,
then Πk = TpM, and if k = 2, then Π2 is a plane section of TpM. For a fixed i ∈ {1, . . . , k}, a
k-pseudo-Ricci curvature of Πk at ei, denoted bŷRicΠk(ei), is defined by [7]

̂RicΠk(ei) =
k
∑

j /= i

̂Kij , (4.2)

where ̂Kij is the pseudosectional curvature in terms of the Tanaka-Webster connection ̂∇ of
the plane section spanned by ei and ej . We note that an n-pseudo-Ricci curvature RicTpM(ei)
is the usual pseudo-Ricci curvature of ei, denoted bŷRic(ei). Thus, for any orthonormal basis
{e1, . . . , en+1} for TpM and for a fixed i ∈ {1, . . . , n + 1}, we have the following:

̂RicTpM(ei) = ̂Ric(ei) =
n+1
∑

j /= i

̂Kij . (4.3)

The pseudoscalar curvature τ̂(Πk) of the k-plane section Πk is given by

τ̂(Πk) =
∑

1≤i<j≤n+1
̂Kij . (4.4)

The relative null spae of M at p is defined by [8]

Np =
{

X ∈ TpM | ̂h(X,Y ) = 0, ∀Y ∈ TpM
}

. (4.5)



Journal of Applied Mathematics 9

Theorem 4.1. Let ˜M(c) be a m-dimensional Sasakian space form and M an n + 1-dimensional
submanifold tangent to ξ with respect to the Tanaka-Webster connection ̂∇. Then,

(i) for each unit vector X ∈ TpM orthogonal to ξ, we have

4̂Ric(X) ≤ (n + 1)2
∥

∥

∥

̂H
∥

∥

∥

2
+ (n − 1)(c + 3) + (3c + 13)‖TX‖2, (4.6)

(ii) if ̂H(p) = 0, then a unit tanget vector X ∈ TpM orthogonal to ξ satisfies the equality case
of (4.6) if and only of X ∈ Np.

(iii) the equality case of (4.6) holds identically for all unit tangent vectors orthogonal to ξ at p
if and only if p is a totally pseudogeodesic point in terms of the Tanaka-Webster connection.

Proof. (i) Let X ∈ TpM be a unit tangent vector at p, orthogonal to ξ. We choose an
orthonormal basis {e1, . . . , en+1} for TpM and {en+2, . . . , em} for T⊥

pM such that e1 = X and
en+1 = ξ. Then, from (3.16), we have

(n + 1)2
∥

∥

∥

̂H
∥

∥

∥

2
= 2τ̂ +

∥

∥

∥

̂h
∥

∥

∥

2 − n(n − 1)
c + 3
4

− 3c + 13
4

‖T‖2. (4.7)

From (4.7), we get

(n + 1)2
∥

∥

∥

̂H
∥

∥

∥

2
= 2τ̂ +

m
∑

r=n+2

⎡

⎣

(

̂h2
11

)2
+
(

̂hr
22 + · · · + ̂hr

n+1n+1

)2
+ 2
∑

i<j

(

̂hr
ij

)2

⎤

⎦

− 2
m
∑

r=n+2

∑

2≤i<j≤n
̂hr
ii
̂hr
jj − n(n − 1)

c + 3
4

− 3c + 13
4

‖T‖2

= 2τ̂ +
1
2

m
∑

r=n+2

[

(

̂hr
11 + ̂h

r
22 + · · · + ̂hr

n+1n+1

)2
+
(

̂hr
11 − ̂hr

22 − · · · − ̂hr
n+1n+1

)2
]

+ 2
m
∑

n+2

∑

i<j

(

̂hr
ij

)2 − 2
m
∑

r=n+2

∑

2≤i<j≤n
̂hr
ii
̂hr
jj − n(n − 1)

c + 3
4

− 3c + 13
4

‖T‖2.

(4.8)

From (3.12), we have

̂Kij =
m
∑

r=n+2

[

̂hr
ii
̂hr
jj −

(

̂hr
ij

)2
]

+
c + 3
4

+
3c + 13

4
g2(ei, Tej

)

, (4.9)

and consequently

∑

2≤i<j≤n+1
̂Kij =

m
∑

r=n+2

[

̂hr
ii
̂hr
jj −

(

̂hr
ij

)2
]

+
(n − 1)(n − 2)(c + 3)

8
+
3c + 13

8

{

‖T‖2 − 2‖Te1‖2
}

.

(4.10)
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Substituting (4.10) into (4.8), one gets

(n + 1)2
∥

∥

∥

̂H
∥

∥

∥

2 ≥ 2τ̂ +
(n + 1)2

2

∥

∥

∥

̂H
∥

∥

∥

2
+ 2

m
∑

r=n+2

∑

j=2

(

̂hr
1j

)2 − 2
∑

2≤i<j≤n+1
̂Kij

− (n − 1)(c + 3)
2

− 3c + 13
2

‖Te1‖2.
(4.11)

Therefore,

(n + 1)2

2

∥

∥

∥

̂H
∥

∥

∥

2 ≥ 2̂Ric(X) − (n − 1)(c + 3)
2

− 3c + 13
2

‖TX‖2, (4.12)

which is equivalent to (4.6)
(ii) Assume that ̂H(p) = 0. Equality holds in (4.6) if and only if

̂hr
12 = · · · = ̂hr

1n+1 = 0,

̂hr
11 = ̂h

r
22 + · · · + ̂hr

n+1n+1, r ∈ {n + 2, . . . , m}.
(4.13)

Then, ̂hr
1j = 0 for each j ∈ {1, . . . , n + 1}, r ∈ {n + 2, . . . , m}, that is, X ∈ Np.
(iii) The equality case of (4.6) holds for all unit tangent vectors at p if and only if

̂hr
ij = 0, i /= j, r ∈ {n + 2, . . . , m},

̂hr
11 + · · · + ̂hr

n+1n+1 − 2̂hr
ii = 0, i ∈ {1, . . . , n + 1}, r ∈ {n + 2, . . . , m}.

(4.14)

Since ̂h(ei, en+1 = ξ) = 0 from (3.10), p is a totally pseudogeodesic point, and, hence, ϕ(TpM) ⊂
TpM. The converse is trivial.

Corollary 4.2. LetM be an n+1-dimensional invariant submanifold of a Sasakian space form ˜M(c).
Then,

(i) for each unit vector X ∈ TpM orthogonal to ξ, we have

4̂Ric(X) ≤ (n − 1)(c + 3) + (3c + 13). (4.15)

(ii) A unit tanget vector X ∈ TpM orthogonal to ξ satisfies the equality case of (4.6) if and
only if X ∈ Np.

(iii) The equality case of (4.6) holds identically for all unit tangent vectors orthogonal to ξ at p
if and only if p is a totally pseudogeodesic point in terms of the Tanaka-Webster connection.
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