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Using a differential geometric treatment, we analytically derived the expression for De Sitter
(geodesic) precession in the elliptical motion of the Earth through the gravitational field of the
Sun with Schwarzschild’s metric. The expression obtained in this paper in a simple way, using a
classical approach, agrees with that given in B. M. Barker and R. F. O’Connell (1970, 1975) in a
different setting, using the tools of Newtonian mechanics and the Euler-Lagrange equations.

1. Introduction

The geodesic effect, also named De Sitter precession or geodesic precession, represents the
effect of the curvature of the space-time on a constant spin vector transported together with
a body along an orbit through a gravitational field in Einstein’s theory. De Sitter found that
the Earth-Moon system would undergo a precession in the gravitational field of the Sun.
De Sitter’s work [1] was subsequently extended to rotating bodies, such as the Earth, by
Schouten [2] and by Fokker [3]. Studying the Sun’s gravitational field near a circular orbit
with Schwarzschild’s metric, it is emphasized the existence of a precessional motion along
the Earth’s orbit, as effect of the Sun’s gravitational field [4].

The concept of geodesic precession has two slightly different meanings, as the body
moving in orbit may have rotation or not. Nonrotating bodies move on geodesics, while
the rotating bodies move in slightly different orbits. A geodesic is a curve which parallel
transports a tangent vector. If a curve is not geodesic, then a vector tangent to it at some
point does not remain tangent in parallel transport along this curve. In a Riemannian space,
a vector parallel transported along a closed contour does not return, in general, to its original
position.

The difference between De Sitter precession and Lense-Thirring precession is due to
the rotation of the central mass. The total precession is calculated by combining De Sitter
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precession with Lense-Thirring precession (see for more details [5, 6]). Barker and O’Connell
[7] discussed the difference between De Sitter precession and geodesic precession, obtaining
the correct expression for the precession in the case of the nearly circular orbits for binary
systems with relatively massive components.

The geodesic precession is usually associated with the motion of the gyroscope
orbiting in the static gravitational field of the source. This precession is obtained by parallel
transport of a spin vector in curved space-time in the vicinity of the mass. The effect is
presented even if the mass is not rotating. We also note that the geodesic precession has been
recently studied in different settings in [8–10].

In this paper, using a classical treatment, we deduce the expression for the geodesic
effect in the elliptical motion of the Earth through the gravitational field of the Sun with
Schwarzschild’s metric.

2. Elliptical Orbit in the Gravitational Field

The Schwarzschild metric

ds2 = − dr2

1 − 2μ/c2r
− r2
(
dθ2 + co s2θdϕ2

)
+
(
c2 − 2μ

r

)
dt2 (2.1)

is an exact, static, spherically symmetric solution of Einstein’s equation of the general
relativity, which represents the gravitational field of a cosmic object without rotation, which
possesses mass [11, 12]. The quantity ds denotes the invariant space-time interval, an
absolute measure of the distance between two events in space-time, c is the speed of light, t is
the time coordinate measured by a stationary clock at infinity, r is the radial coordinate, while
the variables θ and ϕ are the latitude and the longitude of mass M defined in the classical
conception with respect to the equatorial plane and the prime meridian, passing through the
center O of the spherical mass.

In the solar system, according to the formulas of the elliptical motion, the μ coefficient
is equal to 4π2a3/T2, 2a being the major axis of the orbit and T the period of revolution
of a planet, expression that has significantly the same value for all the planets, according
to Kepler’s third law. 2π/T will be noted by n, where n is the mean angular velocity
corresponding to the period T of the motion, called for simplicity mean motion. The
coefficient μ is also equal to the product f(S + M) of the universal gravitational constant
and the mass of the planet-Sun system (where S is the mass of the Sun andM is the planet’s
mass).

Making the change of variable ϕ = nt + ψ, one obtains

dϕ2 = n2dt2 + 2ndψdt + dψ2. (2.2)

Thus, from the relations (2.1) and (2.2), we have

ds2 = − dr2

1 − 2μ/c2r
− r2
(
dθ2 + cos2θdψ2

)
− 2nr2cos2θdψdt +

(
c2 − 2μ

r
− n2r2cos2θ

)
dt2.

(2.3)
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In the following, we will determine if the elliptical motion can occur in the plane of the
equator. To this purpose, the existence of the geodesics of Schwarzschild’s metric ds2 along
which the first three variables, namely r, θ, ϕ, have the constant values is studied.

From the equations of geodesics

d2xi
ds2

+ Γiαβ
dxα
ds

dxβ

ds
= 0, (2.4)

with i ∈ {1, 2, 3, 4} and x1 = r, x2 = θ, x3 = ψ, x4 = t, it remains for α = β = 4

d2xi
ds2

+ Γi44

(
dx4
ds

)2

= 0. (2.5)

If in the relation (2.5) we take i = 1, 2 or 3, then it follows that

Γi44

(
dx4
ds

)2

= 0. (2.6)

Because dx4/ds/= 0, one obtains Γi44 = 0, with i ∈ {1, 2, 3}. But

Γi44 =
1
2
gik
(
2
∂g4k
∂x4

− ∂g44
∂xk

)
, (2.7)

and therefore it is found that

gik
(
2
∂g4k
∂x4

− ∂g44
∂xk

)
= 0, (2.8)

with Einstein summation convention. The coefficient

g44 = c2 −
2μ
r

− n2r2cos2θ (2.9)

does not depend on the variables ψ and t, but only on r and θ. Then it follows that ∂g44/∂ψ = 0
and ∂g44/∂t = 0. On the other hand, g11 = −1/(1 − 2μ/c2r), g22 = −r2, g33 = −r2cos2θ, g34 =
−nr2cos2θ, and the remaining coefficients gij = 0, with i /= j, i, j ∈ {1, 2, 3, 4}.

Since (gij)i,j=1,4 = �(gij)i,j=1,4�
−1, it is observed that g22 /= 0. Consequently, for i = 2, we

deduce from the relation (2.8) that ∂g44/∂θ = 0. But

∂g44
∂θ

= 2n2r2 cos θ sin θ. (2.10)

Hence,

2n2r2 cos θ sin θ = 0, (2.11)
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and then one obtains θ = 0; in other words the elliptical orbit is located in the plane of the
equator.

In order to study the gravitational field near an elliptical orbit, a parallel transport of
a vector whose origin describes the corresponding line of Universe is considered.

In the elliptical motion, at the perihelion passage r takes the minimum value, namely,
rmin = a(1−e), and at the passage through aphelion r takes themaximum value rmax = a(1+e),
where a represents the length of the semimajor axis and e is the eccentricity of the elliptical
orbit.

In the following, we develop in the quadratic form ds2 from (2.3), the coefficients of
dψ2, dψdt, and dt2 in the neighborhood of the system of values 1/r = 1/a(1 − e2) and θ = 0,
where for the inverse of the radius vector 1/r it has been taken its average value

(
1
r

)

av
=

1
2

(
1
rmin

+
1

rmax

)
=

1
a(1 − e2) . (2.12)

We obtain the following expression:

ds2 = − dr2

1 − 2μ/c2r
− r2dθ2 −

[
r2 +

n2a4
(
1 − e2)4

c2 − 3μ/a

]
dψ2

+ 4na3
(
1 − e2

)3[1
r
− 1
a(1 − e2)

]
dψdt

+
(
c2 − 3μ

a

)[
dt − na2

(
1 − e2)2

c2 − 3μ/a
dψ

]2
+ ds21,

(2.13)

where it has been noted by ds21 a quadratic form that depends on the four differentials dr,
dθ, dψ, and dt whose coefficients depend on the variables r and θ, which vanish for 1/r =
1/a(1 − e2) and θ = 0. Therefore, ds21 does not belong to the group of the Christoffel symbols
which will be written in the following. Making the substitution

u = t − na2
(
1 − e2)2

c2 − 3μ/a
ψ, (2.14)

the expression of ds2 can be rewritten as

ds2 = − dr2

1 − 2μ/c2r
− r2dθ2 + 4na3

(
1 − e2

)3[1
r
− 1
a(1 − e2)

]
dψdu

−
{
r2 +

n2a4
(
1 − e2)4 + 4n2a5

(
1 − e2)5[1/r − 1/a

(
1 − e2)]

c2 − 3μ/a

}
dψ2

+
(
c2 − 3μ

a

)
du2 + ds21.

(2.15)
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3. Geodesic Effect in the Elliptical Motion

In the following, we study the phenomenon of precession in the elliptical motion. We
will calculate the variations of the components of a contravariant vector (X1, X2, X3, X4)
whose origin describes the line of Universe considered in the elliptical motion and whose
components are proportional by definition with dr, dθ, dψ, du.

According to the general theory, these variations are given by the equation

dXi = −ΓiαβXαdxβ, (3.1)

where

Γiαβ =
1
2
gik
(
∂gαk
∂xβ

+
∂gβk

∂xα
− ∂gαβ

∂xk

)
(3.2)

and β = 4, since in the considered movement dr, dθ, dψ are null, and where the Christoffel
symbols are calculated from the metric (2.15) for 1/r = 1/a(1 − e2) and θ = 0. From (2.15)we
have

(
gij
)
i,j=1,4 =

⎛
⎜⎜⎝

g11 0 0 0
0 g22 0 0
0 0 g33 g34
0 0 g34 g44

⎞
⎟⎟⎠, (3.3)

where

g11 = − 1
1 − 2μ/c2r

, g22 = −r2,

g33 = −r2 − n2a4
(
1 − e2)4 + 4n2a5

(
1 − e2)5[1/r − 1/a

(
1 − e2)]

c2 − 3μ/a
,

g34 = 2na3
(
1 − e2

)3[1
r
− 1
a(1 − e2)

]
, g44 = c2 −

3μ
a
.

(3.4)

On the other hand, we have

(
gij
)
i,j=1,4

=
1

g11g22Δ

⎛
⎜⎜⎝

g22Δ 0 0 0
0 g11Δ 0 0
0 0 g11g22g44 −g11g22g34
0 0 −g11g22g34 g11g22g33

⎞
⎟⎟⎠, (3.5)

where Δ = g33g44 − g2
34. Particularly, for 1/r = 1/a(1 − e2), we have g34 = 0, and so we obtain

gii = 1/gii, for all i = 1, 4.
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By direct calculation, it is obtained that

Γ114 = Γ124 = Γ144 = 0, Γ134 = g
11na

(
1 − e2

)
, Γ214 = Γ224 = Γ234 = Γ244 = 0,

Γ 3
14 = −g33na

(
1 − e2

)
, Γ324 = Γ334 = 0, Γ344 = 0, Γ414 = Γ424 = Γ434 = Γ444 = 0,

(3.6)

hence

dX1 = −nag11
(
1 − e2

)
X3du,

dX2 = 0,

dX3 = nag33
(
1 − e2

)
X1du,

dX4 = 0.

(3.7)

Therefore, the components X2 and X4 have constant values, whatever be the initial vector.
Particularly, we suppose the component X4 of this initial vector to be null. Then the
component X4, proportional with du, will be constantly zero, and the vector of Universe will
be projected on a vector from the 3D space having the origin inM. Furthermore, if the initial
component X2, proportional with dθ, is also zero, then θ remains constantly null, because it
is zero at the initial time. The projection MR of the vector of Universe in the 3D space is in
the plane of the elliptical orbit at the initial time and remains in this plane whenM describes
this orbit. The variations dX1 and dX3 are given by the following expressions:

dX1 = −nag11
(
1 − e2

)
X3du,

dX3 = nag33
(
1 − e2

)
X1du.

(3.8)

Taking the variable 1/r = 1/a(1 − e2) and taking account that g11 = 1/g11 and g33 = 1/g33,
then, using the relations (3.8), we derive

d
(√−g11X1

)
=
na
(
1 − e2)

√
g11g33

(√−g33X3
)
du,

d
(√−g33X3

)
= −na

(
1 − e2)

√
g11g33

(√−g11X1
)
du.

(3.9)

Making the change of variable

√−g11X1 = x,
√−g33X3 = y,

(3.10)

one can define the direction of the vectorMR in a reference system linked to the massM in
his motion by the cartesian coordinates x and y of the point Rwith respect to the tangent and
the normal to the ellipse at the pointM.
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It is known that for all the planets the ratio μ/ac2 is smaller than 1/(4 · 107), a being
the arithmetic average of the extreme values of the distance r during the motion (see [4]).
Therefore, if 1/r = 1/a(1 − e2), neglecting the second-order terms in μ/ac2, the coefficient of
dψ2 from (2.15) becomes −a2(1 − e2)2(1 + μ/ac2), and

1√
g11g33

=
1

a(1 − e2)
[
1 − 3μ

2ac2(1 − e2)
]
. (3.11)

With the change of variable (3.10) and taking account of (3.11), the relations (3.9) can
be rewritten in the following form:

dx

dt
= n
[
1 − 3μ

2ac2(1 − e2)
]
y,

dy

dt
= −n

[
1 − 3μ

2ac2(1 − e2)
]
x.

(3.12)

Thus, it was obtained a system of linear differential equations with constant coefficients,
having the solutions

x = A cos
{
n

[
1 − 3μ

2ac2(1 − e2)
]
(t − t0)

}
,

y = −A sin
{
n

[
1 − 3μ

2ac2(1 − e2)
]
(t − t0)

}
,

(3.13)

where A and t0 are constants.
It follows that, with respect to the mobile reference system formed by the tangent and

the normal inM to ellipse, the vectorMR has a retrograde rotational motion whose angular
velocity is [−n + (3μ/2ac2(1 − e2))n]. During the revolution of the mass M, the vector MR
moves in direct sense as well as the radius vector FM, but with the velocity 3μn/2ac2(1−e2).

The planet M, in its rotation with respect to the chosen reference system, seems to
reach in the proper angular position of the end of its revolution before that this revolution to
be effectively complete.

We note that the expression for the geodesic precession

pge =
3
2
·
(
na

c

)2

· n

(1 − e2) , (3.14)

where n and a are the meanmotion and semimajor axis of the orbit of the Earth-Moon system
about the Sun, agrees with that given in Barker and O’Connell [5, 7], but in a different setting.
They find the precession of the spin and the precession of the orbit for the two-body problem
in general relativity with arbitrary masses, spins, and quadrupole moments, starting from
a gravitational potential energy derived from Gupta’s quantum theory of gravitation [13].
Their calculations were performed using the tools of Newtonian mechanics and the Euler-
Lagrange equations. Our approach is clearly more simple, since it was used a purely classical
treatment.
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