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We suggest a modified extragradient method for solving the generalized variational inequalities
in a Banach space. We prove some strong convergence results under some mild conditions on
parameters. Some special cases are also discussed.

1. Introduction

The well-known variational inequality problem is to find x∗ ∈ C such that

〈Ax∗, x − x∗〉 ≥ 0, ∀x ∈ C, (1.1)

where C is a nonempty closed convex subset of a real Hilbert space H and A : C → H is a
nonlinear operator. This problem has been researched extensively due to its applications in
industry, finance, economics, optimization, medical sciences, and pure and applied sciences;
see, for instance, [1–19] and the reference contained therein. For solving the above variational
inequality, Korpelevičh [20] introduced the following so-called extragradient method:

x0 = x ∈ C,

yn = PC(xn − λAxn),

xn+1 = PC

(
xn − λAyn

)
(1.2)
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for every n = 0, 1, 2, . . . , where PC is the metric projection from Rn onto C and λ ∈ (0, 1/k).
He showed that the sequences {xn} and {yn} generated by (1.2) converge to the same point
z ∈ VI (C,A). Since some methods related to extragradient methods have been considered in
Hilbert spaces by many authors, please see, for example, [3, 5, 7, 14].

This naturally brings us to the following questions.

Question 1. Could we extend variational inequality from Hilbert spaces to Banach spaces?

Question 2. Could we extend the extragradient methods from Hilbert spaces to Banach
spaces?

For solving Question 1, very recently, Aoyama et al. [21] first considered the following
generalized variational inequality problem in a Banach space.

Problem 1. LetX be a smooth Banach space and C a nonempty closed convex subset of X. LetA be an
accretive operator of C into X. Find a point x∗ ∈ C such that

〈Ax∗, J(x − x∗)〉 ≥ 0, ∀x ∈ C. (1.3)

This problem is connected with the fixed point problem for nonlinear mapping, the
problem of finding a zero point of an accretive operator, and so on. For the problem of finding
a zero point of an accretive operator by the proximal point algorithm, please consult [22]. In
order to find a solution of Problem 1, Aoyama et al. [21] introduced the following iterative
scheme for an accretive operator A in a Banach space X:

x1 = x ∈ C,

yn = QC(xn − λnAxn),

xn+1 = αnxn + (1 − αn)yn,

(1.4)

for every n = 1, 2, . . . ,whereQC is a sunny nonexpansive retraction fromX ontoC. Then, they
proved a weak convergence theorem in a Banach space which is generalized simultaneously
by theorems of [4, 23] as follows.

Theorem 1.1. Let X be a uniformly convex and 2-uniformly smooth Banach space, and let C be a
nonempty closed convex subset of X. Let QC be a sunny nonexpansive retraction from X onto C, let
α > 0, and let A be an α-inverse-strongly accretive operator of C into X with S(C,A)/= ∅. If {λn}
and {αn} are chosen so that λn ∈ [a, α/K2] for some a > 0 and αn ∈ [b, c] for some b, c with
0 < b < c < 1, then {xn} defined by (1.4) converges weakly to some element z of S(C,A) := {x∗ ∈
C : 〈Ax∗, J(x − x∗)〉 ≥ 0, for all x ∈ C}, where K is the 2-uniformly smoothness constant of X.

In this paper, motivated by the ideas in the literature, we first introduce a new iterative
method in a Banach space as follows.

For fixed u ∈ C and arbitrarily given x0 ∈ C, define a sequence {xn} iteratively by

yn = QC(xn − λnAxn),

xn+1 = αnu + βnxn + γnQC

(
yn − λnAyn

)
,

(1.5)
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for every n = 1, 2, . . . , where QC is a sunny nonexpansive retraction from X onto C, {αn},
{βn}, and {γn} are three sequences in (0, 1), and {λn} is a sequence of real numbers. We prove
some strong convergence results under some mild conditions on parameters.

2. Preliminaries

Let X be a real Banach space, and let X∗ denote the dual of X. Let C be a nonempty closed
convex subset of X. A mapping A of C into X is said to be accretive if there exists j(x − y) ∈
J(x − y) such that

〈
Ax −Ay, j

(
x − y

)〉 ≥ 0, (2.1)

for all x, y ∈ C, where J is called the duality mapping. A mapping A of C into X is said to be
α-strongly accretive if, for α > 0,

〈
Ax −Ay, j

(
x − y

)〉 ≥ α
∥∥x − y

∥∥2
, (2.2)

for all x, y ∈ C. A mappingA ofC intoX is said to be α-inverse-strongly accretive if, for α > 0,

〈
Ax −Ay, j

(
x − y

)〉 ≥ α
∥∥Ax −Ay

∥∥2
, (2.3)

for all x, y ∈ C.

Remark 2.1. (1) Evidently, the definition of the inverse strongly accretive mapping is based
on that of the inverse strongly monotone mapping.

(2) If A is an α-strongly accretive and L-Lipschitz continuous mapping of C into X,
then

〈
Ax −Ay, j

(
x − y

)〉 ≥ α
∥∥x − y

∥∥2 ≥ α

L2

∥∥Ax −Ay
∥∥2

, ∀x, y ∈ C, (2.4)

from which it follows that A must be (α/L2)-inverse-strongly accretive mapping.

LetU = {x ∈ X : ‖x‖ = 1}. A Banach spaceX is said to be uniformly convex if, for each
ε ∈ (0, 2], there exists δ > 0 such that, for any x, y ∈ U,

∥∥x − y
∥∥ ≥ ε implies

∥∥∥∥
x + y

2

∥∥∥∥ ≤ 1 − δ. (2.5)

It is known that a uniformly convex Banach space is reflexive and strictly convex. A Banach
space X is said to be smooth if the limit

lim
t→ 0

∥∥x + ty
∥∥ − ‖x‖
t

(2.6)
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exists for all x, y ∈ U. It is also said to be uniformly smooth if the limit (2.6) is attained
uniformly for x, y ∈ U. The norm of X is said to be Frechet differentiable if, for each x ∈ U,
the limit (2.6) is attained uniformly for y ∈ U. And we define a function ρ : [0,∞) → [0,∞)
called the modulus of smoothness of X as follows:

ρ(τ) = sup
{
1
2
(∥∥x + y

∥
∥ +

∥
∥x − y

∥
∥) − 1 : x, y ∈ X, ‖x‖ = 1,

∥
∥y

∥
∥ = τ

}
. (2.7)

It is known that X is uniformly smooth if and only if limτ → 0 ρ(τ)/τ = 0. Let q be a fixed real
number with 1 < q ≤ 2. Then a Banach spaceX is said to be q-uniformly smooth if there exists
a constant c > 0 such that ρ(τ) ≤ cτq for all τ > 0.

Remark 2.2. Takahashi et al. [24] remind us of the following fact: no Banach space is q-
uniformly smooth for q > 2. So, in this paper, we study a strong convergence theorem in
a 2-uniformly smooth Banach space.

We need the following lemmas for the proof of our main results.

Lemma 2.3 (see [25]). Let q be a given real number with 1 < q ≤ 2, and let X be a q-uniformly
smooth Banach space. Then,

∥∥x + y
∥∥q ≤ ‖x‖q + q

〈
y, Jq(x)

〉
+ 2

∥∥Ky
∥∥q

, (2.8)

for all x, y ∈ X, whereK is the q-uniformly smoothness constant ofX and Jq is the generalized duality
mapping from X into 2X

∗
defined by

Jq(x) =
{
f ∈ X∗ :

〈
x, f

〉
= ‖x‖q,∥∥f∥∥ = ‖x‖q−1

}
, (2.9)

for all x ∈ X.

LetD be a subset of C, and letQ be a mapping of C intoD. Then,Q is said to be sunny
if

Q(Qx + t(x −Qx)) = Qx, (2.10)

whenever Qx + t(x − Qx) ∈ C for x ∈ C and t ≥ 0. A mapping Q of C into itself is called
a retraction if Q2 = Q. If a mapping Q of C into itself is a retraction, then Qz = z for every
z ∈ R(Q), where R(Q) is the range of Q. A subset D of C is called a sunny nonexpansive
retract of C if there exists a sunny nonexpansive retraction from C onto D. We know the
following lemma concerning sunny nonexpansive retraction.

Lemma 2.4 (see [26]). Let C be a closed convex subset of a smooth Banach space X, D a nonempty
subset of C, and Q a retraction from C onto D. Then, Q is sunny and nonexpansive if and only if

〈
u −Qu, j

(
y −Qu

)〉 ≤ 0, (2.11)

for all u ∈ C and y ∈ D.
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Remark 2.5. (1) It is well known that, if X is a Hilbert space, then a sunny nonexpansive
retraction QC is coincident with the metric projection from X onto C.

(2) Let C be a nonempty closed convex subset of a uniformly convex and uniformly
smooth Banach space X, and let T be a nonexpansive mapping of C into itself with F(T)/= ∅.
Then, the set F(T) is a sunny nonexpansive retract of C.

The following lemma is characterized by the set of solution Problem AIT by using
sunny nonexpansive retractions.

Lemma 2.6 (see [21]). Let C be a nonempty closed convex subset of a smooth Banach space X. Let
QC be a sunny nonexpansive retraction from X onto C, and let A be an accretive operator of C into
X. Then, for all λ > 0,

S(C,A) = F(QC(I − λA)), (2.12)

where S(C,A) = {x∗ ∈ C : 〈Ax∗, J(x − x∗)〉 ≥ 0, for all x ∈ C}.

Lemma 2.7 (see [27]). Let C be a nonempty bounded closed convex subset of a uniformly convex
Banach space X, and let T be nonexpansive mapping of C into itself. If {xn} is a sequence of C such
that xn → x weakly and xn − Txn → 0 strongly, then x is a fixed point of T .

Lemma 2.8 (see [28]). Let {xn} and {zn} be bounded sequences in a Banach space X, and let {αn}
be a sequence in [0, 1] which satisfies the following condition:

0 < lim inf
n→∞

αn ≤ lim sup
n→∞

αn < 1. (2.13)

Suppose that

xn+1 = αnxn + (1 − αn)zn, n ≥ 0,

lim sup
n→∞

(‖zn+1 − zn‖ − ‖xn+1 − xn‖) ≤ 0.
(2.14)

Then, limn→∞‖zn − xn‖ = 0.

Lemma 2.9 (see [26]). Assume that {an} is a sequence of nonnegative real numbers such that

an+1 ≤
(
1 − γn

)
an + δn, n ≥ 0, (2.15)

where {γn} is a sequence in (0, 1) and {δn} is a sequence in R such that

(i)
∑∞

n=0γn = ∞,

(ii) lim supn→∞δn/γn ≤ 0 or
∑∞

n=0|δn| < ∞.

Then, limn→∞an = 0.
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3. Main Results

In this section, we obtain a strong convergence theorem for finding a solution of Problem
AIT for an α-strongly accretive and L-Lipschitz continuous mapping in a uniformly convex
and 2-uniformly smooth Banach space. First, we assume that α > 0 is a constant, L > 0 a
Lipschitz constant of A, and K > 0 the 2-uniformly smoothness constant of X appearing in
the following.

In order to obtain our main result, we need the following lemma concerning (α/L2)-
inverse-strongly accretive mapping.

Lemma 3.1. Let X be a uniformly convex and 2-uniformly smooth Banach space, and let C be a
nonempty closed convex subset of X. Let QC be a sunny nonexpansive retraction from X onto C,
and let A be an (α/L2)-inverse-strongly accretive mapping of C into X with S(C,A)/= ∅. For given
x0 ∈ C, let the sequence {xn} be generated iteratively by (1.5), where {αn}, {βn}, and {γn} are three
sequences in (0, 1) and {λn} is a real number sequence in [a, b] for some a, b with 0 < a < b <
α/K2L2 satisfying the following conditions:

(i) αn + βn + γn = 1, for all n ≥ 0;
(ii) limn→∞αn = 0;
(iii) 0 < lim infn→∞βn ≤ lim supn→∞βn < 1;
(iv) limn→∞(λn+1 − λn) = 0.

Then we have limn→∞‖xn+1 − xn‖ = 0 and limn→∞‖Ayn −Axn‖ = 0.

Proof. First, we observe that I−λnA is nonexpansive. Indeed, for all x, y ∈ C, from Lemma 2.3,
we have

∥∥(I − λnA)x − (I − λnA)y
∥∥2

=
∥∥(x − y

) − λn
(
Ax −Ay

)∥∥2

≤ ∥∥x − y
∥∥2 − 2λn

〈
Ax −Ay, j

(
x − y

)〉
+ 2K2λ2n

∥∥Ax −Ay
∥∥2

≤ ∥∥x − y
∥∥2 − 2λn

α

L2

∥∥Ax −Ay
∥∥2 + 2K2λ2n

∥∥Ax −Ay
∥∥2

=
∥
∥x − y

∥∥2 + 2λn
(
K2λn − α

L2

)∥∥Ax −Ay
∥∥2

.

(3.1)

If 0 < a < λn < b < α/(K2L2), then I − λnA is a nonexpansive mapping.
Letting p ∈ S(C,A), it follows from Lemma 2.6 that p = QC(p − λnAp). Setting zn =

QC(yn − λnAyn), from (3.1), we have

∥∥zn − p
∥∥ =

∥∥QC

(
yn − λnAyn

) −QC

(
p − λnAp

)∥∥

≤ ∥∥(yn − λnAyn

) − (
p − λnAp

)∥∥

≤ ∥∥yn − p
∥∥

=
∥∥QC(xn − λnAxn) −QC

(
p − λnAp

)∥∥

≤ ∥∥(xn − λnAxn) −
(
p − λnAp

)∥∥

≤ ∥∥xn − p
∥∥.

(3.2)
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By (1.5) and (3.2), we have

∥
∥xn+1 − p

∥
∥ =

∥
∥αnu + βnxn + γnzn − p

∥
∥

≤ αn

∥
∥u − p

∥
∥ + βn

∥
∥xn − p

∥
∥ + γn

∥
∥zn − p

∥
∥

= αn

∥
∥u − p

∥
∥ + (1 − αn)

∥
∥xn − p

∥
∥

≤ max
{∥∥u − p

∥
∥,

∥
∥x0 − p

∥
∥}.

(3.3)

Therefore, {xn} is bounded. Hence {zn}, {Axn}, and {Ayn} are also bounded. We observe
that

‖zn+1 − zn‖ =
∥
∥QC

(
yn+1 − λn+1Ayn+1

) −QC

(
yn − λnAyn

)∥∥

≤ ∥
∥(yn+1 − λn+1Ayn+1

) − (
yn − λnAyn

)∥∥

=
∥∥(yn+1 − λn+1Ayn+1

) − (
yn − λn+1Ayn

)
+ (λn − λn+1)Ayn

∥∥

≤ ∥∥(yn+1 − λn+1Ayn+1
) − (

yn − λn+1Ayn

)∥∥ + |λn − λn+1|
∥∥Ayn

∥∥

≤ ∥∥yn+1 − yn

∥∥ + |λn − λn+1|
∥∥Ayn

∥∥

= ‖QC(xn+1 − λn+1Axn+1) −QC(xn − λnAxn)‖ + |λn − λn+1|
∥∥Ayn

∥∥

≤ ‖xn+1 − xn‖ + |λn − λn+1|
(‖Axn‖ +

∥∥Ayn

∥∥).

(3.4)

Setting xn+1 = βnxn + (1 − βn)wn for all n ≥ 0 we obtain

wn+1 −wn =
αn+1u + γn+1zn+1

1 − βn+1
− αnu + γnzn

1 − βn

=
(

αn+1

1 − βn+1
− αn

1 − βn

)
u +

γn+1
1 − βn+1

(zn+1 − zn) +
(

γn+1
1 − βn+1

− γn
1 − βn

)
zn.

(3.5)

Combining (3.4) and (3.5), we have

‖wn+1 −wn‖ − ‖xn+1 − xn‖ ≤
∣∣∣∣

αn+1

1 − βn+1
− αn

1 − βn

∣∣∣∣‖u‖ +
γn+1

1 − βn+1
‖xn+1 − xn‖

+
γn+1

1 − βn+1
|λn+1 − λn|

(‖Axn‖ +
∥∥Ayn

∥∥)

+
∣∣∣∣

γn+1
1 − βn+1

− γn
1 − βn

∣∣∣∣‖zn‖ − ‖xn+1 − xn‖

≤
∣∣∣∣

αn+1

1 − βn+1
− αn

1 − βn

∣∣∣∣(‖u‖ + ‖zn‖)

+
γn+1

1 − βn+1
|λn+1 − λn|

(‖Axn‖ +
∥∥Ayn

∥∥);

(3.6)
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this together with (ii) and (iv) implies that

lim sup
n→∞

(‖wn+1 −wn‖ − ‖xn+1 − xn‖) ≤ 0. (3.7)

Hence, by Lemma 2.8, we obtain ‖wn − xn‖ → 0 as n → ∞. Consequently,

lim
n→∞

‖xn+1 − xn‖ = lim
n→∞

(
1 − βn

)‖wn − xn‖ = 0. (3.8)

From (1.5), we can write xn+1 −xn = αn(u−xn) + γn(zn −xn) and note that 0 < lim infn→∞γn ≤
lim supn→∞γn < 1 and limn→∞αn = 0. It follows from (3.8) that

lim
n→∞

‖xn − zn‖ = 0. (3.9)

For p ∈ S(C,A), from (3.1) and (3.2), we obtain

∥∥xn+1 − p
∥∥2 =

∥∥αnu + βnxn + γnzn − p
∥∥2

≤ αn

∥∥u − p
∥∥2 + βn

∥∥xn − p
∥∥2 + γn

∥∥zn − p
∥∥2

≤ αn

∥∥u − p
∥∥2 + βn

∥∥xn − p
∥∥2 + γn

∥∥yn − p
∥∥2

≤ αn

∥∥u − p
∥∥2 + βn

∥∥xn − p
∥∥2 + γn

{∥∥(xn − λnAxn) −
(
p − λnAp

)∥∥2
}

≤ αn

∥∥u − p
∥∥2 + βn

∥∥xn − p
∥∥2

+ γn

{∥∥xn − p
∥∥2 + 2λn

(
K2λn − α

L2

)∥∥Axn −Ap
∥∥2
}

≤ αn

∥∥u − p
∥∥2 +

∥∥xn − p
∥∥2 + 2γna

(
K2b − α

L2

)∥∥Axn −Ap
∥∥2
.

(3.10)

Therefore, we have

0 ≤ −2γna
(
K2b − α

L2

)∥∥Axn −Ap
∥∥2

≤ αn

∥∥u − p
∥∥2 +

∥∥xn − p
∥∥2 − ∥∥xn+1 − p

∥∥2

= αn

∥∥u − p
∥∥2 +

(∥∥xn − p
∥∥ +

∥∥xn+1 − p
∥∥)(∥∥xn − p

∥∥ − ∥∥xn+1 − p
∥∥)

≤ αn

∥∥u − p
∥∥2 +

(∥∥xn − p
∥∥ +

∥∥xn+1 − p
∥∥)‖xn − xn+1‖.

(3.11)

Since αn → 0 and ‖xn − xn+1‖ → 0 as n → ∞, from (3.11), we obtain

∥∥Axn −Ap
∥∥ −→ 0 as n −→ ∞. (3.12)
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From the definition of zn and (3.1), we also have

∥
∥zn − p

∥
∥2 =

∥
∥QC

(
yn − λnAyn

) −QC

(
p − λnAp

)∥∥2

≤ ∥
∥(yn − λnAyn

) − (
p − λnAp

)∥∥2

≤ ∥
∥yn − p

∥
∥2 + 2λn

(
K2λn − α

L2

)∥
∥Ayn −Ap

∥
∥2
.

(3.13)

From the above results and assumptions, we note that ‖yn − p‖ ≤ ‖xn − p‖, 0 < a < b <
α/(K2L2), ‖xn − p‖, ‖zn − p‖ are bounded, and ‖xn − zn‖ → 0 as n → ∞. Therefore, from
(3.13), we have

0 ≤ −2a
(
K2b − α

L2

)∥
∥Ayn −Ap

∥
∥2

≤ ∥∥yn − p
∥∥2 − ∥∥zn − p

∥∥2

≤ ∥∥xn − p
∥∥2 − ∥∥zn − p

∥∥2

=
(∥∥xn − p

∥∥ +
∥∥zn − p

∥∥)(∥∥xn − p
∥∥ − ∥∥zn − p

∥∥)

≤ (∥∥xn − p
∥∥ +

∥∥zn − p
∥∥)‖xn − zn‖ −→ 0,

(3.14)

which implies that

∥∥Ayn −Ap
∥∥ −→ 0 as n −→ ∞. (3.15)

It follows from (3.12) and (3.15) that

∥∥Ayn −Axn

∥∥ −→ 0 as n −→ ∞. (3.16)

This completes the proof.

Now we state and study our main result.

Theorem 3.2. Let X be a uniformly convex and 2-uniformly smooth Banach space with weakly
sequentially continuous duality mapping, and let C be a nonempty closed convex subset of X. Let
QC be a sunny nonexpansive retraction from X onto C, and let A be an α-strongly accretive and
L-Lipschitz continuous mapping of C into X with S(C,A)/= ∅. Let {αn}, {βn}, and {γn} be three
sequences in (0, 1) and {λn} a real number sequence in [a, b] for some a, b with 0 < a < b <
α/(K2L2) satisfying the following conditions:

(i) αn + βn + γn = 1, for all n ≥ 0;

(ii) limn→∞αn = 0 and
∑∞

n=0αn = ∞;

(iii) 0 < lim infn→∞βn ≤ lim supn→∞ βn < 1;

(iv) limn→∞(λn+1 − λn) = 0.
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Then {xn} defined by (1.5) converges strongly to Q′u, where Q′ is a sunny nonexpansive retraction
of C onto S(C,A).

Proof. From Remark 2.1(2), we have that A is an (α/L2)-inverse-strongly accretive mapping.
Then, from Lemma 3.1, we have

lim
n→∞

∥
∥Ayn −Axn

∥
∥ = 0. (3.17)

On the other hand, we note that

∥
∥Ayn −Axn

∥
∥ ≥ α

∥
∥yn − xn

∥
∥, (3.18)

which implies that

lim
n→∞

∥∥yn − xn

∥∥ = 0, (3.19)

that is,

lim
n→∞

‖QC(xn − λnAxn) − xn‖ = 0. (3.20)

Next, we show that

lim sup
n→∞

〈
u −Q′u, j

(
xn −Q′u

)〉 ≤ 0. (3.21)

To show (3.21), since {xn} is bounded, we can choose a sequence {xni} of {xn} that converges
weakly to z such that

lim sup
n→∞

〈
u −Q′u, j

(
xn −Q′u

)〉
= lim sup

i→∞

〈
u −Q′u, j

(
xni −Q′u

)〉
. (3.22)

We first prove z ∈ S(C,A). Since λn is in [a, b], it follows that {λni} is bounded, and so there
exists a subsequence {λnij

} of {λni} which converges to λ0 ∈ [a, b]. We may assume, without
loss of generality, that λni → λ0 as i → ∞. Since QC is nonexpansive, it follows that

‖QC(xni − λ0Axni) − xni‖ ≤ ‖QC(xni − λ0Axni) −QC(xni − λniAxni)‖
+ ‖QC(xni − λniAxni) − xni‖

≤ ‖(xni − λ0Axni) − (xni − λniAxni)‖
+ ‖QC(xni − λniAxni) − xni‖

≤ |λni − λ0|‖Axni‖ + ‖QC(xni − λniAxni) − xni‖,

(3.23)
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which implies that (noting that (3.20))

lim
i→∞

‖QC(I − λ0A)xni − xni‖ = 0. (3.24)

By Lemma 2.7 and (3.24), we have z ∈ F(QC(I − λ0A)), and it follows from Lemma 2.6 that
z ∈ S(C,A).

Now, from (3.22) and Lemma 2.4, we have

lim sup
n→∞

〈
u −Q′u, j

(
xn −Q′u

)〉
= lim sup

i→∞

〈
u −Q′u, j

(
xni −Q′u

)〉

=
〈
u −Q′u, j

(
z −Q′u

)〉 ≤ 0.
(3.25)

Finally, from (1.5) and (3.2), we have

‖xn+1 − z‖2 = 〈
αnu + βnxn + γnzn − z, j(xn+1 − z)

〉

= αn

〈
u − z, j(xn+1 − z)

〉
+ βn

〈
xn − z, j(xn+1 − z)

〉

+ γn
〈
zn − z, j(xn+1 − z)

〉

≤ 1
2
βn
(
‖xn − z‖2 + ‖xn+1 − z‖2

)
+ αn

〈
u − z, j(xn+1 − z)

〉

+
1
2
γn
(
‖zn − z‖2 + ‖xn+1 − z‖2

)

≤ 1
2
(1 − αn)

(
‖xn − z‖2 + ‖xn+1 − z‖2

)

+ αn

〈
u − z, j(xn+1 − z)

〉
,

(3.26)

which implies that

‖xn+1 − z‖2 ≤ (1 − αn)‖xn − z‖2 + 2αn

〈
u − z, j(xn+1 − z)

〉
. (3.27)

Finally, by Lemma 2.9 and (3.27), we conclude that xn converges strongly to Q′u. This
completes the proof.

Remark 3.3. From (3.1), we know that Q(I − λnA) is nonexpansive. If S(C,A)/= ∅, it follows
that there exists a sunny nonexpansive retraction Q′ of C onto F(Q(I − λnA)) = S(C,A).

4. Application

In this section, we prove a strong convergence theorem in a uniformly convex and 2-
uniformly smooth Banach space by using Theorem 3.2. We study the problem of finding a
fixed point of a strictly pseudocontractive mapping.
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A mapping T of C into itself is said to be strictly pseudocontractive if there exists
0 ≤ σ < 1 such that for all x, y ∈ C there exists j(x − y) ∈ J(x − y) such that

〈
Tx − Ty, j

(
x − y

)〉 ≤ σ
∥
∥x − y

∥
∥2

. (4.1)

This inequality can be written in the following form

〈
(I − T)x − (I − T)y, j

(
x − y

)〉 ≥ (1 − σ)
∥
∥x − y

∥
∥2

. (4.2)

Now we give an application concerning a strictly pseudocontractive mapping.

Theorem 4.1. Let X be a uniformly convex and 2-uniformly smooth Banach space with weakly
sequentially continuous duality mapping, and let C be a nonempty closed convex subset and a sunny
nonexpansive retract of X. Let T be a strictly pseudocontractive and L-Lipschitz continuous mapping
of C into itself with F(T)/= ∅. Let {αn}, {βn}, and {γn} be three sequences in (0, 1) and {λn} a real
number sequence in [a, b] for some a, b with 0 < a < b < 1 − σ/K2(L + 1)2 satisfying the following
conditions:

(i) αn + βn + γn = 1, for all n ≥ 0;

(ii) limn→∞αn = 0 and
∑∞

n=0αn = ∞;

(iii) 0 < lim infn→∞ βn ≤ lim supn→∞ βn < 1;

(iv) limn→∞(λn+1 − λn) = 0.

For fixed u ∈ C and arbitrarily given x0 ∈ C, define a sequence {xn} iteratively by

yn = (1 − λn)xn + λnTxn,

zn = (1 − λn)yn + λnTyn,

xn+1 = αnu + βnxn + γnzn,

(4.3)

for every n = 1, 2, . . . . Then {xn} converges strongly to a fixed point of T .

Proof. Putting A = I − T , we have from (4.2) that A is (1 − σ)-strongly accretive. At the same
time, since T is L-Lipschitz continuous, then we have

∥∥Ax −Ay
∥∥ =

∥∥(I − T)x − (I − T)y
∥∥ ≤ (L + 1)

∥∥x − y
∥∥, (4.4)

for all x, y ∈ C, that is, A is (L+1)-Lipschitz continuous mapping. It follows from Remark 2.1
(2) that A is (1 − σ)/(L + 1)2-inverse-strongly accretive mapping. It is easy to show that
S(C,A) = S(C, I − T) = F(T)/= ∅. Therefore, using Theorem 3.2, we can obtain the desired
conclusion. This completes the proof.
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