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A nonlinear dynamical system, in which the feed rates of glycerol and alkali are taken as the
control functions, is first proposed to formulate the fed-batch culture of 1,3-propanediol (1,3-PD)
production. To maximize the 1,3-PD concentration at the terminal time, a constrained optimal
control model is then presented. A solution approach is developed to seek the optimal feed rates
based on control vector parametrization method and improved differential evolution algorithm.
The proposed methodology yielded an increase by 32.17% of 1,3-PD concentration at the terminal
time.

1. Introduction

1,3-propanediol (1,3-PD) possesses potential applications on a large commercial scale,
especially as a monomer of polyesters or polyurethanes, its microbial production is recently
paid attention to for its low cost, high production, and no pollution, and so forth. It is
considered to be one of the bulk chemicals, which is likely to be produced by bioprocesses
on large scales [1]. During the bioconversion of glycerol to 1,3-PD, the most efficient
cultivation method appears to be a fed-batch culture which corrects pH by alkali addition
for glycerol supply [2]. In the fed-batch cultivation process of glycerol bioconversion
1,3-PD, several factors influence the process state and govern the process behavior [3].
Along with the concentration of substrate, the process is influenced by the products of
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metabolism that accumulate in cultivation broth and cause an inhibition of cells” growth. To
maintain a suitable environment for cells” growth, alkali is also intermittently added to the
fermentor. Consequently, two control actions should be considered for modelling and optimal
control the fed-batch cultivation process: the feeding with glycerol and the adding with
alkali.

Optimal control of fed-batch culture by feed rates has received extensive attention [4-
17]. Initially, the batch model is extrapolated to fed-batch cultivation by incorporating the
dilution factors. Unstructured and nonsegregational models with specific rates of cell growth
rate, metabolite production rate, and substrate consumption rate have been used to model
fed-batch fermentation. The models have been used for optimal control studies by a number
of researchers [7, 9-11]. Recently, assuming the feed of substrate only occurs at the impulsive
instants, nonlinear impulsive systems [4] have been extensively investigated to formulate the
fermentation process. Subsequently, the properties [5], parameter identification problem [12],
and optimal control problem [4, 13] have been investigated. Nonetheless, since the feed rate
of substrate is finite, it is not reasonable to describe the actual fed-batch fermentation process
by the impulsive system. In contrast, taking the feed rate of substrate as a time-continuous
process, a nonlinear multistage was proposed in [8]. The parameter identification problem [6]
and optimal control problem [8] for the system are investigated. Moreover, regarding the fed-
batch fermentation as switching between the batch process and the feed process, the switched
systems and their optimal control are discussed in [14-17]. Although the achieved results are
interesting, the control action in the above nonlinear dynamical systems and optimal control
problems only include the feed rate of the substrate.

Typically, a fed-batch process could have more than one control variable that need to be
optimized. This leads to a fairly complex optimization problem when the controlled nonlinear
system involving more than one control variables and physical constraints on state variables.
In this paper, we propose a nonlinear dynamical system, in which the feed rates of glycerol
and alkali are taken as the control functions, to describe 1,3-PD production in fed-batch
cultivation process. To maximize the 1,3-PD concentration at the terminal time, a constrained
optimal control problem is then presented. Incidently, there exist many methods to solve
the feed rates optimization problem involving more than one feed rates, such as maximum
principle of Pontryagin [18], Luus-Jaakola search method [19], and genetic algorithm [10].
However, these methods are all applied to the fed-batch process in which the substrates
are fed to the fermentor continuously. In the actual fermentation, glycerol and alkali are
intermittently fed into fermentor. As a result, the computation is more complex and it is
necessary to develop a fast and robust algorithm to solve the complex-constrained optimal
control problem. A solution approach is developed to seek the optimal feed rates of glycerol
and alkali based on the control vector parametrization method and an improved differential
evolution algorithm. Numerical results show that the concentration of 1,3-PD at the terminal
time can be increased considerably compared with previous results.

The rest of the paper is organized as follows. The nonlinear dynamical system and con-
strained optimal control model in fed-batch fermentation process are formulated in Section 2.
Section 3 develops a computational approach to solve the constrained optimal control model,
while Section 4 illustrates the numerical results. Finally, conclusions are provided in Section 5.

2. Problem Formulation

Based on the nonlinear dynamical system [6] and taking the feed rates of glycerol and alkali
as the control functions, mass balances of biomass, substrate, and products in fed-batch
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culture can be formulated as

x(t) = f1(t, x (1), u(h)),
x(ti,1+) :x(t,-,l), te (ti—lzti]/ i=1,2,...,2N +1, (21)

x(0) = xo,

where x(t) = (x1(8), x2(t), x3(t), x4(t), x5(t))" € R5,t € [0,T], is the state vector whose
components represent the extracellular concentrations of biomass, glycerol, 1,3-PD, acetic
acid, and ethanol at time t in the fermentor, respectively. T is the terminal time of the
fermentation, and xy is a given initial state. u(t) = (u1(t), uy (1) € R? is the control function
whose components denote the feed rates of glycerol and alkali, respectively. t;,i € A :=
{1,2,...,2N + 1} is the switching instant such that 0 = o, t;-; < t;, i € Aand tonyg = T. In
particular, t>;,1 is the moment of adding glycerol, at which the fermentation process switches
to continuous culture from batch culture, and ¢,,> denotes the moment of ending the flow of
glycerol, at which the fermentation process jumps into batch culture from continuous culture,

j€A1:=1{0,1,2,...,N - 1}. Furthermore, for t € (t2;,t2j+1], j € A2 == {0,1,..., N},
f2j+1 (t’x(t),u(t)) = (l,{xl (t), —q2x1 (t), qul (t), q4xl (t)/ Qle (t))T/ (22)

for t € (bja1,bojual, j €A,

pxi(t) = D(t)x1(t)
D(t)(cso — x2(t)) — g2x1(t)
FAR(E, x(t),u(t)) = g (t) -D()xs(t) | (23)
gax1(t) = D(#)xa(t)
gsx1(t) — D(t)xs(t)

In (2.3), cso denotes the initial concentration of glycerol in feed. D(t) is the dilution rate at
time ¢ defined by

uy (t) +up(t)

D) =

(2.4)

t
V(it)=V +I (u1(s) +uz(s))ds. (2.5)
0

In (2.5), V} is the initial volume of solution in the fermentor. On the basis of the previous
work [20], the specific growth rate of cells y is expressed by

_ Aixa(b) ﬁ<1_xf_(f)> (2.6)

- .’X.'z(t) + kq 02 x;
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Table 1: The parameters and the values of critical concentrations in the controlled nonlinear system (2.1).

e my Yg Ag kg ng Cy Xxg xz
1 — — 0.67 0.28 — 0.025 0.01 6
2 2.20 0.0088 28.58 11.43 1 0.06 15 2039
3 -2.69 67.69 26.59 15.50 3 5.18 0 1036
4 -0.97 33.07 5.74 85.71 3 50.45 0 1026
5 — — — — 3 — 0 60.9

where A; is the maximum specific growth rate; k; is the Monod saturation constant; x}, are
the maximal residual substrate and products concentrations; and 7, are the exponents for the
substrate and products. The specific consumption rate of substrate g, is

q2:m2+ﬁ+A XZ(t)

Y, Cx(t) +ky 27)

In (2.7), my is the maintenance term of substrate consumption under substrate-limited
conditions. Y, is the maximum growth yield. A, is the maximum increment of substrate
consumption rate under substrate-sufficient conditions. k, is the saturation constant for
substrate. The specific formation rates g,, ¢ = 3,4, of 1,3-PD and acetic acid are defined as

x2(t)

= Y,
qe=mg+pu Z+AZXZ(t)+kg,

(2.8)

where my are the maintenance terms of product formations under substrate-limited condi-
tions; Y, are the maximum product yields; A, are the maximum increments of product for-
mation rates under substrate-sufficient conditions; k¢ are saturation constants for products.
Moreover, the specific formation rate g5 of ethanol can be described by

qs = qz< a + = >, (2.9)

Cy + Uxo (t) Cyq + ‘LLX'Q(t)

in which ¢, ¢3, c3, and ¢, are parameters for determination of yield of ethanol on glycerol.
Under anaerobic conditions at 37°C and pH 7.0, the critical concentrations for cells
growth and the parameters in (2.6)—(2.9) are listed in Table 1.
Define

u:

{u(t) | a,; <u,(t) <b,;,1=1,2, te (ti,ti],i € A}, (2.10)

where a12j41,a22j+1, bi2j+1 and bypji1, j € A,, are identically equal to zero. aijs2, az2j+2,
b12ji2,and bypjyo, j € A, are positive constants which denote the minimal and maximal rates
of adding glycerol and alkali, respectively. Let % be the class of all the measurable functions
u from [0, T] into R? with u(t) € U.

There exist critical concentrations, outside which cells cease to growth, of biomass,
glycerol, 1,3-PD, acetic acid, and ethanol. Hence, it is biologically meaningful to restrict the
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concentrations of biomass, glycerol, products, and the volume of culture fluid in a set W
defined as

5
x"(t) e W =] [[xwe,x}], te[0,T] (2.11)
=1

For the system (2.1), we confirm that the system has a unique continuous solution on
[0, T], denoted by x(:; u), for each u € U. Moreover, the solution x(; ) is continuous in u and
is uniformly bounded on [0, T] [21].

In fed-batch fermentation of glycerol bioconversion to 1,3-PD, controlling the feed
rates of glycerol and alkali is to maximize the final 1,3-PD productivity. Therefore, the 1,3-
PD concentration at the terminal time is taken as the cost functional, that is,

J(w) = x3(T;u), (2.12)

where x3(-;u) is the third component of the solution to the system (2.1). Furthermore, the
control constraint (2.10) and the state constraint (2.11) should be satisfied.

Thus, a constrained optimal control model in the fed-batch fermentation can be for-
mulated as follows.

(COCP) max J(u)
st.xl(bu)eW, tel0,T], (2.13)

ueu.

3. Computational Methods

In solving the optimal control problem, a particularly attractive technique variously proposed
[22, 23] is the parametrization of the control vector u into a number of intervals so as to result
in an expression as

i
ub (t) = ojj.k¢,-]-(t), te(tig,ti], i€{l,2,...,2N +1}, ke {1,2}, (3.1)
=1

that is, let the time subinterval [t;_;, t;] be partitioned into n; subintervals with n; + 1 partition
points denoted by

i i i i _
Ty Tireeor T T = tict, Ty, =t (3.2)

In the above equation, ¢;;(t) are known trial functions that need to be chosen. ufk(t) is the

value of the kth control variable in ith interval and O‘Z.k is the coefficient that need to be

determined from optimization. A number of trial functions based on the use of different basis
functions have been used in various work. However, the choice of trial functions ¢;;(t) affects
the evaluation of the exact optimization and needs to be carefully chosen. In this paper, we
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assume that each control variable in the control vector u(t) is approximated by a piecewise
constant value in a particular interval i, namely,

i (£) = {1’ te () (3.3)

0, otherwise.

Let x(-; %) be the solution of the system (2.1) replacing the control function u with u”.
Furthermore, denote the set of the admissible parameterized controls o” by =7, namely, =¥ =
{o? | u? € U}. Now, (COCP) can be approximated by the following parameter optimization
problem

(COCP(p)) max J(0?) = x3(T; o)
st.x'(t;oP)eW, te[0,T], (3.4)
o’ € 2.
To solve (COCP) by the control vector parametrization method, we need to solve a se-

quence of problems {(COCP(p)) };f:l. However, it is difficult to cope with the state constraints.
To surmount these difficulties, let

ge(x(t;07)) := x¢(t; 07) — X3,

(3.5)
gsre(x(t;07)) = e — x0(t;07), €=1,2,...,5.
Then, the condition (2.11) is equivalently transcribed into
G(oP) =0, (3.6)
where G(oP) := 21131 OTmax{O, gi(x(t;0P))}dt. However, G(oP) is nonsmooth in o”.

Consequently, standard optimization routines would have difficulties in dealing with this
type of equality constraints. The following smoothing technique is to replace max{0, gi(¢; o)}
with gi.(t; o7), where

0, if gi(x(t;07)) < —¢,

(3.7)

Ge(x(t;on) = 4 (@G(E0") +e)’
4e ’
&(x(t0%), if gi(x(t; o)) > €.

if —e<g(x(t;o”))<e,

In (3.7), € > 0 is an adjustable parameter controlling the accuracy of the approximation. Note
that

N 10 (T
Ge(o?) =D, JO Q1e(x(t; 0F))dt (3.8)
1=1
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is a smooth function in 6. The equality constraint (3.3) now can be approximated by
Ge(0”) =0. (3.9)

As aresult, (COCP(p)) can be approximated by the following approximation problem
as follows.

(COCP.(p)) maxJ(oP) := x3(T;0")
st. Ge(o?) =0, (3.10)

of e 2P,

Then, the gradient of the constraint G, (-) can be computed by the following theorem.

Theorem 3.1. For the constraint G, (oP) given in (3.9), it holds that its gradient with respect to
parameterized control o? is

8Ge(0?) _ JT aH(t,x(t),cr’”,A(t))dtl (3.11)

oo? 0 ooP
where
10 5
H(t,x(t), 07, A(t)) = D] re(x(t;07)) + AT (1) f (£, x(t), ),
I=1 (3.12)

At) = (M), da (1), A3 (1), Aa(t), As(E))T

is the solution of the costate system

o (OH(,x(8), 07, A())\]
i) __( . > , (3.13)

with the boundary conditions

MT) =(0,0,1,0,0),
(3.14)
AMt+) = Mt-), =1,2,...,2N.

Proof. The proof can be completed using the method of Chapter 3 in [24]. O

On this basis, (COCP) can be solved by a sequence of approximation problems
{(COCP.(p))}. Each of these {(COCP.(p))} is viewed as a smooth nonlinear mathematical
programming problem solved by various optimization methods such as gradient-based
techniques [23]. However, all those techniques are only designed to find local optimal
solutions. Furthermore, in solving these {(COCP.(p))}, the evaluation of candidate feed
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rates is a computationally expensive operation because of solving the controlled nonlinear
system (2.1). Consequently, finding the global optimum or a good suboptimal solution with
traditional algorithms based on gradient method or nontraditional search and optimization
techniques based on natural phenomenon such as genetic algorithm [25], evolution strategies
[26], and simulation annealing [27] is too consuming, or even impossible within the time
available.

Differential evolution (DE), a recent optimization technique, is an exceptionally simple
and easy to use evolution strategy, which is significantly faster and robust at numerical
optimization and is more likely to find a function’s true global optimum [28]. Differential
evolution algorithm has been used in the recent past to solve many engineering optimization
problem, see, for example, [29, 30]. When using any population-based search algorithm
in general and DE in particular to optimize a function, an acceptable trade-off between
convergence rate (with reference to locating optimum) and robustness (with reference to not
missing the global optima) must generally be determined. To increase the convergence speed
of DE without compromising with the robustness, a modified differential evolution (MDE) is
developed to solve nonlinear unconstrained optimization problems encountered in chemical
engineering [31]. Nevertheless, the (COCP.(p)) is a nonlinear optimization problem with
constraints in state and control parameters, which MDE can not be applied directly to solving
it. Hence, the following strategies are added to the MDE [31].

(i) (Handling the control constraint). If there is bound violation for a parameter in the
tth individual at the xth step, then that parameter is generated randomly between
given lower and upper bound using the following equation:

O'Z-(K) = lower<o'f> +rand'[0,1] x <upper<0']r.7> - lower<of>>, j=1,...,D, (3.15)

where is D is the number of parameters.

(ii) (Dealing with the continuous state constraint). For the parameter of the rth individ-
ual at the xth step, test the value of Ge(o,p (x)). If Ge(o,p (x)) = 0, then the parameter
is feasible. Otherwise, that is, G, (o (x)) > 0, move the parameter towards the
feasible region in the direction of —(8Ge(0f (1)) /00T (1)) with Armijo line search.

(iii) (Stopping criteria). The algorithm stops when any of the following conditions
holds:

(a) the maximal iteration M is reached;

(b) the maximal deviation between the group’s best fitness values in the last M,
iterations is less than &, where ¢ is a predefined constant.

Now, we can obtain an approximately optimal control for (COCP) as shown in the
following algorithm.

Algorithm 1.
Step 1. Choose initial value of e.

Step 2. Solve approximate problem (COCP,(0”)) using the improved MDE algorithm to give
p*
fo/
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Table 2: The bounds of feed rates in Phs.I-IX.

Phases Upper (u1) Lower (u7) Upper (1) Lower (uy)
Phs.I-II 0.2524 0.1682 0.1905 0.12615
Ph.IIT 0.2390 0.1594 0.17925 0.11955
Phs.IV-V 0.2524 0.1682 0.1905 0.12615
Ph.VI 0.2657 0.1771 0.199275 0.132825
Ph.VII 0.2924 0.1949 0.2193 0.146175
Phs.VIII-IX 0.3058 0.2038 0.22935 0.15285

Step 3. Set € = ae. If € > €, where € is a prespecified positive constant, go to Step 2. Otherwise
go to Step 4.

Step 4. If min;e(12,. 2n+1)1p, > P, where P is a predefined positive constant, go to Step 5.
Otherwise, go to Step 1 with n,, increased to n,,,1 for each i.

Step 5. Construct uP* from o by (3.1) and stop.

The piecewise constant control u”* obtained is an approximately optimal solution of
(COCP).

4. Numerical Results

The initial state, the initial volume of fermentor, the initial concentration of glycerol in feed,
and the fermentation time are xy = (0.1115 gL_1,495 mmolL™,0,0, O)T, Vo = 5L, ¢ =
10762 mmolL™!, and T = 24.16h, respectively. Fed-batch process begins at t; = 5.33h. The
feeding moment f5;,1 and the feeding stopping moment t5;,5, j € Ay = {0,1,...,676} are
determined by the experiment.

In order to save computational time, the fermentation process is partitioned into the
first batch phase (Bat.Ph.) and phases I-IX (Phs.I-IX) according to the actual fermentation
process. In each of Phs.I-IX, the same feeding strategy is adopted. Moreover, the durations
of the feeding processes in Phs. I-IX are 5, 7, 8, 7, 6, 4, 3, 2, 1 seconds in each 100 seconds,
leaving 95, 93, 92, 93, 96, 97, 98, and 99 seconds for batch cultures, respectively. It should
be mentioned that this approach had been adopted to obtain the experimental data [12]. In
addition, the bounds of feed rates of glycerol and alkali in Phs.I-IX are listed in Table 2.

In the improved MDE algorithm, the number of populations Np, the maximal iteration
M, and the parameters F, CR, My, ¢, €, € are, respectively, 86, 300, 0.5, 0.9, 10, 1073, 0.1,
and 1.0 x 1078. The specified constant P in Algorithm 1 is 1. These parameters are derived
empirically after numerous experiments.

Applying Algorithm 1 to the optimal control model, we obtain the optimal feed
strategies of glycerol and alkali. Here, the computational process is coded using Microsoft
Visual C++ on PC with Intel Core 2 Duo CPU, 2.93 GHz RAM. Especially, the ODEs are
numerically calculated by the improved Euler method with the relative error tolerance 107*.
The optimal feed rates of glycerol and alkali are plotted using MATLAB R2010a in Figure 1.
To show the feed rates of glycerol and alkali in the feeding processes for Ph. I to Ph. IX better,
9 small subfigures are also incorporated in Figure 1, respectively. Under the obtained optimal
feed rates, the computational concentration of 1,3-PD at the terminal time is 1053.67 mmolL™!
which is increased by 32.17% in comparison with experimental result 797.23 mmolL .
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Figure 2: The concentration changes of 1,3-PD with respect to fermentation time.

In particular, the concentration change of 1,3-PD with respect to fermentation time under the
optimal feed rates of glycerol and alkali is shown in Figure 2. From these curves in Figure 2,
we conclude that 1,3-PD concentration at the terminal time in this paper is actually higher
than the one previously reported.

5. Conclusions

Taking the feed rates of glycerol and alkali as the control functions, a nonlinear dynamical
system was proposed to describe a fed-batch fermentation. A constrained optimal control
model involving the nonlinear dynamical system was then presented to maximize the
concentration of 1,3-PD at the terminal time. Based on the control vector parametrization
method and the improved MDE algorithm, a computational method was developed to seek
the optimal solution of the optimal control model. Numerical results verified the validity of
the mathematical model and the effectiveness of the computational method.
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