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By using the integral bifurcation method, we study the nonlinearK(m,n) equation for all possible
values of m and n. Some new exact traveling wave solutions of explicit type, implicit type, and
parametric type are obtained. These exact solutions include peculiar compacton solutions, singular
periodic wave solutions, compacton-like periodic wave solutions, periodic blowup solutions,
smooth soliton solutions, and kink and antikink wave solutions. The great parts of them are
different from the results in existing references. In order to show their dynamic profiles intuitively,
the solutions of K(n, n), K(2n − 1, n), K(3n − 2, n), K(4n − 3, n), and K(m, 1) equations are chosen
to illustrate with the concrete features.

1. Introduction

In this paper, we will investigate some new traveling-wave phenomena of the following non-
linear dispersive K(m,n) equation [1]:

ut + σ(um)x + (un)xxx = 0, m > 1, n ≥ 1, (1.1)

wherem and n are integers and σ is a real parameter. This is a family of fully KdV equations.
When σ = 1, (1.1) as a role of nonlinear dispersion in the formation of patterns in liquid
drops was studied by Rosenau and Hyman [1]. In [2–6], the studies show that the model
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equation (1.1) supports compact solitary structure. In [3], especially Rosenau’s study shows
that the branch + (i.e., σ = 1) supports compact solitary waves and the branch − (i.e., σ = −1)
supports motion of kinks, solitons with spikes, cusps or peaks. In [7, 8], Wazwaz developed
new solitary wave solutions of (1.1) with compact support and solitary patterns with cusps
or infinite slopes under σ = ± 1, respectively. In [9], by using the extend decomposition
method, Zhu and Lü obtained exact special solutions with solitary patterns for (1.1). In
[10], by using homotopy perturbation method (HPM), Domairry et al. studied the (1.1);
under particular cases, they obtained some numerical and exact compacton solutions of
the nonlinear dispersive K(2, 2) and K(3, 3) equations with initial conditions. In [11], by
variational iteration method, Tian and Yin obtained new solitary solutions for nonlinear
dispersive equations K(m,n); under particular values of m and n, they obtained shock-
peakon solutions for K(2, 2) equation and shock-compacton solutions for K(3, 3) equation.
In [12], the nonlinear equation K(m,n) is studied by Wazwaz for all possible values of
m and n. In [13], by using Adomian decomposition method, Zhu and Gao obtained new
solitary-wave special solutions with compact support for (1.1). In [14], by using a new
method which is different from the Adomian decomposition method, Shang studied (1.1)
and obtained new exact solitary-wave solutions with compact. In [15, 16], 1-soliton solutions
of the K(m,n) equation with generalized evolution are obtained by Biswas. In [17], the
bright and dark soliton solutions for K(m,n) equation with t-dependent coefficients are
obtained by Triki and Wazwaz, especially, when m = n, the K(n, n) equation was studied
by many authors; see [18–24] and references cited therein. Defocusing branch, Deng et al.
[25] obtained exact solitary and periodic traveling wave solutions of K(2, 2) equation. Also,
under some particular values of m and n, many authors considered some particular cases of
K(m,n) equation. Ismail and Taha [26] implemented a finite difference method and a finite
element method to study two types of equations K(2, 2) and K(3, 3). A single compacton as
well as the interaction of compactons has been numerically studied. Then, Ismail [27] made
an extension to the work in [26], applied a finite difference method on K(2, 3) equation,
and obtained numerical solutions of K(2, 3) equation [28]. Frutos and Lopez-Marcos [29]
presented a finite difference method for the numerical integration of K(2, 2) equation. Zhou
and Tian [30] studied soliton solution of K(2, 2) equation. Xu and Tian [31] investigated
the peaked wave solutions of K(2, 2) equation. Zhou et al. [32] obtained kink-like wave
solutions and antikink-like wave solutions of K(2, 2) equation. He and Meng [33] obtain
some new exact explicit peakon and smooth periodic wave solutions of the K(3, 2) equation
by the bifurcation method of planar systems and qualitative theory of polynomial differential
system.

From the aforementioned references, and references cited therein, it has been shown
that (1.1) is a very important physical and engineering model. This is a main reason for us
to study it again. In this paper, by using the integral bifurcation method [34–36], we mainly
investigate some new exact solutions such as explicit solutions of Jacobian elliptic function
type with low-power, implicit solutions of Jacobian elliptic function type, periodic solutions
of parametric type, and so forth. We also investigate some new traveling wave phenomena
and their dynamic properties.

The rest of this paper is organized as follows. In Section 2, wewill derive the equivalent
two-dimensional planar system of (1.1) and its first integral. In Section 3, by using the
integral bifurcation method, we will obtain some new traveling wave solutions and discuss
their dynamic properties; some phenomena of new traveling waves are illustrated with the
concrete features.
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2. The Equivalent Two-Dimensional Planar System to (1.1) and
Its First Integral Equations

We make a transformation u(t, x) = φ(ξ)with ξ = x − vt, where the v is a nonzero constant as
wave velocity. Thus, (1.1) can be reduced to the following ODE:

−vφ′ + σ
(
φm)′ +

(
φn)′′′ = 0. (2.1)

Integrating (2.1) once and setting the integral constant as zero yields

−vφ + σφm + n(n − 1)φn−2(φ′)2 + nφn−1φ′′ = 0. (2.2)

Let φ′ = (dφ/dξ) = y. Equation (2.2) can be reduced to a 2D planar system:

dφ

dξ
= y,

dy

dξ
=

vφ − σφm − n(n − 1)φn−2y2

nφn−1 , (2.3)

where φ/= 0. Obviously, the solutions of (2.2) include the solutions of (2.3) and constant
solution φ = 0. We notice that the second equation in (2.3) is not continuous when φ = 0;
that is, the function φ′′(ξ) is not defined by the singular line φ = 0. Therefore, we make the
following transformation:

dξ = nφn−1dτ, (2.4)

where τ is a free parameter. Under the transformation (2.4), (2.3), and φ = 0 combine to make
one 2D system as follows:

dφ

dτ
= nφn−1y,

dy

dτ
= vφ − σφm − n(n − 1)φn−2y2. (2.5)

Clearly, (2.5) is equivalent to (2.2). It is easy to know that (2.3) and (2.5) have the same first
integral as follows:

y2 =
h + (2v/(n + 1))φn+1 − (2σ/(n +m))φn+m

nφ2n−2 , (2.6)

where h is an integral constant. From (2.6), we define a function as follows:

H
(
φ, y
)
= nφ2n−2y2 +

2σ
n +m

φm+n − 2v
n + 1

φn+1 = h. (2.7)

It is easy to verify that (2.5) satisfies

dφ

dτ
=

1
2φn−1

∂H

∂y
,

dy

dτ
= − 1

2φn−1
∂H

∂φ
. (2.8)
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Therefore, (2.5) is a Hamiltonian system and 1/2φn−1 is an integral factor. In fact, (2.7)
can be rewritten as the form H = E + T , where E = (1/2)My2 = (1/2)M(φ′)2 and
T = (2σ/(n + m))φm+n − (2v/(n + 1))φn+1 with M = 2nφ2n−2. E denotes kinetic energy, and
T denotes potential energy. Especially, when n = 1, M becomes a constant 2. In this case,
the kinetic energy E only depends on movement velocity φ′ of particle; it does not depend
on potential function φ. So, according to Theorem 3.2 in [37], it is easy to know that (2.5)
is a stable and nonsingular system when n = 1; in this case its solutions have not singular
characters. When n > 1, (2.5) becomes a singular system; in this case some solutions of (2.5)
have singular characters.

For the equilibrium points of the system (2.5), we have the following conclusion.

Case 1. Whenm is even number, (2.5) has two equilibrium pointsO(0, 0) andA0((v/σ)
1/(m−1), 0).

From (2.7), we obtain

hO = H(0, 0) = 0, hA0 = − 2v(m − 1)
(m + n)(n + 1)

(
v

σ

)(n+1)/(m−1)
. (2.9)

Case 2. When m is odd number and σv > 0, (2.5) has three equilibrium points O(0, 0) and
A1,2(±(v/σ)1/(m−1), 0). From (2.7), we also obtain hO = H(0, 0) = 0 and

hA1 = − 2(m − 1)v
(m + n)(n + 1)

(
v

σ

)(n+1)/(m−1)
, hA2 = (−1)n+2 2(m − 1)v

(m + n)(n + 1)

(
v

σ

)(n+1)/(m−1)
.

(2.10)

Obviously, if n is odd, then hA1 = hA2 . If n is even, then hA1 /=hA2 . Then hO = H(0, 0) = 0
whether m is odd number or even number.

3. Exact Solutions of Explicit Type, Implicit Type, and
Parametric Type and Their Properties

3.1. Exact Solutions and Their Properties of (1.1) under h = hO

Taking h = hO = 0, (2.6) can be reduced to

y2 =
(2v/(n + 1))φn+1 − (2σ/(n +m))φn+m

nφ2n−2 . (3.1)

(i) When m = n > 1, (3.1) can be rewritten as

y = ±

√
(2nv/(n + 1))φn+1 − σφ2n

nφn−1 . (3.2)
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Substituting (3.2) into the first expression in (2.5) yields

dφ

dτ
= ±φ
√

2nv
n + 1

φn−1 − σ
(
φn−1)2. (3.3)

Noticing that equation (2nv/(n + 1))φn−1 − σ(φn−1)2 = 0 has two roots φ = 0 and φ =
[2nv/(n + 1)σ]1/(n−1), we take ([2nv/(n + 1)σ]1/(n−1), 0) as the initial value. Using this initial
value, integrating (3.2) yields

∫φ

[2nv/(n+1) σ]1/(n+1)

dφ

φ
√
(2nv/(n + 1))φn−1 − σ

(
φn−1)2

= ±
∫ τ

0
dτ. (3.4)

After completing the aforementioned integral, we solve this equation; thus we obtain

φ =

[
2n(n + 1)v

n2(n − 1)2v2τ2 + (n + 1)2σ

]1/(n−1)
. (3.5)

Substituting (3.5) into (2.4), then integrating it yields

ξ =
2n

(n − 1)
√
σ
arctan

[
n(n − 1)v
(n + 1)

√
σ
τ

]
, σ > 0,

ξ = − 2n
(n − 1)

√−σ tanh−1
[

n(n − 1)v
(n + 1)

√−σ τ

]
, σ < 0.

(3.6)

Thus, we respectively obtain a periodic wave solution and solitary wave solution of
parametric type for the equation K(n, n) as follows:

u = φ(τ) =

[
2n(n + 1)v

n2(n − 1)2v2τ2 + (n + 1)2σ

]1/(n−1)
,

ξ =
2n

(n − 1)
√
σ
arctan

[
n(n − 1)v
(n + 1)

√
σ
τ

]
, σ > 0,

(3.7)

u = φ(τ) =

[
2n(n + 1)v

n2(n − 1)2v2τ2 + (n + 1)2σ

]1/(n−1)
,

ξ = − 2n
(n − 1)

√−σ tanh−1
[

n(n − 1)v
(n + 1)

√−σ τ

]
, σ < 0.

(3.8)
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On the other hand, (3.1) can be rewritten as

y = ±

√
(2nv/(n + 1))φn−1 − σφ2(n−1)

nφn−2 . (3.9)

Using ([2nv/(n+ 1)σ]1/(n−1), 0) as the initial value, substituting (3.9) into the first expression
in (2.3) directly, we obtain an integral equation as follows:

∫φ

[2nv/(n+1)σ]1/(n−1)

nφn−2dφ
√
(2nv/(n + 1))φn−1 − σφ2(n−1)

= ±
∫ ξ

0
dξ. (3.10)

Completing the aforementioned integral equation, then solving it, we obtain a periodic solu-
tion and a hyperbolic function solution as follows:

u(x, t) = φ(ξ) =
[

2nv
(n + 1)σ

cos2
(n − 1)

√
σ

2n
ξ

]1/(n−1)
, σ > 0, (3.11)

u(x, t) = φ(ξ) =
[

2nv
(n + 1)σ

cosh2 (n − 1)
√−σ

2n
ξ

]1/(n−1)
, σ < 0. (3.12)

Obviously, the solution (3.7) is equal to the solution (3.11); also the solution (3.8) is equal to
the solution (3.12). Similarly, taking the (0, 0) as initial value, substituting (3.9) into the first
expression in (2.3), then integrating them, we obtain another periodic solution and another
hyperbolic function solution of K(n, n) equation as follows.

u(x, t) = φ(ξ) =
[

2nv
(n + 1)σ

sin2 (n − 1)
√
σ

2n
ξ

]1/(n−1)
, σ > 0, (3.13)

u(x, t) = φ(ξ) =
[

2nv
(n + 1)σ

sinh2 (n − 1)
√−σ

2n
ξ

]1/(n−1)
, σ < 0. (3.14)

In fact, the solutions (3.11) and (3.13) have been appeared in [35], so we do not list similar
solutions anymore at here. Next, we discuss a interesting problem as follows.

When σ > 0, from (3.11) and (3.13), we can construct two compacton solutions as
follows:

⎧
⎪⎪⎨

⎪⎪⎩

u(x, t) = φ(ξ) =
[

2nv
(n + 1)σ

cos2
(n − 1)

√
σ

2n
ξ

]1/(n−1)
, σ > 0, − nπ

n − 1
≤ ξ ≤ nπ

n − 1
,

0, otherwise,

(3.15)



Journal of Applied Mathematics 7

0

0.5

1

1.5

2

2.5

2 4 6−6 −4 −2
ξ

(a) n = 2

0.6

0.7

0.8

0.9

1

1.1

0 1 2 3−3 −2 −1
ξ

(b) n = 15

0.97

0.975

0.98

0.985

0.99

0.995

1

0 1 2 3−3 −2 −1
ξ

(c) n = 400

Figure 1: The solution u in (3.15) shows a shape of compacton for parameters v = 2, andσ = 1.

⎧
⎪⎪⎨

⎪⎪⎩

u(x, t) = φ(ξ) =
[

2nv
(n + 1)σ

sin2 (n − 1)
√
σ

2n
ξ

]1/(n−1)
, σ > 0, 0 ≤ ξ ≤ 2nπ

n − 1
,

0, otherwise.

(3.16)

The shape of compacton solutions (3.15) and (3.16) changes gradually as the value of param-
eter n increases. For example, when n = 2, 15, 400, respectively, the shapes of compacton so-
lution (3.15) are shown in Figure 1.

(ii) When n = 1, m > 1, (3.1) can be directly reduced to

y = ±φ
√

v − 2σ
m + 1

φm−1. (3.17)

Equation (3.17) is a nonsingular equation. Using ([2σ/(m + 1)v]n−1, 0) as initial value and
then substituting (3.17) into the first expression in (2.3) directly, we obtain a smooth solitary
wave solution and a periodic wave solution of K(m, 1) equation as follows:

u(x, t) = φ(ξ) =
[
(m + 1)v

2σ
sech2 (m − 1)

√
v

2
ξ

]1/(m−1)
, v > 0, (3.18)

u(x, t) = φ(ξ) =
[
(m + 1)v

2σ
sec2

(m − 1)
√−v

2
ξ

]1/(m−1)
, v < 0. (3.19)

Also, the shape of solitary wave solution (3.18) changes gradually as the value of parameter
m increases. When m = 2, 20, 200, respectively, its shapes of compacton solution (3.18) are
shown in Figure 2.
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Figure 2: The solution u in (3.18) shows a shape of compacton for parameters v = 2, andσ = 1.

(iii) When n is even number andm = 2n − 1, (3.1) can be reduced to

y = ±

√
(2nv/(n + 1))φn−1 − (2nσ/(3n − 1))φ3(n−1)

nφn−2 . (3.20)

It is easy to know that (2nv/(n + 1))φn−1 − (2nσ/(3n − 1))φ3(n−1) = 0 has three roots φ = 0 and

φ = α, γ with α, γ = ±[
√
(3n − 1)v/(n + 1)σ]

1/(n−1)
when σv > 0. In fact, γ = −α. Using these

three roots as initial value, respectively, then substituting (3.20) into the first expression in
(2.3), we obtain three integral equations as follows:

∫φ

α

nφn−2dφ
√
(2nv/(n + 1))φn−1 − (2nσ/(3n − 1))φ3(n−1)

= ±
∫ ξ

0
dξ,

∫0

φ

nφn−2dφ
√
(2nv/(n + 1))φn−1 − (2nσ/(3n − 1))φ3(n−1)

= ±
∫ ξ

0
dξ.

∫ γ

φ

nφn−2dφ
√
(2nv/(n + 1))φn−1 − (2nσ/(3n − 1))φ3(n−1)

= ±
∫ ξ

0
dξ,

(3.21)

Completing the previous three integral equations, then solving them,we obtain three periodic
solutions of Jacobian elliptic function for K(2n − 1, n) equation as follows:

u(x, t) = φ(ξ) =

[

αnc2
(

(n − 1)
√
2α

2n
ξ,

1√
2

)]1/(n−1)
, n = even number, (3.22)
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Figure 3: Three periodic waves of solutions (3.22), (3.23), and (3.24) for parameters n = 4, v = 2, andσ = 1.

u(x, t) = φ(ξ) =

⎡

⎢
⎣−

α sn2
(((

(n − 1)
√
2α
)
/2n
)
ξ, 1/

√
2
)

2dn2
(((

(n − 1)
√
2α
)
/2n
)
ξ, 1/

√
2
)

⎤

⎥
⎦

1/(n−1)

, n = even number,

(3.23)

u(x, t) = φ(ξ) =
[
γ nc2

(((
(n − 1)

√
2α
)
/2n
)
ξ, 1/

√
2
)]1/(n−1)

, n = even number. (3.24)

The solutions (3.22) and (3.24) show two shapes of periodic wave with blowup form,
which are shown in Figures 3(a) and 3(c). The solution (3.23) shows a shape of periodic cusp
wave, which is shown in Figure 3(b).

(iv) When m = 3n − 2, n > 1, (3.1) can be directly reduced to

y = ±

√
(2nv/(n + 1))φn−1 − (2nσ/(4n − 2))

(
φn−1)4

nφn−2 . (3.25)

It is easy to know that the function (2nσ/(4n − 2))(a − φn−1)(φn−1 − 0)(φn−1 − c)(φn−1 − c) =
(2nσ/(4n − 2))(a − φn−1)(φn−1 − 0)[(φn−1 − b1)

2 + a2
1], where b1 = (c + c)/2 = −a/2, a2

1 =
−(c − c)2/4 = 3a2/4. Using (a1/(n−1), 0) and (0, 0) as initial values, respectively, substituting
(3.25) into the first expression in (2.3), we obtain four elliptic integral equations as follows.
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(1) When σ > 0, v > 0,

∫φ

0

dφn−1
√
(
a − φn−1)(φn−1 − 0

)[(
φn−1 − b1

)2 + a2
1

] = ±n − 1
n

√
2nσ
4n − 2

∫ ξ

0
dξ. (3.26)

(2) When σ > 0, v < 0,

∫φ

a1/(n−1)

dφn−1
√
(
φn−1 − a

)(
φn−1 − 0

)[(
φn−1 − b1

)2 + a2
1

] = ±n − 1
n

√
2nσ
4n − 2

∫ ξ

0
dξ. (3.27)

(3) When σ < 0, v < 0,

∫φ

0

dφn−1
√
(
a − φn−1)(φn−1 − 0

)[(
φn−1 − b1

)2 + a2
1

] = ±n − 1
n

√
2nσ
2 − 4n

∫ ξ

0
dξ. (3.28)

(4) When σ < 0, v > 0,

∫φ

a1/(n−1)

dφn−1
√
(
φn−1 − a

)(
φn−1 − 0

)[(
φn−1 − b1

)2 + a2
1

] = ±n − 1
n

√
2nσ
2 − 4n

∫ ξ

0
dξ. (3.29)

Corresponding to (3.26), (3.27), (3.28), and (3.29), respectively, we obtain four periodic
solutions of elliptic function type for K(3n − 2, n) equation as follows:

u(x, t) = φ(ξ)

=

⎡

⎢
⎣

aB
[
1 − cn

((
(n − 1)/gn

)√
2nσ/(4n − 2)ξ,

√
6
(
3 − √

3
)
/12
)]

A + B + (A − B)cn
((

(n − 1)/gn
)√

2nσ/(4n − 2)ξ,
√
6
(
3 − √

3
)
/12
)

⎤

⎥
⎦

1/(n−1)
,

(3.30)
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u(x, t) = φ(ξ)

=

⎡

⎢
⎣

aB
[
1 + cn

((
(n − 1)/gn

)√
2nσ/(4n − 2)ξ,

(√
6 − √

2
)
/4
)]

B −A + (A + B)cn
((

(n − 1)/gn
)√

2nσ/(4n − 2)ξ,
(√

6 − √
2
)
/4
)

⎤

⎥
⎦

1/(n−1)
,

(3.31)

u(x, t) = φ(ξ)

=

⎡

⎢
⎣

aB
[
1 − cn

((
(n − 1)/gn

)√
2nσ/(2n − 4)ξ,

√
6
(
3 − √

3
)
/12
)]

A + B + (A − B)cn
((

(n − 1)/gn
)√

2nσ/(2n − 4)ξ,
√
6
(
3 − √

3
)
/12
)

⎤

⎥
⎦

1/(n−1)

,

(3.32)

u(x, t) = φ(ξ)

=

⎡

⎢
⎣

aB
[
1 + cn

((
(n − 1)/gn

)√
2nσ/(2 − 4n)ξ,

(√
6 − √

2
)
/4
)]

B −A + (A + B)cn
((

(n − 1)/gn
)√

2nσ/(2 − 4n)ξ,
(√

6 − √
2
)
/4
)

⎤

⎥
⎦

1/(n−1)
,

(3.33)

where A =
√
(a − b1)

2 + a2
1 =

√
3a, B =

√
(0 − b1)

2 + a2
1 = a, and g = 1/

√
AB = 4

√
27/3a with

a = 3
√
((4n − 2)v)/((n + 1)σ) given previously.
The solution (3.30) shows a shape of periodic wave with blowup form, which is shown

in Figure 4(a). The solution (3.31) shows s shape of compacton-like periodic wave, which is
shown in Figure 4(b). The profile of solution (3.32) is similar to that of solution (3.30). Also
the profile of solution (3.33) is similar to that of solution (3.31). So we omit the graphs of their
profiles here.
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(v) Whenm = (k − 1)n − k + 2, n > 1, k > 4, (3.1) can be directly reduced to

y = ±

√
(2nv/(n + 1))φn−1 − (2nσ/(k(n − 1) + 2))φk(n−1)

nφn−2 . (3.34)

Suppose that φ0 = φ(0) is one of roots for equation (2nv/(n + 1))φn−1 − (2nσ/(k(n − 1) +
2))φk(n−1) = 0. Clearly, the 0 is its one root. Anyone solution ofK((k − 1)n− k + 2, n) equation
can be obtained theoretically from the following integral equations:

∫φ

φ 0

dφn−1
√
(2nv/(n + 1))φn−1 − (2nσ/(k(n − 1) + 2))

(
φn−1)k

= ±n − 1
n

ξ. (3.35)

The left integral of (3.35) is called hyperelliptic integral for φn−1 when the degree k is greater
than four. Let φn−1 = z. Thus, (3.35) can be reduced to

∫z

z01/(n−1)

dz
√
(2nv/(n + 1))z − (2nσ/(k(n − 1) + 2))zk

= ±n − 1
n

ξ. (3.36)

In fact, we cannot obtain exact solutions by (3.36) when the degree k is grater than five. But
we can obtain exact solutions by (3.36) when k = 5, v = −σ(n + 1)/k(n − 1) + 2, and σ < 0.
Under these particular conditions, taking φ0 = z0

1/(n−1) = 0 as initial value, (3.36) becomes

∫Z

0

dz√
z + z5

= ±n − 1
n

√

−σ(n + 1)
5n − 3

ξ. (3.37)

Let z = (1/2)[ρ −
√
ρ2 − 4], and z = (1 + Z2)/Z2 . We obtain −dz/z√z = (1/2)[1/

√
ρ + 2 +

1/
√
ρ − 2] and 0 < Z ≤ 1. Thus, (3.37) can be transformed to

1
2

⎡

⎢
⎣

∫∞

z

dρ
√(

ρ + 2
)(
ρ2 − 2

) +
∫∞

z

dρ
√(

ρ − 2
)(
ρ2 − 2

)

⎤

⎥
⎦ = ±n − 1

n

√

−σ(n + 1)
5n − 3

ξ. (3.38)

Completing (3.38) and refunded the variable z = φn−1, we obtain two implicit solutions of
elliptic function type for K(4n − 3, n) equation as follows:

sn−1

⎛

⎝

√ √
2 + 2

φn−1 + 2
,

√
2 − √

2

2 +
√
2

⎞

⎠ + sn−1

⎛

⎝

√√√
√

√
2 + 2

φn−1 +
√
2
,

√
2
√
2

2 +
√
2

⎞

⎠ = Ω1,2 ξ, (3.39)
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whereΩ1,2 = ±((n−1)/n)(2+√2)
√
−σ(n + 1)/(5n − 3). The solutions also can be rewritten as

F

⎛

⎝sin−1
√ √

2 + 2
φn−1 + 2

,

√
2 − √

2

2 +
√
2

⎞

⎠ + F

⎛

⎝sin−1

√√
√
√

√
2 + 2

φn−1 +
√
2
,

√
2
√
2

2 +
√
2

⎞

⎠ = Ω1,2 ξ, (3.40)

where the function F(ϕ, k) = EllipticF(ϕ, k) is the incomplete Elliptic integral of the first kind.
The two solutions in (3.40) are asymptotically stable. Under Ω1 = ((n −

1)/n)(2 +
√
2)
√
−σ(n + 1)/(5n − 3),φ → 0 as ξ → ∞. Under Ω2 = −((n − 1)/n)(2 +√

2)
√
−σ(n + 1)/(5n − 3),φ → 0 as ξ → −∞. The graphs of their profiles are shown in

Figure 5.

3.2. Exact Solutions and Their Properties of (1.1) under h/= 0

In this subsection, under the conditions h = hA0 , andh = hA1 , h = hA2 , we will investigate
exact solutions of (1.1) and discuss their properties. When h/= 0, (2.6) can be reduced to

y = ±

√
h + (2nv/(n + 1))φn+1 − (2nσ/(n +m))φn+m

nφn−1 . (3.41)

Substituting (3.41) into the first expression of (2.3) yields

∫φ

φ∗

dφn

√
h + (2nv/(n + 1))φn+1 − (2nσ/(n +m))φn+m

= ±ξ, (3.42)

where φ∗ is one of roots for equation h+(2nv/(n+1))φn+1− (2nσ/(n+m))φn+m = 0. However
we cannot obtain any exact solutions by (3.42) when the degrees m and n are more great,
because we cannot obtain coincidence relationship among different degrees n, n + 1 and n +
m. But, we can always obtain some exact solutions when the degree m + n is not greater than
four. For example, by using (3.42) directly, we can also obtain many exact solutions ofK(2, 1)
and K(3, 1) equations; see the next computation and discussion.

(i) Ifm = n = 2, then (3.41) can be reduced to

y = ±

√
h + (4v/3)φ3 − σφ4

2φ
. (3.43)

Taking h = hA0 | m=n=2 = −v4/6σ3 as Hamiltonian quantity, substituting (3.43) and m = n = 2
into the first expression of (2.5) yields

dφ
√
−(v4/6σ3

)
+ (4v/3)φ3 − σφ4

= ±dτ. (3.44)
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Figure 5: Waveforms of two asymptotically stable solutions in (3.40) when n = 4, σ = −1, and t = 1.

Then −(v4/6σ3) + (4v/3)φ3 −σφ4 = 0 has four roots, two real roots, and two complex roots as
follows:

a, b =
v

σ

[
1
3
+
μ

6
± 1
6

√

8 − 3
(
4 + 2

√
2
)1/3 − 6

(
4 + 2

√
2
)−1/3

+
16
μ

]

,

c, c =
v

σ

[
1
3
− μ

6
± i

1
6

√

−8 + 3
(
4 + 2

√
2
)1/3

+ 6
(
4 + 2

√
2
)−1/3

+
16
μ

]

,

(3.45)

with μ =
√
4 + 3(4 + 2

√
2)

1/3
+ 6(4 + 2

√
2)

−1/3
.

(1) When σ > 0 and a > φ > b, taking b as initial value, then integrating (3.44) yields

∫φ

b

dφ
(
a − φ

)(
φ − b

)(
φ − c

)(
φ − c

) = ±√σ

∫ τ

0
dτ. (3.46)

Solving the aforementioned integral equation yields
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φ =
aB + bA

A + B

⎡

⎢
⎣
1 + α1cn

(√
ABσ τ, k

)

1 + αcn
(√

ABσ τ, k
)

⎤

⎥
⎦, (3.47)

where α1 = (bA−aB)/(aB+bA), α = (A−B)/(A+B) and k = (1/2)
√
((a − b)2 − (A − B)2)/AB

with A =
√
(a − ((c + c)/2))2 − ((c − c)2/4) and B =

√
(b − ((c + c)/2))2 − ((c − c)2/4) Sub-

stituting (3.47) and n = 2 into (2.4) yields

ξ =
2(aB + bA)

(A + B)
√
ABσ

[
α1

α
u1 +

α − α1

α(1 − α2)

(

Π

(

ϕ,
α2

α2 − 1
, k

)

− αf1

)]

, (3.48)

where u1 = sn−1(
√
ABστ, k) = F(ϕ, k), ϕ = am u1 = arcsin(

√
ABστ), α2 /= 1, the Π(ϕ, α2/(α2 −

1), k) is an elliptic integral of the third kind, and the function f1 satisfies the following three
cases, respectively:

f1 =

√
1 − α2

k2 + k′2α2
arctan

⎡

⎣

√
k2 + k′2α2

1 − α2
sd(

√
ABσ τ, k)

⎤

⎦, if
α2

(α2 − 1)
< k2,

= sd(
√
ABστ, k), if

α2

(α2 − 1)
= k2,

=
1
2

√
α2 − 1

k2 + k′2α2

× ln

[√
k2 + k′2α2dn(

√
ABστ, k) +

√
α2 − 1sn(

√
ABστ, k)

√
k2 + k′2α2dn(

√
ABστ, k) −

√
α2 − 1sn(

√
ABστ, k)

]

, if
α2

α2 − 1
> k2.

In the previous three cases, k′2 = 1 − k2. Thus, by using (3.47) and (3.48), we obtain a
parametric solution of Jacobian elliptic function for K(2, 2) equation as follows:

φ =
aB + bA

A + B

⎡

⎢
⎣
1 + α1cn

(√
ABσ τ, k

)

1 + αcn
(√

ABσ τ, k
)

⎤

⎥
⎦,

ξ =
2(aB + bA)

(A + B)
√
ABσ

[
α1

α
u1 +

α − α1

α(1 − α2)

(

Π

(

ϕ,
α2

α2 − 1
, k

)

− αf1

)]

.

(3.49)

(2) When σ < 0 and b < a < φ < ∞, taking a as initial value, integrating (3.44) yields

∫φ

a

dφ
(
φ − a

)(
φ − b

)(
φ − c

)(
φ − c

) = ±√−σ
∫ τ

0
dτ. (3.50)
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Solving the aforementioned integral equation yields

φ =
aB − bA

B −A

⎡

⎢
⎣
1 + α̃1cn

(√−ABσ τ, k̃
)

1 + α̃cn
(√−ABσ τ, k̃

)

⎤

⎥
⎦, (3.51)

where α̃1 = (aB+bA)/(aB−bA), α̃ = (A+B)/(B−A), k̃ = (1/2)
√
(A + B)2 (a − b)2/AB, and

A andB are given in case (1). Substituting (3.51) and n = 2 into (2.4) yields

ξ =
aB − bA

(B −A)
√−ABσ

×
[
α̃1

α̃
ũ1 +

α̃ − α̃1

α̃(1 − α̃2)

(

Π

(

ϕ̃,
α̃2

α̃2 − 1
, k̃

)

− α̃f̃1

)]

,

(3.52)

where ũ1 = sn−1(
√−ABστ, k̃) = F(ϕ̃, k), ϕ̃ = am ũ1 = arcsin(

√−ABστ), α̃2 /= 1, Π(ϕ̃, α̃2/(α̃2 −
1), k̃) is an elliptic integral of the third kind, and the function f̃1 satisfies the following three
cases, respectively:

f̃1 =

√
1 − α̃2

k̃2 + k̃′2 α̃2
arctan

⎡

⎣

√
k̃2 + k̃′2 α̃2

1 − α̃2
sd(

√−ABσ τ, k̃)

⎤

⎦, if
α̃2

(α̃2 − 1)
< k̃2,

= sd(
√−ABστ, k̃), if

α̃2

(α̃2 − 1)
= k̃2,

=
1
2

√
α̃2 − 1

k̃2 + k̃′2 α̃2

× ln

⎡

⎢
⎣

√
k̃2 + k̃′2 α̃2dn(

√−ABστ, k̃) +
√
α̃2 − 1sn(

√−ABστ, k̃)
√
k̃2 + k̃′2α2dn(

√−ABστ, k̃) −
√
α̃2 − 1sn(

√−ABστ, k̃)

⎤

⎥
⎦, if

α̃2

α̃2 − 1
> k̃2.

In the previous three cases, k̃′2 = 1 − k̃2. Thus, by using (3.51) and (3.52), we obtain
another parametric solution of Jacobian elliptic function for K(2, 2) equation as follows:

u = φ =
aB − bA

B −A

⎡

⎢
⎣
1 + α̃1cn

(√−ABσ τ, k̃
)

1 + α̃cn
(√−ABσ τ, k̃

)

⎤

⎥
⎦,

ξ =
aB − bA

(B −A)
√−ABσ

[
α̃1

α̃
ũ1 +

α̃ − α̃1

α̃(1 − α̃2)

(

Π

(

ϕ̃,
α̃2

α̃2 − 1
, k̃

)

− α̃f̃1

)]

.

(3.53)

In addition, when h < −v4/6σ3, h + (4v/3)φ3 − σφ4 = 0 has four complex roots; in this case,
we cannot obtain any useful results for K(2, 2) equation. When h > −v4/6σ3, the case is very
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Figure 6: Peculiar compacton wave and its bounded region of independent variable ξ.

similar to (3.52); that is, the equation h + (4v/3)φ3 − σφ4 = 0 has two real roots and two
complex roots. So we omit the discussions for these parts of results.

In order to describe the dynamic properties of the traveling wave solutions (3.49)
and (3.53) intuitively, as an example, we draw profile figure of solution (3.53) by using the
software Maple, when v = 4, and σ = −2, see Figure 6(a).

Figure 6(a) shows a shape of peculiar compacton wave; its independent variable ξ is
bounded region (i.e., |ξ| < α1 + 1); see Figure 6(b). From Figure 6(a), we find that its shape is
very similar to that of the solitary wave, but it is not solitary wave because when |ξ| ≥ α1 + 1,
u ≡ 0. So, this is a new compacton.

(ii) Under m = 2, n = 1, taking h = hA0 | m=2,n=1 = −v3/3σ2 as Hamiltonian quantity,
(3.42) can be reduced to

∫φ

φ∗

dφ
√
−(v3/3σ2 ) + vφ2 − (2σ/3) φ3

= ±ξ, (3.54)

where φ∗ is one of roots for the equation −(v3/3σ2 )+vφ2−(2σ/3)φ3 = 0. Clearly, this equation
has three real roots, one single root −v/2σ and two double roots v/σ, v/σ. If σ > 0, then the

function
√
−(v3/3σ2 ) + vφ2 − (2σ/3)φ3 =

√
(2σ/3)|φ − (v/σ)|√−(v/2σ) − φ; if σ < 0, then

the function
√
(−v3/3σ2 ) + vφ2 − (2σ/3)φ3 =

√
−(2σ/3)|φ − (v/σ)|√(v/2σ) + φ. In these

two conditions, taking φ∗ = −(v/2σ) as initial value and completing the (3.54), we obtain a
periodic solution and a solitary wave solutions for K(2, 1) as follows:

u(x, t) = φ(ξ) = −
[
v

2σ
+
3v
2σ

tan2
(
1
2
√
vξ

)]
, v > 0,

u(x, t) = φ(ξ) = −
[
v

2σ
− 3v
2σ

tanh2
(
1
2
√−vξ

)]
, v < 0.

(3.55)
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Similarly, taking φ∗ = v/σ as initial value, we obtain two periodic solutions for K(2, 1) as
follows:

u(x, t) = φ(ξ) = − v

2σ
− 3v
2σ

tan2
(
π

4
± 1
2
√
vξ

)
, v > 0. (3.56)

(iii) Under m = 2, n = 1, taking arbitrary constant h as Hamiltonian quantity, (3.42) can
be reduced to

∫φ

φ∗

dφ
√
−(2σ/3)(φ3 + pφ2 + q

) = ±ξ, (3.57)

where p = −3v/2σ, q = −3h/2σ. Write Δ= (q2/4) + (p3/27) = (9v4/64σ4) −
((v3 + 6hσ2 )3/1728σ9). It is easy to know that Δ = 0 as h = hA0 | m=2,n=1 = −v3/3σ2; this case is
same as case (ii). So, we only discuss the case Δ < 0 in the next.

When h, σ, andv satisfy Δ < 0, φ3 + pφ2 + q = 0 has three real roots z1, z2, and z3
such as

√
v/2σ cos(θ/3),

√
v/2σ cos(θ/3 + 2π/3), and

√
v/2σ cos(θ/3 + 4π/3) with θ =

arccos [(3h/2σ)
√
2σ3/v3 ] and v/σ > 0. Under these conditions, taking the z1, z2, and z3 as

initial values replacing φ∗, respectively, (3.57) can be reduced to the following three integral
equations:

∫φ

z1

dφ
(
φ − z1

)(
φ − z2

)(
φ − z3

) = ±
√

−2σ
3
ξ
(
σ < 0, z3 < z2 < z1 < φ < ∞),

∫φ

z2

dφ
(
z1 − φ

)(
φ − z2

)(
φ − z3

) = ±
√

2σ
3
ξ
(
σ > 0, z3 < z2 < φ < z1

)
,

∫φ

z3

dφ
(
z1 − φ

)(
φ − z2

)(
φ − z3

) = ±
√

2σ
3
ξ
(
σ > 0, z3 < φ < z2 < z1

)
.

(3.58)

Integrating the (3.58), then solving them, respectively, we obtain three periodic solu-
tions of elliptic function type for K(2, 1) as follows:

u(x − vt) = φ(ξ) =
z1 − z2sn2(ω1ξ, k1)

cn2(ω1ξ, k1)
, (3.59)

u(x − vt) = φ(ξ) =
z2 − z3k

2
2sn

2(ω2ξ, k2)
dn2(ω2ξ, k2)

, (3.60)

u(x − vt) = φ(ξ) = z3 + (z2 − z3)sn2(ω2ξ, k1), (3.61)

where ω1 = (1/2)
√
−(2σ/3)(z1 − z3), k1 =

√
(z2 − z3)/(z1 − z3), ω2 =

(1/2)
√
(2σ/3)(z1 − z3), and k2 =

√
(z1 − z2)/(z1 − z3).
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(iv) When m = 3, n = 1, taking the constant h = hA1 = hA2 |m=3,n=1 = −v/2σ as
Hamiltonian quantity, (3.42) can be reduced to

∫φ

φ∗

dφ

(v/σ) − φ2
= ±
√

−σ
2
ξ (σ < 0, v < 0). (3.62)

Clearly, (v/σ) − φ2 = 0 has two real roots
√
v/σ and −

√
v/σ. Taking φ∗ = (

√
v/σ +

(−
√
v/σ))/2 = 0 as initial value, solving (3.62), we obtain a kink wave solution and an

antikink wave solution for K(3, 1) as follows:

u(x − vt) = φ(ξ) = ±
√

v

σ
tanh

(√

−v
2
ξ

)

, (3.63)

where v < 0 shows that the waves defined by (3.63) are reverse traveling waves.

(v) Under m = 3, n = 1, taking arbitrary constant h as Hamiltonian quantity and h/= −
(v2/2σ), (3.42) can be reduced to

∫φ

φ∗

dφ
√
φ4 − (2v/σ)φ2 − (2h/σ)

= ±
√

−σ
2
ξ (σ < 0, v < 0), (3.64)

or

∫φ

φ∗

dφ
√
−(φ4 − (2v/σ)φ2 − (2h/σ)

) = ±
√

σ

2
ξ (σ > 0, v > 0). (3.65)

Clearly, φ4−(2v/σ)φ2−(2h/σ) = 0 has four real roots r1,2,3,4 = ±
√
v/σ ±

√
v2/σ2 + 2h/σ if σ <

0, v < 0, and 0 < h < −(v2/2σ) or σ > 0, v > 0, and − (v2/2σ) < h < 0; it has two real roots

s1,2 = ±
√
v/σ ±

√
v2/σ2 + 2h/σ and two complex roots s, s = ±i

√
|v/σ −

√
v2/σ2 + 2h/σ| if

σ < 0, v < 0, andh < 0 or σ > 0, v > 0, and h > 0; it has not any real roots if σ < 0, v <
0, and h > −v2/2σ or σ > 0, v > 0, andh < −v2/2σ.

(1) Under the conditions σ < 0, v < 0, and 0 < h < −v2/2σ or σ > 0, v > 0, and −
v2/2σ < h < 0, taking φ∗ = r1 as an initial value, (3.64) and (3.65) can be reduced to

∫φ

r1

dφ
√(

φ − r1
)(
φ − r2

)(
φ − r3

)(
φ − r4

) = ±
√

−σ
2
ξ,

∫ r1

φ

dφ
√(

r1 − φ
)(
φ − r2

)(
φ − r3

)(
φ − r4

) = ±
√

σ

2
ξ,

(3.66)
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where r1 > r2 > r3 > r4. Solving the integral equations (3.66), we obtain two periodic solutions
of Jacobian elliptic function for K(3, 1) equation as follows:

u(x − vt) = φ(ξ) =
r1(r2 − r4) − r2(r1 − r4)sn2

(
Ω1ξ, k̃1

)

r2 − r4 − (r1 − r4)sn2
(
Ω1ξ, k̃1

)
(
φ < r1

)
, (3.67)

where Ω1 = (1/2)
√
−(σ/2)(r1 − r3)(r2 − r4), k̃1 =

√
(r2 − r3)(r1 − r4)/(r1 − r3)(r2 − r4),

u(x − vt) = φ(ξ) =
r1(r2 − r4) + r4(r1 − r2)sn2

(
Ω2ξ, k̃2

)

r2 − r4 − (r1 − r2)sn2
(
Ω2ξ, k̃2

)
(
r2 < φ < r1

)
, (3.68)

where Ω2 = (1/2)
√
(σ/2)(r1 − r3)(r2 − r4), and k̃2 =

√
(r1 − r2)(r3 − r4)/(r1 − r3)(r2 − r4). The

case for taking φ∗ = r2, r3, r4 as initial values can be similarly discussed; here we omit these
discussions because these results are very similar to the solutions (3.67) and (3.68).

(2) Under the conditions σ < 0, v < 0, andh < 0 or σ > 0, v > 0, and h > 0,
respectively taking φ∗ = s1, s2 as initial value, (3.64) and (3.65) can be reduced to

∫φ

s1

dφ
√(

φ − s1
)(
φ − s2

)(
φ − s

)(
φ − s

) = ±
√

−σ
2
ξ,

∫φ

s2

dφ
√(

s1 − φ
)(
φ − s2

)(
φ − s

)(
φ − s

) = ±
√

σ

2
ξ.

(3.69)

Solving the aforementioned two integral equations, we obtain two periodic solutions of
Jacobian elliptic function for K(3, 1) equation as follows:

u(x − vt) = φ(ξ) =
s1B̃ − s2Ã +

(
s1B̃ + s2Ã

)
cn
((

1/g̃
) √

(−σ/2)ξ, k̃3
)

B̃ − Ã +
(
Ã + B̃

)
cn
((

1/g̃
) √

(−σ/2)ξ, k̃3
) ,

u(x − vt) = φ(ξ) =
s1B̃ + s2Ã +

(
s2Ã − s1B̃

)
cn
((

1/g̃
)√

(σ/2)ξ, k̃4
)

B̃ + Ã +
(
Ã − B̃

)
cn
((

1/g̃
)√

(σ/2)ξ, k̃4
) ,

(3.70)

where g̃ = (1/
√
ÃB̃), k̃3 =

√
((Ã + B̃)2 − (s1 − s2)

2)/4ÃB̃, k̃4 =
√
((s1 − s2)

2 − (Ã − B̃)2)/4ÃB̃

with Ã =
√
(s1 − b̃1)

2 + ã2
1, B̃ =

√
(s2 − b̃1)

2 + ã2
1, ã

2
1 = −(s−s)2/4 = |v/σ−

√
v2/σ2 + 2h/σ|, b̃1 =

(s + s)/2 = 0, and s1 and s2 are given previously.
Among these aforementioned solutions, (3.59) shows a shape of solitary wave for

given parameters v = 4, andσ = 1 which is shown in Figure 7(a). Equation (3.60) shows a
shape of smooth periodic wave for given parameters v = 2, σ = 1, and h = 4 which is shown
in Figure 7(b). Also (3.61) shows a shape of smooth periodic wave for given parameters
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Figure 7: The graphs of six kinds of waveforms for solutions (3.59), (3.60), (3.61), (3.63), and (3.68).

v = 2, σ = 1, and h = 0.4 which is shown in Figure 7(c). Equation (3.63) shows two shapes of
kink wave and antikink wave for given parameters v = −4, andσ = −2 which are shown
in Figures 7(d)–7(e). Equation (3.68) shows a shape of singular periodic wave for given
parameters v = −10, σ = −1, and h = 48 which is shown in Figure 7(f).

4. Conclusion

In this work, by using the integral bifurcation method, we study the nonlinear K(m,n)
equation for all possible values of m and n. Some travelling wave solutions such as normal
compactons, peculiar compacton, smooth solitary waves, smooth periodic waves, periodic
blowup waves, singular periodic waves, compacton-like periodic waves, asymptotically
stable waves, and kink and antikink waves are obtained. In order to show their dynamic
properties intuitively, the solutions of K(n, n), K(2n − 1, n), K(3n − 2, n), K(4n − 3, n), and
K(m, 1) equations are chosen to illustrate with the concrete features; using software Maple,
we display their profiles by graphs; see Figures 1–7. These phenomena of traveling waves
are different from those in existing literatures and they are very interesting. Although we do
not know how they are relevant to the real physical or engineering problem for the moment,
these interesting phenomena will attract us to study them further in the future works.
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