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Covering-based rough set theory is a useful tool to deal with inexact, uncertain, or vague
knowledge in information systems. Geometric lattice has been widely used in diverse fields,
especially search algorithm design, which plays an important role in covering reductions. In
this paper, we construct three geometric lattice structures of covering-based rough sets through
matroids and study the relationship among them. First, a geometric lattice structure of covering-
based rough sets is established through the transversal matroid induced by a covering. Then its
characteristics, such as atoms, modular elements, andmodular pairs, are studied.We also construct
a one-to-one correspondence between this type of geometric lattices and transversal matroids
in the context of covering-based rough sets. Second, we present three sufficient and necessary
conditions for two types of covering upper approximation operators to be closure operators of
matroids. We also represent two types of matroids through closure axioms and then obtain two
geometric lattice structures of covering-based rough sets. Third, we study the relationship among
these three geometric lattice structures. Some core concepts such as reducible elements in covering-
based rough sets are investigated with geometric lattices. In a word, this work points out an
interesting view, namely, geometric lattice, to study covering-based rough sets.

1. Introduction

Rough set theory [1] was proposed by Pawlak to deal with granularity in information
systems. It is based on equivalence relations. However, the equivalence relation is rather
strict, hence the applications of the classical rough set theory are quite limited. For this reason,
rough set theory has been extended to generalized rough set theory based on tolerance
relation [2], similarity relation [3], and arbitrary binary relation [4–8]. Through extending a
partition to a covering, we generalize rough set theory to covering-based rough set theory [9–
11]. Because of its high efficiency in many complicated problems such as attribute reduction
and rule learning in incomplete information/decision, covering-based rough set theory has
been attracting increasing research interest [12, 13].
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Lattice is suggested by the form of the Hasse diagram depicting it. In mathematics, a
lattice is a partially ordered set in which any two elements have a unique supremum (also
called a least upper bound or join) and a unique infimum (also called a greatest lower bound
or meet). They encode the algebraic behavior of the entailment relation and such basic logical
connectives as “and” (conjunction) and “or” (disjunction), which results in adequate alge-
braic semantics for a variety of logical systems. Lattice, especially geometric lattice, is one of
the most important algebraic structures and is used extensively in both theoretical and appli-
cable fields, such as data analysis, formal concept analysis [14–16], and domain theory [17].

Matroid theory [18, 19] borrows extensively from linear algebra theory and graph
theory. There are dozens of equivalent ways to define a matroid. Significant definitions of
a matroid include those in terms of independent sets, bases, circuits, closed sets or flats and
rank functions, which provide well-established platforms to connect with other theories. In
applications, matroids have been widely used in many fields such as combinatorial optimiza-
tion, network flows, and algorithm design, especially greedy algorithm design [20, 21]. Some
works on the connection between rough sets and matroids have been conducted [22–25].

In this paper, we pay attention to geometric lattice structures of covering based-
rough sets through matroids. First, a geometric lattice structure in covering-based rough
sets is generated by the transversal matroid induced by a covering. Moreover, we study
the characteristics of the geometric lattice structure, such as atoms, modular elements, and
modular pairs. We also point out a one-to-one correspondence between this type of geometric
lattices and transversal matroids in the context of covering-based rough sets. Second,
generally, covering upper approximation operators are not necessarily closure operators
of matroids. Then we present three sufficient and necessary conditions for two types of
covering upper approximation operators to be closure operators of matroids and exhibit
representations of corresponding special matroids. We study the properties of these matroids
and their closed-set lattices which are also geometric lattices. Third, we study the relationship
among these three geometric lattices through corresponding matroids. Furthermore, some
core concepts such as reducible and immured elements in covering-based rough sets are
studied by geometric lattices.

The rest of this paper is organized as follows. In Section 2, we recall some fundamental
concepts related to covering-based rough sets, lattices, and matroids. Section 3 establishes
a geometric lattice structure of covering-based rough sets through the transversal matroid
induced by a covering. In Section 4, we present two geometric lattice structures of covering-
based rough sets through two types of upper approximation operators. Section 5 studies
the relationship among these three geometric lattice structures. This paper is concluded and
further work is pointed out in Section 6.

2. Preliminaries

In this section, we review some basic concepts of matroids, lattices, and covering-based rough
sets.

2.1. Matroids

Matroid theory borrows extensively from the terminology of linear algebra theory and graph
theory, largely because it is the abstraction of various notions of central importance in these
fields, such as independent set, base, and rank function. We introduce the concept of matroid,
first.
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Definition 2.1 (Matroid [19]). A matroid is an ordered pair (E,I) consisting of a finite set E
and a collection I of subsets of E satisfying the following three conditions.

(I1) ∅ ∈ I.
(I2) If I ∈ I and I ′ ⊆ I, then I ′ ∈ I.
(I3) If I1, I2 ∈ I and |I1| < |I2|, then there is an element e ∈ I2 − I1 such that I1 ∪ e ∈ I,

where |X| denotes the cardinality of X.

Let M = M(E,I) be a matroid. The members of I are the independent sets of M. A
set in I is maximal, in the sense of inclusion, is called a base of the matroid M. If A /∈ I, A
is called a dependent set of the matroid M. In the sense of inclusion, a minimal dependent
subset of E is called a circuit of the matroidM. If {a} is a circuit, we call {a} a loop. Moreover,
if {a, b} is a circuit, then a and b are said to be parallel. A matroid is called a simple matroid
if it has no loops and no parallel elements. The rank function of a matroid is a function rM :
2E → N defined by rM(X) = max{|I| : I ⊆ X, I ∈ I}(X ⊆ E). For each X ⊆ E, we say
clM(X) = {a ∈ E : rM(X) = rM(X∪{a})} is the closure ofX inM. When there is no confusion,
we use the symbol cl(X) for short. X is called a closure set if cl(X) = X.

The rank function of a matroid, directly analogous to a similar theorem of linear
algebra, has the following proposition.

Proposition 2.2 (Rank axiom [19]). Let E be a set. A function rM : 2E → N is the rank function
of a matroid on E if and only if it satisfies the following conditions.

(R1) For all X ∈ 2E, 0 ≤ rM(X) ≤ |X|.
(R2) If X ⊆ Y ⊆ E, then rM(X) ≤ rM(Y ).

(R3) If X,Y ⊆ E, then rM(X ∪ Y ) + rM(X ∩ Y ) ≤ rM(X) + rM(Y ).

The following proposition is the closure axiom of a matroid. It means that a operator
satisfies the following four conditions if and only if it is the closure operator of a matroid.

Proposition 2.3 (Closure axiom [19]). Let E be a set. A function clM : 2E → 2E is the closure
operator of a matroid M on E if and only if it satisfies the following conditions.

(1) If X ⊆ E, then X ⊆ clM(X).

(2) If X ⊆ Y ⊆ E, then clM(X) ⊆ clM(Y ).

(3) If X ⊆ E, clM(clM(X)) = clM(X).

(4) If X ⊆ E, x ∈ E and y ∈ clM(X ∪ {x}) − clM(X), then x ∈ clM(X ∪ {y}).

Transversal theory is a branch of a matroid theory. It shows how to induce a matroid,
namely, transversal matroid, from a family of subsets of a set. Hence, the transversal matroid
establishes a bridge between collections of subsets of a set and matroids.

Definition 2.4 (Transversal [19]). Let S be a nonempty finite set and J = {1, 2, . . . , m}.
F = {F1, F2, . . . , Fm} denotes a family of subsets of S. A transversal or system of distinct
representatives of {F1, F2, . . . , Fm} is a subset {e1, e2, . . . , em} of S such that ei ∈ Fi for all i in
J . If for some subset K of J , X is a transversal of {Fi : i ∈ K}, then X is said to be a partial
transversal of {F1, F2, . . . , Fm}.



4 Journal of Applied Mathematics

Example 2.5. Let S = {1, 2, 3, 4}, F1 = {2, 3}, F2 = {4} and F3 = {2, 4}. For F = {F1, F2, F3},
T = {2, 3, 4} is a transversal of F because 2 ∈ F3, 3 ∈ F1 and 4 ∈ F2. T ′ = {2, 4} is a
partial transversal of F because there exists a subset of F, that is, {K1, K2}, such that T ′ is
a transversal of it.

The following proposition shows what kind of matroids are transversal matroid.

Proposition 2.6 (Transversal matroid [19]). LetF = {Fi : i ∈ J} be a family subsets of E.M(F) =
(E,I(F)) is a matroid, where I(F) is the family of all partial transversals of F. One calls M(F) =
(E,I(F)) the transversal matroid induced by F.

2.2. Lattices

Let (P,≤) be an ordered set and a, b ∈ P . We say that a is covered by b (or b covers a) if
a < b and there is no element c in P with a < c < b. A chain in P from x0 to xn is a subset
{x0, x1, . . . , xn} of P such that x0 < x1 < · · · < xn. The length of such a chain is n, and the
chain is maximal if xi covers xi−1 for all i ∈ {1, 2, . . . , n}. If, for every pair {a, b} of elements of
P with a < b, all maximal chains from a to b have the same length, then P is said to satisfy
the Jordan-Dedekind chain condition. The height hP (y) of an element y of P is the maximum
length of a chain from 0 to y. A poset (L,≤) is a lattice if a ∨ b and a ∧ b exist for all a, b ∈ L.
Suppose L is a lattice with zero element 0. If a covers 0, then a ∈ L is called an atom of L.
Moreover, the atoms of L are precisely the elements of height one. It is not difficult to check
that every finite lattice has a zero and the one. A finite lattice L is called semimodular if it
satisfies the Jordan-Dedekind chain condition and for every pair {x, y} of elements of L, the
equality hL(x)+hL(y) ≥ hL(x∨y)+hL(x∧y) holds. A geometric lattice is a finite semimodular
lattice in which every element is a join of atoms.

Next, we introduce the modular element and modular pair which are important
concepts of lattices.

Definition 2.7 (see [17]). Let L be a lattice and a, b ∈ L.

(ME) For all x, z ∈ L, x ≥ z implies x ∧ (a ∨ z) = (x ∧ a) ∨ z, then a is called a
modular element of L.

(MP) For all z ∈ L, b ≥ z implies b ∧ (a ∨ z) = (b ∧ a) ∨ z, then (a, b) is called a
modular pair of L.

As we know, if a is a modular element of L, then (a, b) is a modular pair of L for all
b ∈ L, which roots in an important result of lattices. For a semimodular lattice, modular pair
has close relation with height function.

Lemma 2.8 (see [17]). Let L be a semimodular lattice, then (a, b) is a modular pair if and only if
hL(a ∨ b) + hL(a ∧ b) = hL(a) + hL(b) for all a, b ∈ L.

2.3. Closed-Set Lattice of a Matroid

IfM is a matroid and L(M) denotes the set of all closed sets ofM ordered by inclusion, then
(L(M),⊆) is a lattice. In addition to that, the operations join and meet of it are, respectively,
defined as X ∧ Y = X ∩ Y and X ∨ Y = clM(X ∪ Y ) for all X,Y ∈ L(M). The zero of L(M)
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is clM(∅), while the one is E. The following lemma gives another definition of a geometric
lattice from the viewpoint of matroid. In fact, the set of all closed sets of a matroid ordered by
inclusion is a geometric lattice.

Lemma 2.9 (see [19]). A latticeL is geometric if and only if it is the lattice of closed sets of a matroid.

The following lemma establishes the relation between the rank function of a matroid
and the height function of the closed-set lattice of the matroid.

Lemma 2.10 (see [19]). Let M be a matroid. hL(M)(X) = rM(X) for all X ∈ L(M).

2.4. Covering-Based Rough Sets

In this subsection, we introduce some concepts of covering-based rough sets used in this
paper.

Definition 2.11 (Covering and partition). Let E be a universe of discourse, C a family of
subsets of E, and none of subsets in C be empty. If ∪C = E, then C is called a covering of
E. Any element of C is called a covering block. If P is a covering of E and it is a family of
pairwise disjoint subsets of E, then P is called a partition of E.

It is clear that a partition of E is certainly a covering of E, so the concept of a covering
is an extension of the concept of a partition.

Let E be a finite set and R be an equivalent relation on E. R will generate a partition
E/R = {Y1, Y2, . . . , Ym} of E, where Y1, Y2, . . . , Ym are the equivalence classes generated by R.
For all X ⊆ E, the lower and upper approximations of X, are, respectively, defined as follows:

R∗(X) =
⋃{

Yi ∈ E

R
: Yi ⊆ X

}
,

R∗(X) =
⋃{

Yi ∈ E

R
: Yi

⋂
X /= ∅

}
.

(2.1)

Next, we introduce certain important concepts of covering-based rough sets, such as
minimal description, indiscernible neighborhood, neighborhood, reducible element, and
approximation operators.

Definition 2.12 (Minimal description [26]). Let C be a covering of E and x ∈ E:

MdC(x) = {K ∈ C : x ∈ K ∧ (∀S ∈ C ∧ x ∈ S ∧ S ⊆ K =⇒ K = S)}, (2.2)

is called the minimal description of x. When the covering is clear, we omit the lowercase C in
the minimal description.

Definition 2.13 (Indiscernible neighborhood and neighborhood [27, 28]). Let (E,C) be a
covering approximation space and x ∈ E.

∪{K : x ∈ K ∈ C} is called the indiscernible neighborhood of x and denoted as
IC(x).
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∩{K : x ∈ K ∈ C} is called the neighborhood of x and denoted as NC(x). When the
covering is clear, we omit the lowercase C.

Definition 2.14 (A reducible covering [29]). Let C be a covering of a domain E and K ∈ C.
If K is a union of some sets in C − {K}, we say K is a reducible element in C; otherwise K
is an irreducible element in C. If every element in C is irreducible, we say C is irreducible;
otherwise C is reducible.

Definition 2.15 (Reduct [29]). For a covering C of a universe E, when we remove all reducible
elements fromC, the set of remaining elements is still a covering ofE, and this new irreducible
covering has not reducible element. We call thus new covering a reduct of C and it is denoted
by reduct(C).

Definition 2.16 (Immured element [27]). Let C be a covering of E and K an element of C. If
there exists another element K′ of C such that K ⊂ K′, we say that K is an immured element
of covering C.

Definition 2.17 (Exclusion [27]). Let C be a covering of E. When we remove all immured
elements from C, the set of all remaining elements is still a covering of E, and this new
covering has no immured element. We called this new covering an exclusion of C, and it
is denoted by exclusion(C).

The second type of covering rough set model was first studied by Pomykała in [30].
While the sixth type of covering-based upper approximation operator was first defined in
[31].

Definition 2.18. Let C be a covering of E. The covering upper approximation operators
SH,XH : 2E → 2E are defined as follows: For all X ∈ 2E,

SH(X) = ∪{K ∈ C : K ∩X/= ∅} = ∪{I(x) : x ∈ X},
XH(X) = {x : N(x) ∩X/= ∅}.

SHC and XHC are called the second and the sixth covering upper approximation operators
with respect to the covering C, respectively. When there is no confusion, we omit C at the
lowercase.

3. A Geometric Lattice Structure of Covering-Based Rough Sets
through Transversal Matroid

As we know, if M is a matroid and L(M) denotes the set of all closed sets of M ordered
by inclusion, then L(M) is a geometric lattice. In this section, we study the properties such
as atoms, modular elements and modular pairs of this type of geometric lattice through
transversal matroid induced by a covering. We also study the structure of matroid induced
by the geometric lattice. It is interesting to find that there is a one-to-one correspondence
between this type of geometric lattices and transversal matroids in the context of covering-
based rough sets.

Let E be a nonempty finite set and C a covering of E. As shown in Proposition 2.6,
M(C) = (E,I(C)) is the transversal matroid induced by covering C. L(M(C)) is the set of
all closed sets of M(C). Especially, L(M(P)) is the set of all closed sets of the transversal
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matroid induced by partition P. Based on Lemma 2.9, we know L(M(C)) and L(M(P)) are
geometric lattices.

The theorem below connects a covering C with clM(C)(∅). In fact, ∅ ∈ L(M(F)) if and
only if F is a covering.

Theorem 3.1. Let E be a set and M(F) a transversal matroid induced by a family of F =
{F1, F2, . . . , Fm} subsets of E, where Fi /= ∅ (1 ≤ i ≤ m). clF(∅) = ∅ if and only if F is a covering
of E.

Proof. “⇐”: According to the definition of transversal matroid, any partial transversal is
an independent set of transversal matroid. Since F is a covering, any single-point set is
an independent set. Based on the definition of closure operator of a matroid, we have
clM(F)(∅) = ∅.

“⇒”: Since clM(F)(∅) = ∅, any single-point set is an independent set, that is, for all
x ∈ E, there exists ix ∈ {1, 2, . . . , m} such that x ∈ Fix ⊆ E. Hence, E =

⋃
x∈E{x} ⊆ ⋃

x∈E Fix ⊆⋃m
i=1 Fi ⊆ E. Thus

⋃m
i=1 Fi = E. For all i ∈ {1, 2, . . . , m}, Fi /= ∅ and

⋃m
i=1 Fi = E, hence F is a

covering.

Theorem 3.1 indicates that the zero ofL(M(C)) is ∅. The following lemma presents the
form of the atoms of L(M(C)). In fact, the closure of any single-point set is an atom of the
lattice.

Lemma 3.2. Let C be a covering of E. For all x ∈ E, clM(C)({x}) is an atom of L(M(C)).

Proof. Since C is a covering, we know any single-point set is an independent set. Thus for all
x ∈ E, rM(C)(clM(C)({x})) = rM(C)({x}) = 1. As we know, the atoms of a lattice are precisely
the elements of height one. Combining with Lemma 2.10 and the fact that clM(C)({x}) is a
closed set, we know clM(C)({x}) is an atom of L(M(C)).

Lemma 3.2 does not establish the concrete form of clM(C)({x}). In order to solve that
problem, we first define two sets as follows.

Definition 3.3. Let C = {K1, K2, . . . , Km} be a covering of a finite set E = {x1, x2, . . . , xn}. We
define the following.

(i) A = {Ki −
⋃m

j=1,j /= i Kj : Ki −
⋃m

j=1,j /= i Kj /= ∅, i ∈ {1, 2, . . . , m}} = {A1, A2, . . . , As}.
(ii) B = E −⋃s

i=1 Ai.

Remark 3.4. For all i ∈ {1, 2, . . . , s} and x ∈ Ai, there exists only one block such that x belongs
to it, and there exist at least two blocks such that y belongs to them for all y ∈ B.

The following two propositions establish two characteristics of A and B.

Proposition 3.5. Let C be a covering of E. {A1, A2, . . . , As} ∪ {{x} : x ∈ B} forms a partition of E.

Proof. Let P = {A1, A2, . . . , As} ∪ {{x} : x ∈ B}. According to Definition 3.3, we know
(
⋃s

i=1 Ai) ∪ (∪{{x} : x ∈ B}) = E. Now we need to prove for all P1, P2 ∈ P , P1 ∩ P2 = ∅.
According to the definition of A, if P1, P2 ∈ A, then P1 ∩ P2 = ∅. If P1, P2 ∈ {{x} : x ∈ B}, then
P1 ∩P2 = ∅ because Pi and Pj are different single-points. If P1 ∈ A and P2 ∈ {{x} : x ∈ B}, then
P1 ∩ P2 = ∅ because B ∩ (

⋃s
k=1 Ak) = ∅, P1 ⊆

⋃s
k=1 Ak and P2 ⊆ B.
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Proposition 3.6. C is a partition of E if and only if B = ∅.

Proof. According to the definition of A and B, the necessity is obvious. Now we prove the
sufficiency. If C is not a partition, then there exist Ki,Kj ∈ C such that Ki ∩Kj /= ∅. Thus there
exists x ∈ E such that x ∈ Ki ∩Kj , that is, there exist at leastKi,Kj ∈ C such that x belongs to
them, hence x ∈ B. That contradicts the assumption that B = ∅.

Based on Lemma 3.2 and Definition 3.3, we can establish the concrete form of the
atoms of lattice L(M(C)).

Theorem 3.7. Let C be a covering of E. {A1, A2, . . . , As} ∪ {{x} : x ∈ B} is the set of atoms of lattice
L(M(C)).

Proof. According to the definition ofAi, we may as well supposeAi = Kh −
⋃m

j=1,j /=h Kj . Based
on C being a covering and the definition of transversal matroid, we know any single-point
set is an independent set, thus for all x ∈ Ai, {x} is an independent set. For all y ∈ Ai and
y /=x, we know x, y ∈ Kh and x, y /∈ Kj for all 1 ≤ j ≤ m and j /=h, thus x and y cannot be
chosen from different blocks in the covering C. That shows that {x, y} is not an independent
set according to the definition of transversal matroid. Hence, {x} is a maximal independent
set included in Ai, that is, rM(C)(Ai) = 1. Next, we need to prove Ai is a closed set. Since
Ai ⊆ clM(C)(Ai), we need to prove clM(C)(Ai) ⊆ Ai, that is, y /∈ Ai implies y /∈ clM(C)(Ai). If
y /∈ Ai, based on the fact that C is a covering and the definition of Ai, then there exists j /=h
such that y ∈ Kj . Thus {x, y}(x ∈ Ai) is an independent set. That implies y /∈ clM(C)(Ai),
thus clM(C)(Ai) = Ai. Hence, Ai ∈ L(M(C)). Combining with rM(C)(Ai) = 1, we know for all
1 ≤ i ≤ m, Ai is an atom of lattice L(M(C)).

According to the definition of transversal matroid and the fact that C is a covering, any
single-point set is an independent set. Thus for all x ∈ B, rM(C)({x}) = 1. For all y ∈ E and
y /=x, if y ∈ B, then there exist at least two blocks containing y according to the definition of
B. We may as well suppose y ∈ Kk,Kt and x ∈ Kl,Kp, where {Kk,Kt} may be the same as
{Kl,Kp}. Based on this, {x, y} is an independent set. This implies y /∈ clM(C)({x}). If y /∈ B,
then we may as well suppose y ∈ Ai, thus y ∈ Kh for the definition of Ai, where Kh may be
the samewithKl orKp. Based on this, x and y can be chosen from different blocks in covering
C, thus {x, y} is an independent set. That implies y /∈ clM(C)({x}). From above discussion, we
have clM(C)({x}) = {x}. Hence, {x} ∈ L(M(C)) for all x ∈ B. Combining with rM(C)({x}) = 1,
we know {x} is an atom of lattice L(M(C)) for all x ∈ B.

Next, we will prove the set of atoms of lattice L(M(C)) cannot be anything but
{A1, A2, . . . , As} ∪ {{x} : x ∈ B}. According to Lemma 3.2, we know {clM(C)({x}) : x ∈ E}
is the set of atoms of lattice L(M(C)). Similar to the proof of the second part, we know that
if x ∈ B then clM(C)({x}) = {x}. If x /∈ B, then x belongs to one of elements in A. We may as
well suppose x ∈ Ai. Combining Ai is an atom with ∅ ⊆ clM(C)({x}) ⊆ clM(C)(Ai) = Ai, we
have clM(C)({x}) = Ai. Hence, {A1, A2, . . . , As} ∪ {{x} : x ∈ B} is the set of atoms of lattice
L(M(C)).

The proposition below connects simple matroid and the cardinal number ofAi. In fact,
a matroid is simple if and only if |Ai| = 1 for all Ai ∈ A.

Lemma 3.8. Let C be a covering of E. For all Ai ∈ A, if |Ai| ≥ 2, then x and y are parallel in M(C)
for all x, y ∈ Ai.
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Proof. According to the definition ofAi, we may as well supposeAi = Kh−
⋃m

j=1,j /=h Kj , where
1 ≤ h ≤ m. For all x, y ∈ Ai, then x, y ∈ Kh, and for all j ∈ {1, 2, . . . , m} and j /=h, we
have x /∈ Kj and y /∈ Kj . Thus {x, y} is not an independent set. Based on the definition of
transversal matroid and the fact that C is a covering, any single-point set is an independent
set. Thus {x} or {y} is an independent set. Hence, x, y are parallel in M(C).

Proposition 3.9. Let C be a covering of E. M(C) is a simple matroid if and only if |Ai| = 1 for all
Ai ∈ A.

Proof. “⇒”: Since M(C) is a simple matroid, it does not contain parallel elements. If there
exists Ai ∈ A such that |Ai|/= 1, then |Ai| ≥ 2 because Ai /= ∅. According to Lemma 3.8, we
know for all x, y ∈ Ai, x, y are parallel which contradicts the assumption that M(C) is a
simple matroid. Hence, for all Ai ∈ A, |Ai| = 1.

“⇐”: According to the definition of parallel element, if |Ai| = 1 for all Ai ∈ A, then
M(C) does not contain parallel elements; otherwise, wemay as well suppose x, y are parallel,
then there exists only one block which contains x, y. Hence, there exists Ai ∈ A such that
x, y ∈ Ai, that is, |Ai| ≥ 2. This contradicts the fact that |Ai| = 1 for all Ai ∈ A. Based on the
definition of transversal matroid and the fact that C is a covering, any single-point set is an
independent set, thus M(C) does not contain loops. Hence, M(C) does not contain parallel
elements and loops which implies thatM(C) is a simple matroid.

When a covering degenerates into a partition, we also have the above results.

Corollary 3.10. Let P = {P1, P2, . . . , Pm} be a partition of E. P is the set of atoms of lattice L(MP).

Corollary 3.11. Let P = {P1, P2, . . . , Pm} be a partition of E. M(P) is a simple matroid if and only
if |Pi| = 1 for all Pi ∈ P .

For a geometric latticeL(M(C)), any closure of single-point is an atom of it. However,
the closure of any two elements of E may not be a element which covers some atoms of
this lattice. The following proposition shows in what condition clM(C)({x, y}) covers certain
atoms of lattice L(M(C)).

Proposition 3.12. Let C be a covering of E. For all x, y ∈ E, clM(C)({x, y}) covers clM(C)({x}) if
and only if there does not exist Ai ∈ A such that x, y ∈ Ai.

Proof. “⇐”: For all x, y ∈ E, {x} ⊆ {x, y}, then clM(C)({x}) ⊆ clM(C)({x, y}) and 1 =
rM(C)(clM(C)({x})) ≤ rM(C)(clM(C)({x, y})) = rM(C)({x, y}) ≤ |{x, y}| = 2. Now we need to
prove rM(C)(clM(C)({x, y})) = 2. If rM(C)(clM(C)({x, y})) = rM(C)({x, y}) = 1 = rM(C)({x}), then
{x, y} /∈ I(C), that is, there is only one block contains x, y. It means that there exists Ai ∈ A
such that x, y ∈ Ai. That contradicts the hypothesis. Hence, rM(C)(clM(C)({x, y})) = 2, that is,
clM(C)({x, y}) covers clM(C)({x}).

“⇒”: For all x, y ∈ E, if there exists Ai ∈ A such that x, y ∈ Ai, then there is only one
block contains x, y, thus x, y /∈ I(C), hence {x, y} ⊆ clM(C)({x}). That implies clM(C)({x, y}) ⊆
clM(C)({x}) which contradicts the assumption that clM(C)({x, y}) covers clM(C)({x}).

The modular element and the modular pair are core concepts in lattice. As we know, if
a is a modular element of L, then (a, b) is a modular pair of L for all b ∈ L, which roots in an
important result of lattices. The following theorem shows the relationship among modular
element, modular pair and rank function of a matroid in lattice L(M).
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Theorem 3.13. Let M be a matroid and L(M) the set of all closed sets of M.

(1) For allX,Y ∈ L(M), (X,Y ) is a modular pair ofL(M) if and only if rM(X∪Y )+rM(X∩
Y ) = rM(X) + rM(Y ).

(2) For allX ∈ L(M),X is a modular element ofL(M) if and only if rM(X∪Y )+rM(X∩Y ) =
rM(X) + rM(Y ), for all Y ∈ L(M).

Proof. (1) According to Lemmas 2.8 and 2.10, we know (X,Y ) is a modular pair of L(M)
if and only if rM(X) + rM(Y ) = rM(X ∨ Y ) + rM(X ∧ Y ) = rM(clM(X ∪ Y )) + rM(X ∩ Y ) =
rM(X ∪ Y ) + rM(X ∩ Y ).

(2) It comes from the definition of modular element and (1).

Let {Ai : i ∈ Γ} be the set of atoms of lattice L(M(C)), where Γ denotes the index set.
The following theorem shows the relationship among atoms, modular pairs, and modular
elements of the lattice.

Theorem 3.14. Let C be a covering of E. For all i, j ∈ Γ.

(1) (Ai,Aj) is a modular pair of L(M(C)).
(2) Ai is a modular element of L(M(C)).

Proof. (1) Since C is a covering, clM(C)(∅) = ∅. Ai and Aj are atoms, so Ai ∩Aj = ∅. According
to Theorem 3.13, we need to prove rM(C)(Ai∪Aj)+rM(C)(Ai∩Aj) = rM(C)(Ai)+rM(C)(Aj), that
is, rM(C)(Ai ∪ Aj) = 2. According to the submodular inequality of rM(C), we have rM(C)(Ai ∪
Aj) + rM(C)(Ai ∩Aj) ≤ rM(C)(Ai) + rM(C)(Aj), that is, 1 ≤ rM(C)(Ai ∪Aj) ≤ 2. If rM(C)(Ai ∪Aj) =
1 = rM(C)(Ai), then Aj ⊆ clM(C)(Ai) = Ai which contradicts that Ai ∩Aj = ∅.

(2) Ai is a modular element of L(M(C)) if and only if rM(C)(Ai ∪A) + rM(C)(Ai ∩A) =
rM(C)(Ai) + rM(C)(A) for all A ∈ L(M(C)).

Case 1. If Ai and A are comparable, that is, Ai ⊆ A, then rM(C)(Ai ∪ A) + rM(C)(Ai ∩ A) =
rM(C)(Ai) + rM(C)(A).

Case 2. If Ai and A are not comparable, there are two cases. One is that A is an atom of
L(M(C)), the other is that A is not an atom of L(M(C)). If A is an atom of L(M(C)), then
we obtain the result from (1). If A is not an atom of L(M(C)), then A ∩ Ai = ∅. Hence,
rM(C)(A) ≤ rM(C)(A∪Ai) ≤ rM(C)(A) + 1. If rM(C)(A∪Ai) = rM(C)(A), thenAi ⊆ clM(C)(A) = A
which contradicts that Ai ∩A = ∅. Hence, rM(C)(A ∪Ai) = rM(C)(A) + 1.

In a word, for all A ∈ L(M(C)), rM(C)(Ai ∪A) + rM(C)(Ai ∩A) = rM(C)(Ai) + rM(C)(A),
that is, Ai is a modular element of L(M(C)) for all i ∈ Γ.

When a covering degenerates into a partition, it is not difficult for us to obtain the
following result.

Corollary 3.15. Let P be a partition of E. For all Pi, Pj ∈ P:

(1) (Pi, Pj) is a modular pair of L(M(P)).

(2) Pi is a modular element of L(M(P)).

The following lemma shows how to induce a matroid by a lattice. In fact, if a function
f on a lattice is nonnegative, integer-valued, submodular and f(∅) = 0, then it can determine
a matroid.
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Lemma 3.16 (see [19]). Let LE be a lattice of subsets of a set E such that LE is closed under
intersection, and contains ∅ and E. Suppose that f is a nonnegative, integer-valued, submodular
function on LE for which f(∅) = 0. Let I(LE, f) = {X ⊆ E : f(X) ≥ |X ∩ T |, for all T ∈ LE}.
I(LE, f) is the collection of independent sets of a matroid on E.

According to the definition of L(M(C)), we find that L(M(C)) is closed under
intersection, and contains ∅ and E. Moreover, the rank function of M(C) is a nonnegative,
integer-valued, submodular function on L(M(C) for which rM(C)(∅) = 0. Similar to
Lemma 3.16, we can obtain the following theorem.

Theorem 3.17. Let C be a covering of E. We define I(L(M(C)), rM(C)) = {X ⊆ E : rM(C)(Y ) ≥
|X ∩ Y |, for all Y ∈ L(M(C))}, thenM(E,I(L(M(C), rM(C))) is a matroid.

For any given matroid M, we know that for all X ⊆ E, X is an independent set of
M if and only if rM(X) = |X|. Moreover, based on the properties of rank function, we have
rM(X) ≤ |X|. Hence, X is an independent set of M if and only if rM(X) ≥ |X| for all X ⊆ E.

Lemma 3.18. Let M be a matroid. X is an independent set of M if and only if for all closed set Y of
M, rM(Y ) ≥ |X ∩ Y |.

Proof. “⇒”: Since for all closed set Y , X ∩ Y ⊆ X and X is an independent set, X ∩ Y is an
independent set of M according to the independent set axiom of a matroid. Hence, we have
rM(Y ) ≥ rM(X ∩ Y ) ≥ |X ∩ Y |.

“⇐”: For all closed set Y , rM(Y ) ≥ |X∩Y |. Especially, for Y = clM(X), we have rM(X) =
rM(clM(X)) = rM(Y ) ≥ |X ∩ Y | = |X|. Hence, X is an independent set of matroid M.

What is the relation between the two matroids induced by a covering and a geometric
lattice, respectively? In order to establish the relation between them, we first denote rL(M(C))
as the rank function of M(E,I(L(M(C), rM(C))) on E. The following theorem shows there
is a one-to-one correspondence between geometric lattices and transversal matroids in the
context of covering-based rough sets.

Theorem 3.19. Let C be a covering of E. For all X ⊆ E, I(L(M(C), rM(C)) = I(M(C)) and
rL(M(C))(X) = rM(C)(X).

Proof. According to Lemma 3.18, we know that I(L(M(C), rM(C)) = {X ⊆ E : rM(C)(Y ) ≥
|X ∩ Y |, for all Y ∈ L(M(C))} and I(C) = {X ⊆ E : rM(C)(X) = |X|} are equivalent, that is,
M(E,I(L(M(C), rM(C))) and M(E,I(C)) are equivalent. So does rL(M(C))(X) = rM(C)(X) for
all X ⊆ E.

When a covering degrades into a partition, we can obtain a matroidM(P) = (E,I(P)),
whereI(P) = {X ⊆ E : for all Pi ∈ P, |X∩Pi| ≤ 1} and rM(P)(X) = max{|I| : I ⊆ X, I ∈ I(P)} =
|{Pi ∈ P : Pi ∩ X /= ∅}| for all X ⊆ E. As we know, for all X,Y ∈ L(M), X ∨ Y = clM(X ∪ Y ). If
the matroid isM(P), then X ∨ Y = X ∪ Y .

Lemma 3.20 (see [25]). If P is a partition of E and M is the matroid, then clM = R∗ for all X ⊆ E.

Lemma 3.21. Let P be a partition of E. For all X,Y ∈ L(M(P)), X ∨ Y = X ∪ Y .
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Proof. X∨Y = clM(P)(X∪Y ) = R∗(X∪Y ) = R∗(X)∪R∗(Y ) = clM(P)(X)∪clM(P)(Y ) = X∪Y .

Based on the above two lemmas, we can obtain the following proposition.

Proposition 3.22. Let P be a partition of E. For all X ⊆ E, I(L(M(P)), rM(P)) = I(M(P)) and
rL(M(P))(X) = rM(P)(X).

Proof. We need to prove only I(L(M(P)), rM(P)) = I(M(P)). For allX ∈ I(L(M(P)), rM(P)),
then rM(P)(Y ) ≥ |X ∩ Y | for all Y ∈ L(M(P)). Since Pi ∈ L(M(P)), |X ∩ Pi| ≤ rM(P)(Pi) = 1.
Thus X ∈ I(M(P)). Hence, I(L(M(P), rM(P)) ⊆ I(M(P)). According to Lemmas 2.9 and
3.21, for all Y ∈ L(M(P)), there exists K ⊆ {1, 2, . . . , m} such that Y =

∨
i∈KPi =

⋃
i∈K Pi.

Thus rM(P)(Y ) = |K| and |X ∩ Y | = |X ∩ (
⋃

i∈K Pi)| = |⋃i∈K(X ∩ Pi)| =
∑

i∈K |X ∩ Pi|. For
all X ∈ I(M(P)), |X ∩ Pi| ≤ 1. Hence, |X ∩ Y | = ∑

i∈K |X ∩ Pi| ≤ |K| = rM(P)(Y ), that is,
I(M(P)) ⊆ I(L(M(P)), rM(P)).

4. Two Geometric Lattice Structures of Covering-Based Rough Sets
through Approximation Operators

A geometric lattice structure of covering-based rough sets is established through the
transversal matroid induced by a covering, and its characteristics including atoms, modular
elements, and modular pairs are studied in Section 3. In this section, we study matroidal
structures and the geometric lattice structures from the viewpoint of covering upper
approximation operators. The conditions of two types of upper approximation operators to
be matroidal closure operators are obtained, and the properties of the matroids and their
geometric lattice structures induced by the operators are also established.

Pomykała first studied the second type of covering rough set model [30]. Zhu and
Wang studied the axiomatization of this type of upper approximation operator and the
relationship between it and the Kuratowski closure operator in [27]. First, we give some
properties of this operator.

Proposition 4.1. Let C be a covering of E. SH has the following properties:

(1) SH(∅) = ∅,
(2) X ⊆ SH(X) for all X ⊆ E,

(3) SH(X ∪ Y ) = SH(X) ∪ SH(Y ) for all X,Y ⊆ E,

(4) x ∈ SH({y}) ⇔ y ∈ SH({x}) for all x, y ∈ E,

(5) X ⊆ Y ⊆ E ⇒ SH(X) ⊆ SH(Y ),

(6) for all x, y ∈ E, y ∈ SH(X ∪ {x}) − SH(X), then x ∈ SH(X ∪ {y}).

Proof. (1)–(5)were proven in [30, 32, 33]. Here we prove only (6). According to (3), we know
SH(X ∪ {x}) − SH(X) = SH(X) ∪ SH({x}) − SH(X) = SH({x}) − SH(X). If y ∈ SH(X ∪ {x}) −
SH(X), then y ∈ SH({x}). According to (4) and (5), we have x ∈ SH({y}) ⊆ SH(X ∪{y}).

We find that the idempotent of SH is not valid, so what is the condition that guarantees
it holds for SH? We have the following conclusion.

Proposition 4.2. Let C be a covering of E. For all X ⊆ E, SH(SH(X)) = SH(X) if and only if
{I(x) : x ∈ E} induced by C forms a partition of E.
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Proof. “⇐”: According to (2), (5) of Proposition 4.1, we have SH(X) ⊆ SH(SH(X)). Now we
prove SH(SH(X)) ⊆ SH(X). For all x ∈ SH(SH(X)), there exists y ∈ SH(X) such that x ∈ I(y).
Since y ∈ SH(X), there exists z ∈ X such that y ∈ I(z). According to the definition of I(y),
we know y ∈ I(y), thus I(z)∩ I(y)/= ∅. For {I(x) : x ∈ E} forms a partition, I(z) = I(y). Since
x ∈ I(y), x ∈ I(z), that is, x ∈ SH(X), thus SH(SH(X)) ⊆ SH(X).

“⇒”: In order to prove {I(x) : x ∈ E} forms a partition, we need to prove that for all
x, y ∈ E, if I(x) ∩ I(y)/= ∅, then I(x) = I(y). If I(x) ∩ I(y)/= ∅, then there exists z ∈ I(x) ∩
I(y). For SH(SH({x})) = ∪{I(u) : u ∈ I(x)} and z ∈ I(x), then I(z) ⊆ SH(SH({x})) =
SH({x}) = I(x). Based on the definition of I(z) and z ∈ I(x), we have x ∈ I(z), thus I(x) ⊆
SH(SH({z})) = SH({z}) = I(z). Hence, I(x) = I(z). Similarly, we can obtain I(y) = I(z), thus
I(x) = I(z) = I(y).

The following theorem establishes a necessary and sufficient condition for SH to be a
closure operator.

Theorem 4.3. Let C be a covering of E. SH is a closure operator of a matroid if and only if {I(x) : x ∈
E} induced by C forms a partition of E.

Proof. It comes from Propositions 4.1 and 4.2 and (2), (5), and (6) of Proposition 2.3.

For a given covering C of E, we may as well suppose the set of indiscernible
neighborhoods of E as {I(x) : x ∈ E} = {I(x1), I(x2), . . . , I(xs)}where x1, x2, . . . , xs ∈ E.

Definition 4.4. Let C be a covering of E. We define I′ = {I ⊆ E : |I ∩ I(xi)| ≤ 1, for all i ∈
{1, 2, . . . , s}}.

As we know, if {I(x) : x ∈ E} = {I(x1), I(x2), . . . , I(xs)} forms a partition of E, then
M(E,I′) is a matroid and SH is the closure operator of a matroid. Thus SH can determine a
matroid, and the independent sets of the matroid induced by it are established as follows:

ISH(C) = {I ⊆ E : ∀x ∈ I, x /∈ SH(I − {x})}. (4.1)

The following proposition shows M(E,ISH) = M(E,I′) under the condition that {I(x) : x ∈
E} forms a partition of E.

Proposition 4.5. Let C be a covering of E. If {I(x) : x ∈ E} induced by C forms a partition of E, then
M(E,ISH(C)) is a matroid and ISH(C) = I′.

Proof. Let Icl = {I ⊆ E : for all x ∈ I, x /∈ cl(I − {x})}. we know that if an operator cl
satisfies (1)–(4) of Proposition 2.3, M(E,Icl) is a matroid. {I(x) : x ∈ U} induced by C
forms a partition, hence, M(E,ISH(C)) is a matroid. Since SH(I) =

⋃
y∈I I(y), SH(I − {x}) =⋃

y∈I−{x} I(y). According to the definition of I(x), we know x ∈ I(x). On one hand, for all
I ∈ ISH(C), we know that for all x ∈ I, x /∈ SH(I−{x}), that is, for all y ∈ I and y /=x, x /∈ I(y).
If I /∈ I′, that is, there exists 1 ≤ i ≤ s such that |I ∩ I(xi)| ≥ 2, then we may as well suppose
there exist u, v such that u, v ∈ I(xi) and u, v ∈ I. Since u ∈ I(u), v ∈ I(v) and {I(x) : x ∈ E}
forms a partition, I(u) = I(v) = I(xi). Based on that, we know there exists u ∈ I and u/=v
such that u ∈ I(v), that implies contradiction. Hence, I ∈ I′, that is, ISH(C) ⊆ I′. On the other
hand, if I /∈ ISH(C), then there exists x ∈ I such that x ∈ SH(I − {x}) =

⋃
y∈I−{x} I(y). That

implies that there exists y ∈ I and y /=x such that x ∈ I(y). Since x ∈ I(x) and {I(x) : x ∈ U}
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forms a partition, I(x) = I(y). Thus x, y ∈ I ∩ I(x), that implies |I ∩ I(x)| ≥ 2, that is, I /∈ I′.
Hence, I′ ⊆ ISH(C).

We denote the rank function of M(E,ISH(C)) by rSH. Then some properties of
M(E,ISH(C)) are established in the following proposition.

Proposition 4.6. Let C be a covering of E. If {I(x) : x ∈ E} = {I(x1), I(x2), . . . , I(xs)} induced by
C forms a partition of E, then

(1) X is a base ofM(E,ISH(C)) if and only if |X∩I(xi)| = 1 for all i ∈ {1, 2, . . . , s}. Moreover,
M(E,ISH(C)) has |I(x1)||I(x2)| · · · |I(xs)| bases.

(2) For all X ⊆ E, rSH(X) = |{I(xi) : I(xi) ∩X /= ∅, i = 1, 2, . . . , s}|.

(3) X is a dependent set of M(E,ISH(C)) if and only if there exists I(xi) ∈ {I(x) : x ∈ E}
such that |I(xi) ∩X| > 1.

(4) X is a circuit of M(E,ISH(C)) if and only if there exists I(xi) ∈ {I(x) : x ∈ E} such that
X ⊆ I(xi) and |X| = 2.

Proof. (1) According to the definition of base of a matroid, we know that X is a base of
M(E,ISH(C)) ⇔ X is a maximal independent set ofM(E,ISH(C)) ⇔ |X ∩ I(xi)| = 1 for all i ∈
{1, 2, . . . , s} because ISH(C) = I′. Since X is a base ofM(E,ISH(C)) and I(x1), I(x2), . . . , I(xs)
are different, M(E,ISH(C)) has |I(x1)||I(x2)| · · · |I(xs)| bases.

(2) According to the definition of rank function, we know rSH(X) = |BX | = |{I(xi) :
|BX ∩I(xi)| = 1}| ≤ |{I(xi) : X∩I(xi)/= ∅}|, where BX is a maximal independent set included in
X. Nowwe just need to prove the inequality |{I(xi) : |BX ∩I(xi)| = 1}| < |{I(xi) : X∩I(xi)/= ∅}|
does not hold; otherwise, there exists 1 ≤ i ≤ s such that I(xi)∩X/= ∅ and I(xi)∩BX = ∅ because
BX ∈ ISH(C). Thus there exists ei ∈ I(xi) ∩X such that BX ∪ {ei} ⊆ X and BX ∪ {ei} ∈ ISH(C).
That contradicts the assumption that BX is a maximal independent set included in X. Hence,
rSH(X) = |{I(xi) : I(xi) ∩X /= ∅, i = 1, 2, . . . , s}|.

(3) According to the definition of dependent set, we know that X is a dependent set
⇔ X /∈ ISH(C) ⇔ there exists i ∈ {1, 2, . . . , s} such that |X ∩ I(xi)| > 1.

(4) “⇒”: As we know, a circuit is a minimal dependent set. X is a circuit of
M(E,ISH(C)), then there exists i ∈ {1, 2, . . . , s} such that |I(xi) ∩X| = 2. Now we just need to
prove |X| = 2; otherwise, we may as well suppose X = {x, y, z} where x, y ∈ I(xi) ∩ X. Thus
we can obtain |(X−{z})∩I(xi)| = 2, that is,X−{z} /∈ ISH(C). That contradicts the minimality
of circuit. Combining |X| = 2 with |I(xi) ∩X| = 2, we have X ⊆ I(xi).

“⇐”: Since |X| = 2, we may as well suppose X = {x, y}, and |X ∩ I(xi)| = 2 because
there exists I(xi) ∈ {I(x) : x ∈ E} such that X ⊆ I(xi), thus X is a dependent set. For all j ∈
{1, 2, . . . , s}, |{x} ∩ I(xj)| ≤ 1 and |{y} ∩ I(xj)| ≤ 1 which implies {x} and {y} are independent
sets, hence X is a circuit of M(E,ISH(C)).

For a covering C of E, we denote LSH(M(C)) as the set of all closed sets of
M(E,ISH(C)). When {I(x) : x ∈ E} = {I(x1), I(x2), . . . , I(xs)} forms a partition of E, then
for all X,Y ∈ LSH(M(C)), X ∧ Y = X ∩ Y , X ∨ Y = SH(X ∪ Y ) = SH(X) ∪ SH(Y ) = X ∪ Y and
SH(∅) = ∅.
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Proposition 4.7. Let C be a covering of E. If {I(x) : x ∈ E} = {I(x1), I(x2), . . . , I(xs)} forms a
partition of E, then

(1) I(x1), I(x2), . . . , I(xs) are all atoms of L(MSH).

(2) For all x, y ∈ E and x /=y, there does not exist I(z) ∈ {I(x1), I(x2), . . . , I(xs)} such that
x, y ∈ I(z) if and only if SH({x, y}) covers SH({x}) or SH({y}).

(3) For all i, j ∈ {1, 2, . . . , s}, (I(xi), I(xj)) is a modular pair of LSH(M(C)).

(4) For all i ∈ {1, 2, . . . , s}, I(xi) is a modular element of LSH(M(C)).

Proof. (1) comes from Corollary 3.10, Theorem 4.3 and Proposition 4.5. Based on
Proposition 3.12 and Theorem 4.3, we can obtain (2). According to Corollary 3.15,
Theorem 4.3 and Proposition 4.5, it is easy to obtain (3) and (4).

Based on Theorem 4.3, we know that a necessary and sufficient condition for SH to be
a closure operator of a matroid is that {I(x) : x ∈ E} forms a partition of E. The following two
propositions show what kind of coverings can satisfy that condition.

Lemma 4.8. Let C be a covering of E and K ∈ C. If K is an immured element, then I(x) is the same
in C as in C − {K}.

Proof. If x /∈ K, then IC(x) = IC−{K}(x). If x ∈ K, then IC(x) =
⋃

x∈K′ K′ ∪ K. Since K is
an immured element, there exists x ∈ K′ such that K ⊆ K′. Thus IC(x) =

⋃
x∈K′ K′ ∪ K =⋃

x∈K′ K′ = IC−{K}(x). Hence, I(x) is the same in C as in C − {K}.

Proposition 4.9. Let C be a covering of E. If exclusion(C) is a partition of E, then {I(x) : x ∈ E}
induced by C also forms a partition of E.

Proof. Since exclusion(C) is a partition of E, {I(x) : x ∈ E} induced by exclusion(C) forms
a partition. Suppose {K1, K2, . . . , Ks} is the set of all immured elements of C. According to
Lemma 4.8, we know for all x ∈ E, I(x) is the same in exclusion(C) as in exclusion(C)∪{K1}.
Thus {I(x) : x ∈ E} induced by exclusion(C) ∪ {K1} forms a partition of E. And the rest may
be deduced by analogy, we know that for all x ∈ E, I(x) is the same in exclusion(C) as in C,
thus {I(x) : x ∈ E} induced by C forms a partition of E.

The proposition below establishes a necessary and sufficient condition for {I(x) : x ∈
E} forms a partition of E from the viewpoint of coverings.

Proposition 4.10. Let C be a covering of E. {I(x) : x ∈ E} induced by C forms a partition of E if and
only if C satisfies (TRA) condition: For all x, y, z ∈ E, x, z ∈ K1 ∈ C, y, z ∈ K2 ∈ C, there exists
K3 ∈ C such that x, y ∈ K3.

Proof. “⇐”: For all x, y ∈ E, I(x) ∩ I(y) = ∅ or I(x) ∩ I(y)/= ∅. If I(x) ∩ I(y)/= ∅, then there
exists z ∈ I(x) and z ∈ I(y). According to the definition of I(x) and I(y), there exist K1, K2

such that x, z ∈ K1 and y, z ∈ K2. According to the hypothesis, we know there exists K3 ∈ C
such that x, y ∈ K3. Now we need to prove only I(x) = I(y). For all u ∈ I(x), there exists
K ∈ C such that u, x ∈ K. Since x, y ∈ K3, there exists K′ ∈ C such that u, y ∈ K′, that is,
u ∈ I(y), thus I(x) ⊆ I(y). Similarly, we can prove I(y) ⊆ I(x). Hence, I(x) = I(y), that is,
{I(x) : x ∈ E} forms a partition of E.
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“⇒”: For all x, y, z ∈ E, x, z ∈ K1 ∈ C and y, z ∈ K2 ∈ C, we can obtain z ∈ I(x) and
z ∈ I(y). That implies I(x) ∩ I(y)/= ∅. Since {I(x) : x ∈ E} forms a partition of E, I(x) = I(y).
Thus there exists K3 ∈ C such that x, y ∈ K3.

The following theorem presents a necessary and sufficient condition for SH to be a
closure operator of a matroid from the viewpoint of coverings.

Theorem 4.11. Let C be a covering of E. C satisfies (TRA) condition if and only if SH induced by C
is a closure operator of a matroid.

Proof. It comes from Theorem 4.3 and Proposition 4.10.

The sixth type of covering-based upper approximation operator was first defined in
[31]. Xu and Wang introduced this type of covering-based rough set model and studied the
relationship between it and binary relation based rough set model. The following proposition
gives some properties of this covering upper approximation operator.

Proposition 4.12 (see [26]). Let C be a covering of E. XH has the following properties:

(1) XH(E) = E,

(2) XH(∅) = ∅,
(3) X ⊆ XH(X) for all X ⊆ E,

(4) XH(X ∪ Y ) = XH(X) ∪ XH(Y ) for all X,Y ⊆ E,

(5) XH(XH(X)) = XH(X) for all X ⊆ E,

(6) for all X ⊆ Y ⊆ E ⇒ XH(X) ⊆ XH(Y ).

From the above proposition, we find that XH does not satisfy the (4) of Proposition 2.3.
The following proposition establishes a necessary and sufficient condition for XH to satisfy
the condition.

Proposition 4.13. Let C be a covering of E. For all x, y ∈ E and X ⊆ E, XH satisfies

y ∈ XH
(
X
⋃

{x}
)
− XH(X) =⇒ x ∈ XH

(
X
⋃{

y
})

(4.2)

if and only if {N(x) : x ∈ E} forms a partition of E.

Proof. ⇒: For all x, y ∈ E, if N(x) ∩ N(y)/= ∅, then there exists z ∈ N(x) ∩ N(y). Let X = ∅.
According to (2) of Proposition 4.12, we know that if y ∈ XH({x}) then x ∈ XH(y), that is, if
x ∈ N(y) then y ∈ N(x). Since z ∈ N(x), N(z) ⊆ N(x). According to the assumption, we
also have x ∈ N(z), that is, N(x) ⊆ N(z). Thus N(x) = N(z). Similarly, z ∈ N(y), we have
N(z) = N(y). ThusN(x) = N(z) = N(y). Hence, {N(x) : x ∈ E} forms a partition of E.

⇐: Since XH(X ∪ Y ) = XH(X) ∪ XH(Y ) for all X,Y ⊆ U, y ∈ XH(X ∪ {x}) − XH(X) =
XH(X) ∪ XH({x}) − XH(X) = XH({x}) − XH(X). Now we prove x ∈ XH({y}). Since y ∈
XH({x}), x ∈ N(y). Because the fact that {N(x) : x ∈ E} forms a partition of E, x ∈ N(x) and
x ∈ N(y), we have N(x) = N(y), thus y ∈ N(x), that is, x ∈ XH({y}). Hence x ∈ XH({y}) ⊆
XH(X ∪ {y}).
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The following theorem establishes a necessary and sufficient condition for XH to be a
closure operator of a matroid.

Theorem 4.14. Let C be a covering of E. {N(x) : x ∈ E} induced by C forms a partition of E if and
only if XH is a closure operator of a matroid.

Proof. It comes from (3), (5), and (6) of Propositions 4.12 and 4.13.

For convenience, for a given covering C of E, we may as well suppose the set of all
neighborhoods as {N(x) : x ∈ E} = {N(x1),N(x2), . . . ,N(xt)}where x1, x2, . . . , xt ∈ E.

Definition 4.15. Let C be a covering of E. We define I′′ = {I ⊆ E : |I ∩ N(xi)| ≤ 1, for all i ∈
{1, 2, . . . , t}}.

Theorem 4.14 indicates that if {N(x) : x ∈ E} forms a partition of E, then XH is a
closure operator of a matroid. Hence, XH can determine a matroid, and the independent sets
of the matroid induced by it are established as follows:

IXH(C) = {I ⊆ E : ∀x ∈ I, x /∈ XH(I − {x})}. (4.3)

Similar to the case of SH, we can obtain the following results.

Proposition 4.16. Let C be a covering of E. If {N(x) : x ∈ E} induced by C forms a partition of E,
thenM(E,IXH(C)) is a matroid and IXH(C) = I′′.

rXH denotes the rank function of M(E,IXH(C)) and LXH(M(C)) denotes the set of all
closed sets of M(E,IXH(C)). Then we can obtain the following proposition.

Proposition 4.17. Let C be a covering of E. If {N(x) : x ∈ E} = {N(x1),N(x2), . . . ,N(xt)}
induced by C forms a partition of E, then

(1) X is a base ofM(E,IXH(C)) if and only if |X∩N(xi)| = 1 (1 ≤ i ≤ t), andM(E,IXH(C))
has |N(x1)||N(x2)| · · · |N(xs)| bases.

(2) For all X ⊆ E, rXH(X) = |{N(xi) : N(xi) ∩X /= ∅, 1 ≤ i ≤ t}|.
(3) X is a circuit of M(E,IXH(C)) if and only if there exists N(xi) ∈ {N(x) : x ∈ E} such

that X ⊆ N(xi) and |X| = 2.

(4) X is a dependent set of M(E,IXH(C)) if and only if there exists N(xi) ∈ {N(x) : x ∈ E}
such that |N(xi) ∩X| > 1.

(5) {N(x1),N(x2), . . . ,N(xt)} is the set of all atoms of lattice LXH(M(C)).
(6) For all x, y ∈ E and x /=y, there does not exist N(z) ∈ {N(x1),N(x2), . . . ,N(xt)} such

that x, y ∈ N(z) if and only if XH({x, y}) covers XH({x}) or XH({y}).
(7) For all i, j ∈ {1, 2, . . . , t}, (N(xi),N(xj)) is a modular pair of lattice LXH(M(C)).
(8) For all i ∈ {1, 2, . . . , t}, N(xi) is a modular element of lattice LXH(M(C)).

The proof of Propositions 4.16 and 4.17 is similar to that of Propositions 4.5, 4.6, and
4.7, respectively. So we omit the proofs of them. Similar to the case of SH, we also study what
kind of coverings can make {N(x) : x ∈ E} form a partition of E. This paper establishes
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only two kinds of coverings. There are some coverings which satisfy the condition appear in
[34, 35].

Lemma 4.18. Let C be a covering on E and K be reducible in C. For all x ∈ U, N(x) is the same in
C as in C − {K}.

Proof. For all x ∈ E, Md(x) is the same for covering C and covering C − {K}, so N(x) =
∩Md(x) is the same for the covering C and covering C − {K}.

Proposition 4.19. Let C be a covering of E. If reduct(C) is a partition of E, then {N(x) : x ∈ E}
induced by C is also a partition of E.

Proof. Since reduct(C) is a partition of E, {N(x) : x ∈ E} induced by reduct(C) forms a
partition of E. Suppose {K1, K2, . . . , Ks} is the set all reducible elements of C. According to
Lemma 4.18, we know that for all x ∈ E,N(x) is the same in reduct(C) as in reduct(C)∪{K1},
thus {N(x) : x ∈ E} induced by reduct(C) ∪ {K1} forms a partition of E. And the rest may be
deduced by analogy, then we can obtain for all x ∈ E, N(x) is the same in reduct(C) as in C,
thus {N(x) : x ∈ E} induced by C forms a partition of E.

The following proposition establishes a sufficient condition for {N(x) : x ∈ E} to be a
partition of E from the viewpoint of coverings.

Proposition 4.20. Let C be a covering of E. If C satisfies (EQU) condition: For all K ∈ C, for all
x, y ∈ K, the number of blocks which contain x is equal to that of blocks which contain y, then
{N(x) : x ∈ E} induced by C forms a partition of E.

Proof. For all x, y ∈ E, if N(x) ∩N(y)/= ∅, then there exists z ∈ E such that z ∈ N(x) and z ∈
N(y), that is, the blocks which contain x also contain z and the blocks which contain y also
contain z. Hence, there existKi,K

′
i such that x, z ∈ Ki and y, z ∈ K′

i. Without loss of generality,
we suppose {K1, K2, . . . , Ks} is the set of all blocks which contain x and {K′

1, K
′
2, . . . , K

′
t} is

the set of all blocks which contain y. Since the number of blocks which contain z is equal to
that of blocks which contain x, {K1, K2, . . . , Ks} is the set of all blocks which contain z, thus
{K′

1, K
′
2, . . . , K

′
t} ⊆ {K1, K2, . . . , Ks}. Hence, N(x) ⊆ N(y). Similarly, we can prove N(y) ⊆

N(x). Hence, N(x) = N(y), that is, {N(x) : x ∈ E} forms a partition of E.

Based on Theorem 4.14, Propositions 4.19 and 4.20, we can obtain the following two
corollaries.

Corollary 4.21. Let C be a covering of E. If reduct(C) is a partition of E, then XH is a closure
operator of a matroid.

Corollary 4.22. Let C be a covering on E. If C satisfies (EQU) condition, then XH is a closure
operator of a matroid.

5. Relationships among Three Geometric Lattice Structures of
Covering-Based Rough Sets

In Section 3, the properties of the geometric lattice induced by a covering have been studied
by the matroid M(E,I(C)). Section 4 presents three sufficient and necessary conditions for
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two types of covering upper approximation operators to be closure operators of matroids.
Moreover, we exhibit two types of matroidal structures through closure axioms, and then
obtain two geometric lattice structures of covering-based rough sets. In this section, we
study the relationship among above three types of geometric lattices through corresponding
matroids. We also discuss the reducible element and the immured element’s influence on the
relationship among this three types of matroidal structures and geometric lattice structures.

The following proposition shows the relationship between ISH(C) and I(C), and the
relationship between LSH(M(C)) and L(M(C)).

Proposition 5.1. Let C be a covering of E. If SH induced by C is a closure operator, then ISH(C) ⊆
I(C) and LSH(M(C)) ⊆ L(M(C)).

Proof. Since SH induced by C is a closure operator, {I(x) : x ∈ E} = {I(x1), I(x2), . . . , I(xs)}
forms a partition of E. For all I ∈ ISH(C), suppose I = {i1, i2, . . . , iα} (α ≤ s) such that
i1 ∈ I(xi1), i2 ∈ I(xi2), . . . , iα ∈ I(xiα) and {I(xi1), I(xi2), . . . , I(xiα)} ⊆ {I(x1), I(x2), . . . , I(xs)}.
According to the definition of I(x), there exists {Ki1 , Ki2 , . . . , Kiα} ⊆ C such that i1 ∈ Ki1 , i2 ∈
Ki2 , . . . , iα ∈ Kiα . Since {I(x1), I(x2), . . . , I(xs)} forms a partition of E, thus {Ki1 , Ki2 , . . . , Kiα}
are different blocks. According to the definition of transversal matroid, we have I ∈ I. Hence,
ISH(C) ⊆ I(C).

For allX ∈ LSH(M(C)),X = SH(X) =
⋃

x∈X I(x). Nowwe need to proveX ∈ L(M(C)),
that is, clM(C)(X) = X = {x | rM(C)(X) = rM(C)(X∪{x})}. SinceX ⊆ clM(C)(X), if clM(C)(X)/=X,
then clM(C)(X) /⊆ X, that is, there exists y /∈ X such that rM(C)(X) = rM(C)(X ∪ {y}). Suppose
T = {t1, t2, . . . , tt} (t ≤ s) is a maximal independent set included inX, then {t1, t2, . . . , tt} ⊆ X =⋃

x∈X I(x) and there exist differentK1, K2, . . . , Kt such that for all i ∈ {1, 2, . . . , t}, ti ∈ Ki. Since
y /∈ X, I(x) ∩ I(y) = ∅ for all x ∈ X. Based on {I(x1), I(x2), . . . , I(xs)} forms a partition of E,
there existsK ⊆ I(y) such thatK1, K2, . . . , Kt, K are different blocks and y ∈ K, thus T∪{y} is
a maximal independent set included inX∪{y}. Hence, we have rM(C)(X∪{y}) = rM(C)(X)+1
which contradicts rM(C)(X) = rM(C)(X ∪ {y}). Thus we can obtain clM(C)(X) = X.

The following proposition illustrates that in what condition the indiscernible
neighborhoods are included in the geometric lattice induced by C.

Proposition 5.2. Let C be a covering of E. If SH induced by C is a closure operator, then for all
x ∈ E, I(x) ∈ L(M(C)).

Proof. Since SH induced by C is a closure operator, {I(x) : x ∈ E} forms a partition of E.
Thus, for all x ∈ E, SH(I(x)) =

⋃
y∈I(x) I(y) = I(x), that is, I(x) ∈ LSH(M(C)). According to

Proposition 5.1, I(x) ∈ L(M(C)).

We give an example to help understand the relationship between LSH(M(C)) and
L(M(C)) better.

Example 5.3. Let C = {{1, 2}, {1, 3}, {2, 3}, {4, 5}}. I(1) = I(2) = I(3) = {1, 2, 3},
I(4) = I(5) = {4, 5}. Let T = {1, 2}. T ∈ I(C) but T /∈ ISH(C) because
|T ∩ I(1)| = 2. Hence, I(C) /⊆ ISH(C). LSH(M(C)) = {∅, {1, 2, 3}, {4, 5}, {1, 2, 3, 4, 5}}.
L(M(C)) = {∅, {1}, {2}, {3}, {4, 5}, {1, 2}, {1, 3}, {2, 3}, {1, 4, 5}, {2, 4, 5}, {3, 4, 5}, {1, 2, 3},
{1, 2, 4, 5}, {1, 3, 4, 5}, {2, 3, 4, 5}, {1, 2, 3, 4, 5}}. It is obvious that L(M(C)) /⊆ LSH(M(C)). The
structures of LSH(M(C)) and L(M(C)) are showed in Figure 1.
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{1} {2} {3} {4, 5}

{1, 2} {1, 3} {2, 3} {1, 4, 5} {2, 4, 5} {3, 4, 5} {1, 2, 3}

{1, 2, 4, 5} {1, 3, 4, 5} {2, 3, 4, 5}

{1, 2, 3, 4, 5}

{4, 5}

{1, 2, 3} {1, 2, 3, 4, 5}

φ

φ

Figure 1: The lattice of L(M(C)) (resp., LXH(M(C))) and LSH(M(C)).

Remark 5.4. Let C be a covering of E. Although XH induced by C is a closure operator, it has
no relationship between IXH(C) and I(C), and has no relationship between LXH(M(C)) and
L(M(C)).

The following example illustrates the above statements.

Example 5.5. Let C = {K1, K2, K3, K4} be a covering of E = {a, b, c, d, e, f, g, h, i}, where K1 =
{a, b, i}, K2 = {a, b, c, d, e, f}, K3 = {f, g, h}, K4 = {c, d, e, g, h, i}. Then N(a) = N(b) =
{a, b},N(c) = N(d) = N(e) = {c, d, e}, N(f) = {f}, N(g) = N(h) = {g, h} and N(i) = {i}.
Let T = {a, c, f, g, i}. It is clear that T ∈ IXH(C), but T /∈ I(C) because |T ∩ K2| = 2, thus
IXH(C) /⊆ I(C). Let T ′ = {a, c, d}. It is clear that T ′ ∈ I(C), but T ′ /∈ IXH because |T ′ ∩N(c)| =
2, thus I(C) /⊆ IXH(C). Let X = {a, b, i}. X ∈ LXH(M(C)) for XH(X) = X. However, X /∈
L(M(C)) for clM(C)(X) = {a, b, c, d, e, i}. Let X = {a}. X ∈ L(M(C)) for clM(C)(X) = X.
However, X /∈ LXH(M(C)) for XH(X) = {a, b}/=X.

The following proposition shows the relationship between ISH(C) and IXH(C), and
the relationship between LSH(M(C)) and LXH(M(C)).

Proposition 5.6. Let C be a covering of E. If XH and SH induced by C are closure operators, then
ISH(C) ⊆ IXH(C) and LSH(M(C)) ⊆ LXH(M(C)).

Proof. If XH and SH induced by C are closure operators, then {N(x) : x ∈ E} and {I(x) : x ∈
E} form a partition of E, respectively. For all x ∈ X, N(x) =

⋂
x∈K K ⊆ ⋃

i∈K K = I(x), thus
{N(x) : x ∈ E} is finer than {I(x) : x ∈ E}. Based on this, we can obtain ISH(C) ⊆ IXH(C).

For all X ∈ LSH(M(C)), X = SH(X) =
⋃

x∈X I(x). Since x ∈ N(x) ⊆ I(x), X =⋃
x∈X{x} ⊆ ⋃

x∈X N(x) ⊆ ⋃
x∈X I(x) = X, thus, X =

⋃
x∈X N(x), that is, X ∈ LXH(M(C)).

Hence, LSH(M(C)) ⊆ LXH(M(C)).

Example 5.7. From Example 5.3, we know N(1) = {1}, N(2) = {2}, N(3) = {3},
N(4) = N(5) = {4, 5} and I(1) = I(2) = I(3) = {1, 2, 3}, I(4) = I(5) = {4, 5}.
Let I = {1, 2}. It is clear that I ∈ IXH(M(C)) but I /∈ ISH(M(C)) because |I ∩
I(1)| = 2. Hence IXH(M(C)) /⊆ ISH(M(C)).LSH(M(C)) = {∅, {1, 2, 3}, {4, 5}, {1, 2, 3, 4, 5}} and
LXH(M(C)) = {∅, {1}, {2}, {3}, {4, 5}, {1, 2}, {1, 3}, {2, 3}, {1, 4, 5}, {2, 4, 5}, {3, 4, 5}, {1, 2, 3},
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{1, 2, 4, 5}, {1, 3, 4, 5}, {2, 3, 4, 5}, {1, 2, 3, 4, 5}}. It is obvious that LXH(M(C)) /⊆ LSH(M(C)).
The structures of them are showed in Figure 1.

When a covering degenerates into a partition, we can obtain the following result.

Theorem 5.8. If C is a partition of E, then ISH(C) = IXH(C) = I(C) and LSH(M(C)) =
LXH(M(C)) = L(M(C)).

Proof. Since C is a partition of E, I(x) = N(x) = K(x ∈ K) for all x ∈ E, and for all X ⊆ E,
SH(X) = XH(X) = R∗(X). Thus ISH(C) = IXH(C) = I(C) and LSH(M(C)) = LXH(M(C)) =
L(M(C)).

Next, we discuss the reducible element and immured element’s influence onmatroidal
structures and geometric lattice structures. First, we study the reducible element and
immured element’s influence on I(C).

Theorem 5.9. Let F be a family of subset of E and K ∈ F. I(F − {K}) ⊆ I(F).

Proof. For all I ∈ I(F− {K}), we may as well suppose I = {i1, i2, . . . , it}where i1, i2, . . . , it ∈ E.
According to the definition of transversal matroid, there exist different blocksK1, K2, . . . , Kt ∈
F satisfy Ki /=K and ij ∈ Kj for all 1 ≤ i, j ≤ t. Thus I ∈ I(F).

The following example illustrates I(F) /⊆ I(F − {K}).

Example 5.10. Let F = {K1, K2, K3} be a family of subset of E = {1, 2, 3, 4}, where K1 = {1, 2},
K2 = {1, 3}, K3 = {3}. I(F) = 2E, I(F − {K3}) = {∅, {1}, {2}, {3}, {1, 3}, {1, 2}{2, 3}}. Hence,
I(F) /⊆ I(F − {K}).

Let C be a covering of E and F = C. As we know, reducible elements and immured
elements are members of C. Based on Theorem 5.9, it is not difficult for us to obtain the
following four corollaries.

Corollary 5.11. Let C be a covering of E and K ∈ C. If K is reducible, then I(C − {K}) ⊆ I(C).

Corollary 5.12. Let C be a covering of E. I(reduct(C)) ⊆ I(C).

Corollary 5.13. Let C be a covering of E andK ∈ C. IfK is an immured element, then I(C−{K}) ⊆
I(C).

Corollary 5.14. Let C be a covering of E. I(exclusion(C)) ⊆ I(C).

The following theorem shows the reducible element and immured element’s influence
on geometric lattice structure L(M(C)).

Theorem 5.15. Let F be a family of subset of E and for all K ∈ F. L(M(F − {K})) ⊆ L(M(F)).

Proof. First, we prove clF({x}) ⊆ clF−{K}({x}) for all x ∈ E. For all y /∈ clF−{K}({x}), {x, y} ∈
IF−{K} ⊆ IF. Thus y /∈ clF({x}) which implies clF({x}) ⊆ clF−{K}({x}).

Second, we need to prove that any atom of L(M(F − {K})) is a closed set of
L(M(F)), that is, clF(clF−{K}({x})) = clF−{K}({x}). Since clF−{K}({x}) ⊆ clF(clF−{K}({x})) ⊆
clF−{K}(clF−{K}({x})) = clF−{K}({x}), clF(clF−{K}({x})) = clF−{K}({x}).
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Third, we need to prove L(M(F − {K})) ⊆ L(M(F)). For all X ⊆ L(M(F − {K})),
X =

∨m
i=1clF−{K}({x}) =

∨m
i=1

∨si
j=1clF({xj}) because L(M(F − {K})) is a atomic lattice, thus

X ∈ L(M(F)).

The following example shows that L(M(F)) /⊆ L(M(F − {K})), where K ∈ F.

Example 5.16. Based on Example 5.10, we have L(M(F)) = 2E and L(M(F − {K3})) =
{∅, {1}, {2}, {3}, {1, 2, 3}}. It is clear that L(M(F)) /⊆ L(M(F − {K3})).

Similarly, when F is equal to C, we can obtain the following four corollaries.

Corollary 5.17. Let C be a covering of E and K ∈ C. If K is reducible, then L(M(C − {K})) ⊆
L(M(C)).

Corollary 5.18. Let C be a covering of E. L(M(reduct(C))) ⊆ L(M(C)).

Corollary 5.19. Let C be a covering of E and K ∈ C. If K is an immured element, then L(M(C −
{K})) ⊆ L(M(C)).

Corollary 5.20. Let C be a covering of E. L(M(exclusion(C))) ⊆ L(M(C)).

Let C be a covering of E and SH induced by C a closure operator. If a reducible element
K of C is removed from the covering C, then covering C − {K} may not still be a covering
which makes SH be a closure operator. Hence, we omit the discussion of the relationship
between ISH(C) and ISH(C − {K}).

Example 5.21. Let E = {1, 2, 3} and C = {K1, K2, K3} where K1 = {1, 2}, K2 = {1, 3}, K3 =
{1, 2, 3}. I(1) = I(2) = I(3) = {1, 2, 3}, thus {I(x) : x ∈ E} forms a partition of E. Hence, SH is a
closure operator induced by C. It is clear that K3 is a reducible element, C − {K3} = {K1, K2}.
Then the indiscernible neighborhoods induced by C − {K3} are I(1) = {1, 2, 3}, I(2) = {1, 2},
I(3) = {1, 3}. we find that {I(x) : x ∈ E} cannot form a partition of E. Hence, SH is not a
closure operator induced by C − {K3}.

The following theorem presents an immured element’s influence on ISH(C) and
LSH(M(C)).

Theorem 5.22. Let C be a covering of E and K an immured element of C. If SH induced by C is a
closure operator, then SH induced by covering C−{K} is also a closure operator. Moreover, ISH(C) =
ISH(C − {K}) and LSH(M(C)) = LSH(M(C − {K})).

Proof. It comes from Lemma 4.8 and Theorem 4.3.

As we know, if C is a covering of E, K1 and K2 are two elements of C, and K1 is an
immured element of C, then K2 is an immured element of C if and only if K2 is an immured
element of the covering C − {K1}. Combining this with Theorem 5.22, we can obtain the
following corollary.

Corollary 5.23. Let C be a covering of E. If SH induced by C is a closure operator, then SH induced by
exclusion(C) is also a closure operator. Moreover, ISH(C) = ISH(exclusion(C)) andLSH(M(C)) =
LSH(M(exclusion(C))).

Now we consider the reducible element’s influence on IXH(C) and LXH(M(C)).



Journal of Applied Mathematics 23

Theorem 5.24. Let C be a covering of E and K be a reducible element. If XH induced by C is a
closure operator, then XH induced by covering C−{K} is also a closure operator. Moreover, IXH(C) =
IXH(C − {K}) and LXH(M(C)) = LXH(M(C − {K})).

Proof. Since XH induced by C is a closure operator, {N(x) : x ∈ E} induced by C forms a
partition. Based on the definition of IXH(C) and Lemma 4.18, XH induced by C − {K} is also
a closure operator and IXH(C) = IXH(C − {K}).

As we know, if C is a covering of E, K ∈ C, K is reducible in C and K1 ∈ C − {K}, then
K1 is reducible in covering C if and only if it is reducible in covering C − {K}. Based on this
and Theorem 5.24, we can obtain the following result.

Corollary 5.25. Let C be a covering of E. If XH induced by C is a closure operator, then XH induced
by reduct(C) is a closure operator. Moreover, IXH(C) = IXH(reduct(C)) and LXH(M(C)) =
LXH(M(reduct(C))).

Let C be a covering of E and XH induced by C a closure operator. If an immured
element K is removed from the covering C, then C − {K} may not still be a covering which
makes XH be a closure operator. So we omit the discussion of the relationship between
IXH(C) and IXH(C − {K}).

Example 5.26. Suppose K1 = {1}, K2 = {1, 2}, K3 = {2, 3}, K4 = {3}, K5 = {1, 2, 3} and
C1 = {K1, K2, K3, K4}. Then N(1) = {1}, N(2) = {2} and N(3) = {3}, thus {N(x) : x ∈ E}
forms a partition of E. Hence, XH is a closure operator. It is clear that K1 is an immured
element, and the neighborhoods induced by C − {K1} are N(1) = {1, 2}, N(2) = {2} and
N(3) = {3}, thus {N(x) : x ∈ E} cannot form a partition of E. Hence, C − {K1} is not a
covering which makes XH be a closure operator.

6. Conclusions

This paper has studied the geometric lattice structures of covering based-rough sets through
matroids. The important contribution of this paper is that we have established a geometric
lattice structure of covering-based rough sets through the transversal matroid induced by a
covering and have presented two geometric lattice structures of covering-based rough sets
through two types of covering upper approximation operators. Moreover, we have discussed
the relationship among the three geometric lattice structures. To study other properties of the
geometric lattice structure induced by a covering and to study other geometric lattices from
the viewpoint of other upper approximation operators are our future work.
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