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A numerical wave flume based on the particle finite element method (PFEM) is applied to simulate
wave overtopping for impermeable maritime structures. An assessment of the performance
and robustness of the numerical wave flume is carried out for two different cases comparing
numerical results with experimental data. In the first case, a well-defined benchmark test of a
simple low-crested structure overtopped by regular nonbreaking waves is presented, tested in
the lab, and simulated in the numerical wave flume. In the second case, state-of-the-art physical
experiments of a trapezoidal structure placed on a sloping beach overtopped by regular breaking
waves are simulated in the numerical wave flume. For both cases, main overtopping events are
well detected by the numerical wave flume. However, nonlinear processes controlling the tests
proposed, such as nonlinear wave generation, energy losses along the wave propagation track,
wave reflection, and overtopping events, are reproduced with more accuracy in the first case.
Results indicate that a numerical wave flume based on the PFEM can be applied as an efficient
tool to supplement physical models, semiempirical formulations, and other numerical techniques
to deal with overtopping of maritime structures.

1. Introduction

Wave overtopping is one of the most important and complex physical processes in the study
of wave-structure interactions. Wave overtopping of a maritime structure is a violent natural
phenomenon which may affect the structural integrity of the structure and cause damage to
properties and, sometimes, lives. It is a highly nonlinear problem with a free surface, and
it remains a scientific and topological technical challenge because of the complex involved
nonlinearities and multiplicity of scales (e.g., wave breaking, boundary induced reflection,
wave transmission, wave groupiness, mean sea level variations, and so on). Such physical
processes deal with large and fast-free water surface changes and sometimes with multiple
water mass separation.
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Nowadays, semiempirical formulations are the most employed tool by engineers and
scientists to estimate overtopping rates of maritime structures. However, because of that
empirical character, the application of these models is limited to a particular structural
configuration and wave conditions. For example, Owen [1] developed a formulation to
calculate wave overtopping on smooth or rough impermeable sloping structures with and
without a berm; Franco et al. [2] presented a formulation to estimate overtopping in vertical
breakwaters; Pedersen [3] described a formulation for permeable slope breakwaters with
crown walls. As the majority of semiempirical formulations used in maritime engineering,
the above-mentioned formulations were obtained from small-scale physical tests, therefore
distorted by scale with respect to what happens in nature.

Based on these formulations, there are a range of approaches to predict overtopping
that can normally be applied to particular structures represented by simplified sections. The
commonly employed methods (estimating mean overtopping discharge and overtopping
volume) have been derived measuring overtopping at model tests and field campaigns.
These methods relate overtopping rates to the main wave and structural parameters [4], and
most are based on physical model data from 2D (wave flume) and 3D (wave tank) facilities
and a geometric scale in the range 1 : 10 to 1 : 80.

Physical tests are used not just for developing new overtopping formulations but also
for assessing prototype structural problems. In physical model tests, an understanding of
model and scale effects is critical for the correct representation of the phenomenon since even
the correct representation in a laboratory of the desired wave conditions is a difficult task [5].

Scale effects induce errors resulting from an incorrect reproduction of viscosity forces,
surface tension forces, and elasticity forces, as a consequence of the applied Froude scaling
similarity. No overtopping scale effects were identified by comparing prototype and small-
scale tests with vertical smooth structures [6, 7]. However, at rubble mound structures, scale
effects were identified, normally measuring more overtopping in larger scales than in smaller
scale models [8].

In nature, wave overtopping is an irregular process and this randomness is not always
easy to simulate in the lab [9]. Waves are generated in the laboratory as randomwave trains to
measure many different aspects of overtopping, such as mean overtopping discharge, wave-
by-wave volumes, overtopping velocities, and travel distance, as well as other interaction
parameters. The detailed wave features are also important, and it is nowadays accepted that
the discharge intensity of individually overtopping waves is relevant because most of the
damages that have impact on persons, vehicles, and structures are caused by overtopping of
large single waves [8].

In the last three decades, there have been important developments in numerical
models dealingwith fluid-solid interactions. This has gone in parallel with an increased study
of wave-structure interaction problems in numerical flumes. A numerical wave flume intends
to be an accurate representation of a physical wave flume and, thus, the corresponding
physical problem. The numerical wave flumes presented in the scientific literature can be
grouped based on their basic equations and numerical schemes. Examples of numerical
waves flumes based on the nonlinear shallow water (NLSW) equations applied to maritime
structures can be found in van Gent [10], Dodd [11], andHu et al. [12]. Lemos [13] developed
a numerical model for the study of the movement of two-dimensional waves using a volume
of fluid (VOF) technique for solving Navier-Stokes equations for incompressible fluids. Van
Gent et al. [14] presented a VOFmodel that can simulate plunging wave breaking into porous
structures. Lin and Liu [15] described the development of a VOF-type model (COBRAS)
based on the Reynolds-Averaged Navier-Stokes (RANS) equations to study the evolution of
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wave groupiness, shoaling, and breaking in the swash zone. Lara et al. [16] have shown the
ability of the COBRAS model to simulate the interaction of irregular waves with permeable
slope structures. The use of the smooth particle hydrodynamics (SPH) technique in maritime
engineering began at the end of the 90s [17]. Dalrymple and Rogers [18] studied the plunging
wave type breaker using a model based on the SPH method. Shao et al. [19] presented
an incompressible SPH model to study the interaction of waves with coastal structures.
Koshizuka et al. [20] used the moving particle semi-implicit (MPS) method to study wave
breaking. Oliveira et al. [21] used the particle finite element method (PFEM) as a numerical
flume to study the generation of nonlinear waves by means of different paddle types.

Due to the improvements in numerical wave flumes, they have started to be con-
sidered as a possible tool to support overtopping calculations for maritime structures [22].
Numerical overtopping studies can be found in the scientific literature for numerical wave
flumes based on the NLSW [12, 23], VOF [23–26], SPH [27], and MPS [28] numerical
techniques.

The major objective of this work is to investigate the ability of a numerical wave
flume based on the PFEM to simulate the “correct” incident wave features and the associated
overtopping for maritime structures. In order to achieve this objective, numerical results for
two different structures are compared to physical data. In the first case, a well-defined
benchmark test of a simple low-crested structure overtopped by regular nonbreaking waves
is presented, tested in the lab, and simulated in the numerical wave flume. In the second case,
state-of-the-art physical experiments of a trapezoidal structure placed on a sloping beach
overtopped by regular breaking waves are simulated in the numerical wave flume.

The layout of this paper is the following: Section 2 describes the numerical technique
PFM. In Section 3, wave overtopping is studied for a low-crested structure and a well-defined
benchmark test case is presented. In Section 4 wave overtopping is studied for a breaking
wave case. The paper ends with some conclusions and recommendations for further research.

2. The Particle Finite Element Method

The PFEM is now a well-known method in the scientific literature [29–31]. However, some
specific key features of the PFEM are also included in this paper for completeness. The
PFEM solves the fluid mechanics equations by a Lagrangian approach. It is a particular class
of Lagrangian flow formulations, developed to solve free surface flow problems involving
large deformations of the free surface, as well as the interaction with rigid bodies. The finite
element method (FEM) is used to solve the continuum equations in the fluid and solid
domains. The PFEM treats the mesh nodes in the fluid and solid domains as particles, which
can freely move and even separate from the main fluid domain representing, for instance,
the effect of water drops or melted zones. The data between two consecutive time steps is
only transferred through nodes, because elements are created again at every time step by a
remeshing process with new connectivities.

In the PFEM, the mass conservation and momentum conservation equations (Navier-
Stokes) in the final xi position are written as follows:

Dρ

Dt
+ ρ

∂ui

∂xi
= 0, (2.1)

ρ
Dui

Dt
= − ∂

∂xi

p +
∂

∂xj

τij + ρfi, (2.2)
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where ρ is the density, ui are the Cartesian components of the velocity field, p the pressure,
τij the deviatoric stress tensor, fi the source tensor (usually the gravity),D/Dt represents the
total or material time derivate.

For Newtonian fluids, the stress tensor τij may be expressed as a function of the veloc-
ity field through the viscosity μ by:

τij = μ

(
∂ui

∂xj

+
∂uj

∂xi

− 2
3
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∂xl

δij

)
. (2.3)

For near incompressible flows, ∂ui/∂xi � ∂uk/∂xl, and thus

2μ
3
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≈ 0. (2.4)

Then, the stress tensor τij can be written as

τij ≈ μ

(
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. (2.5)

Using (2.5) and after some manipulations [29], the momentum conservation equation
can be finally written as

ρ
Dui

Dt
≈ − ∂

∂xi

p + μ
∂

∂xj

(
∂ui

∂xj

)
+ ρfi. (2.6)

Traditionally, computational fluids dynamics problems have been solved by models
based on Eularian or ALE formulations. In Eulerian formulations, the nonlinearity is
explicitly presented in the convective terms. In the PFEM Lagrangian formulation, the
nonlinearity is due to the fact the momentum equation is written in the final positions of
the particles.

The Navier-Stokes equations are time dependent, and thus a temporal integration
needs to be carried out. The fractional-step method proposed in Codina [32] is used in PFEM
for the time solution. Even when using an implicit time integration scheme, incompressibility
introduces some wiggles in the pressure solution which must be stabilized to avoid pressure
oscillations in some particular cases. In the PFEM, a simple and effective procedure to derive
a stabilized formulation for incompressible flows based on the so-called finite calculus (FIC)
formulations [33] is used.

In order to solve the governing equations that represent the continuum, particles must
be connected. A mesh discretizing the fluid and solid domains must be generated in order
to solve the governing equations for both the fluid and solid problems in the standard FEM
fashion. A fast regeneration of the mesh at every time step on the basis of the position of the
nodes in the space domain is used. A mesh is generated at each time step using the so-called
extended Delaunay tessellation (EDT) [34]. The EDT allows the generation of nonstandard
meshes combining elements of arbitrary polyhedrical shapes (triangles, quadrilaterals, and
other polygons in the 2D case) in a computing time of order n, where n is the total number
of nodes in the mesh. One of the keys to solve a fluid mechanics problem using a Lagrangian
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formulation is to generate efficiently the shape functions to approximate the spatial unknown.
In the PFEM, the interpolation function used by the meshless finite element method (MFEM)
[35] is applied. EDT together with the MFEM is the main key to make the PFEM a useful tool.

The CPU required for meshing grows linearly with the number of nodes. However,
Oñate et al [31] found that the CPU time for solving the equations exceeds that required
for meshing as the number of nodes increases. As in the standard FEM, the quality of
the numerical solution depends on the discretization chosen. Adaptive mesh refinements
techniques can be used to improve the solution in zones of special interest.

It must be noted that the information in the PFEM is typically nodalbased, that is,
the element mesh is mainly used to obtain the values of the state variables (i.e., velocities,
pressure, viscosity, etc.) at the nodes. A difficulty arises in the identification of the boundary
of the domain from a given collection of nodes. Indeed, the boundary can include the free
surface in the fluid and the individual particles moving outside the fluid domain. For this
purpose the Alpha Shape technique [36] has been used to identify the boundary nodes.

In summary, the main difference between the PFEM and the classical FEM is the
remeshing technique and the evaluation of the boundary position at each time step. The rest
of steps in the computation are equivalent to those of the classical FEM.

3. Overtopping of Nonbreaking Waves at a Low Crested Structure

To evaluate the performance and robustness of a numerical flume to simulate a specific
physical process, it is necessary to have a theoretical model or experimental data set that
can represent it. Without this information, we have no way of comparison and no way
to make sure the numerical flume is really representing the true behavior. Moreover, this
information is important for a previous understanding of the physical processes involved
in the numerical simulation and for the preparation of the numerical model setup. Due
to the complexity of the physical processes involved in wave-structure interaction, there is
nowadays no theoretical model available to represent all of these problems and associated
scales. Thus, if an accurate evaluation of a numerical flume is desired, high-quality physical
data is necessary. However, the more complex physical tests do not always provide the best
data to calibrate and improve numerical flumes. Themain reason for this fact is that, when the
physical tests complexity increases, the understanding of the physical processes diminishes
and the control of boundary conditions also increases.

In this work, a well-defined benchmark test case was created to be tested in a physical
and easily be subsequently reproduced in a numerical wave. The goal of this benchmark
test is to study wave overtopping for regular nonbreaking waves at a simple, low-crested,
maritime structure. Figure 1 shows the low-crested structure as well the flume configuration
for which it will be tested. In this case, the model can be considered impermeable, and its
layout can be defined by just five points (P1–P5 in Figure 1). The position, relative to the
wave paddle, of the five layout representative points can be found in Table 1.

The low-crested structure benchmark test was reproduced in a small-scale physical
wave flume. The experiments were carried out at theMaritime Engineering Laboratory (LIM)
of the Technical University of Catalonia BarcelonaTech (UPC-BarcelonaTech). The flume is
18m long, 0.4m wide, and 0.6m deep and is provided with a piston-type wave paddle
capable of generating both regular and irregular waves. At the experiments, the water depth
was kept constant (h = 0.19m) from the wavemaker until the structure. Six resistance wave
gauges were used to measure free surface evolution at six different points along the flume.
A sampling rate of 100Hz was used. The level of accuracy of these sensors is about 0.001m.
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Figure 1: Sketch of CIEMito wave flume used to reproduce and understand overtopping at a low-crested
maritime structure.

Table 1:Model coordinates (see Figure 1).

Point x (m) y (m)
P1 0.00 0.000
P2 8.21 0.000
P3 8.64 0.216
P4 8.84 0.216
P5 8.84 0.000

The free surface sensors are represented in Figure 1, and their positions can be obtained from
Table 2.

This simple low-crested structure was tested for two regular wave conditions. Wave
case number 1 corresponds to a wave height of H = 0.06m and a wave period of T = 1.55 s.
Wave case number 2 corresponds to a wave height of H = 0.07m and a wave period of T =
1.8 s. Relatively mild energetic wave conditions were chosen to induce less violent and easier
to understand overtopping, from which the different process and scales over the structure
could be assessed.

For each wave case, two wave trains were generated. One wave ramp before and other
after were added to the two desired waves trains time series. The first wave ramp objective
is to slowly increase the wavemaker stroke at startup until it reaches its desired value. Wave
ramps avoid unwanted large waves considered as a transient response associated with the
starting and stopping of the wavemaker [5]. Paddle displacement was calculated by first
order wavemaker theory as proposed by Biésel and Suquet [37]. Taking into account wave
ramps, the paddle displacement can be written as

X0(t) =

(
H

(
sinh2k0h + 2k0h

8sinh2k0h

)
sinwt

)
t

T
for 0 < t ≤ T

X0(t) = H

(
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8sinh2 k0h

)
sinwt for T < t ≤ 3T

X0(t) =

(
H

(
sinh 2k0h + 2k0h

8sinh2k0h

)
sinwt

)(
1 − t − 3T

T

)
for 3T < t ≤ 4T,

(3.1)

whereH is the wave height, T is the wave period, h is the water depth in front of the paddle,
k0 is the wave number (k0 = 2π/L), w is the angular frequency (w = 2π/T), t is the time,
and L is the wavelength (L = tanh(2πh/L)gT2/2π).
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Table 2: Free-surface sensor positions (see Figure 1).

Free surface sensor Wave maker distance (m)
WG0 3.00
WG1 6.60
WG2 6.95
WG3 7.42
WG4 8.69
WG5 8.79
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Figure 2: Physical and numerical paddle displacements for wave case 1 defined by H = 0.06m and T =
1.55 s.

The benchmark test was simulated in a numerical wave flume based on the 2DV
Navier-Stokes equations solved by the particle finite element method. To discretize the flume
domain, two different nodal distances were considered. In the constant water depth zone, a
0.01m nodal distance was selected. Around the structure, 0.005m distance between nodes
was considered. This domain discretization leads to an initial finite elements mesh of 20675
nodes. The maximum time step used in the simulations was 0.001 s. The numerical tests were
run on a 2.67GHz Intel Core i7 CPU920. For these conditions, the numerical wave flume took
about 50 hours to simulate 20 s of physical model test.

Other time and mesh resolutions were tested in order to evaluate the computational
time and the accuracy of the results along the flume. It was found that the accuracy of the
overtopping results decreases substantially for nodal distances around the structure greater
than 0.005m.

In the numerical wave flume, waves were generated as similar as possible to those
generated in the physical flume. A numerical piston paddle moving according the physical
piston paddle was simulated. This boundary condition is solved by PFEM as a solid-liquid
interaction problem. Although the physical flume can be considered as a 2DV problem,
there are some 3D effects close to wavemaker (recirculation, water losses, etc.) that a 2DV
numerical flume does not take into account. The main difference is that, in the physical flume,
there is a water flux between the back and front sides of the paddle due to the leakage
between the paddle and the walls of the flume; this cannot be easily simulated in a 2D
numerical flume.
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Figure 3: Horizontal velocities (m/s) along the flume for four different time steps and for wave case 1,
H = 0.06m and T = 1.55 s.

Madsen [38] proposed that the leakage around the piston will decrease the amplitude
of the generated waves by an amount Δa which may be found from

Δa

a
= −
⎛
⎝2.22

√
1

cosh k0h
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h
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sinh k0h
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b

⎛
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√
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⎞
⎠
⎞
⎠√

ga

U
, (3.2)

where ΔB is the gap between the wavemaker and the bottom, ΔS is the gap between the
sidewalls and the wavemaker, b is the width of the wave tank, U is the wavemaker velocity
and g is the gravity acceleration.

In this work, the numerical paddle displacement was calculated applying the wave
height reduction model proposed by Madsen [38]. During the physical tests at CIEMito, ΔB

was 0.012m and ΔS 0.010m. Employing Madsen [38] model for these conditions, we obtain
a reduction on the generated wave height of 8.2% for wave case 1 and 8.9% for wave case
2. These reductions rates were then applied to the numerical paddle displacement. Figure 2
shows the paddle displacement used in the physical and numerical wave flumes for wave
case 1.

Figure 3 is a snapshot of horizontal velocities in the numerical flume for four different
time steps and for wave case 1. At the last two snapshots, the paddle is no longer moving and
is possible to see how the wave overtops the structure and the horizontal velocities increase
over the structure due to the reduction of the water column (depth).

For wave case 1, we compare in Figure 4 the free surface evolution obtained in the
numerical flume with the corresponding ones obtained in the physical flume. For this wave
case, the numerical flume reproduces accurately the nonlinear effects of wave generation,
wave propagation, and wave reflection induced by the low-crested structure (captured at
wave gauges WG0, WG1, WG2, and WG3 in Figure 4).

The two main overtopping events registered in the lab are also detected in the numer-
ical flume (WG4 and WG5). The first and the last overtopping events are due to the ramp
waves and were not detected in the numerical flume. These two minor overtopping events
correspond to a flow over the structure that in the lab reached a maximum water lever at
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Figure 4: Numerical and physical free surface comparison at six different locations, all of them
corresponding to wave case 1 defined byH = 0.06m and T = 1.55 s.

WG4 which is smaller than 0.005m. This value is below the numerical resolution in this zone
as well as being close to the minimum free surface physical sensor accuracy. For the twomain
overtopping events, the numerical flume reproduces quite well the free surface evolution at
both free surface sensors located over the structure (WG4 and WG5). The reduction from
WG4 to WG5 of the maximum water level reached by the water flow is also well simulated
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Figure 5: Numerical and physical free surface comparison at six different locations, all of them for wave
case 2 defined byH = 0.07m and T = 1.8 s.

numerically. A small overestimation of the maximum level reached by the flow over the
structure is observed in the numerical flume.

In Figure 4, the constant water levels obtained after the described wave events at
WG4 and WG5 correspond in the numerical flume to particles that remain stopped over the
structure and therefore can be detected by the numerical free surface sensor. The constant
levels equal to 0.005m correspond to no flow conditions over the structure.
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Figure 6: Horizontal velocities (m/s) close to the low-crested structure for four different time steps all
corresponding to wave case 2 defined byH = 0.07m and T = 1.80 s.

For wave case 2, we compare in Figure 5 the free surface evolutions obtained in the
numerical flume with the corresponding ones registered in the lab. As it happened for wave
case 1, the numerical flume in case 2 reproduces accurately the nonlinear effects of wave
generation, wave propagation, and wave reflection from the low-crested structure (captured
at wave gauges WG0, WG1, WG2, and WG3 in Figure 5).

A small overestimation in the maximum water level in WG4 and WG5 can be
observed. The numerical flume can accurately predict the increase from wave case 1 to wave
case 2 of the amount of water that overtops the structure.

One advantage of a numerical wave flume based on PFEM is the facility to obtain
different result parameters such as velocities or pressure at all computational domain points.
Figure 6 shows for wave case 2 the horizontal velocities around the structure for four
consecutive instants during an overtopping event. In this figure, it is possible to see how
the maximum water level decreases along the crest of the structure, inducing an increase of
the maximum horizontal water velocity. At the middle and right end of the structure, the
horizontal velocities reach values close to 1.3m/s.

In Figure 7, some pictures taken in the lab, close to the structure, during an over-
topping event for wave case 2 are compared with numerical results. In this figure, we can
see that the numerical flume reproduces quite well the spatial and time evolution of the free
surface around the structure during the overtopping event.

Although no physical velocity data is available, the good performance of the numerical
model to reproduce free surface elevation evolution suggests acceptable results for other
variables such as water velocity.
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Figure 7: Visual comparison of one overtopping event obtained in the physical and numerical flume. The
simulated case correspond to wave case 2, defined by H = 0.07m and T = 1.8 s.

4. Overtopping for Breaking Waves

The ability of a numerical wave flume, based on the PFEM, to simulate the overtopping of
maritime structures by breaking waves was also analyzed and tested in this work. State-of-
the-art physical experiments for which results are free available online at the Refined Wave
Measurements Database of the International Association for Hydraulic Research (IAHR)
were simulated for this propose in our numerical flume.

The physical experiments were carried out by Stansby and Feng [39] in a small-scale
wave flume and simulated regular waves overtopping an impermeable trapezoidal obstacle
placed on a sloping beach. The beach slope is 1 : 20, and the trapezoidal structure has slopes
of 1 : 2 both on the seaward and landward side with 0.2m as horizontal crest width. The
flume used in the experiments is 13m long, 0.3m wide, and 0.5m deep. A piston type wave
paddle with almost sinusoidal motion was used to generate regular waves of wave period
T = 2.39 s and a surf similarity parameter ξ of about 0.3, where ξ = S/

√
H/L, S being the

beach slope and the wave height given by H and wave length given by L. These wave
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Figure 8: Sketch of the flume for the Stansby and Feng [32] tests.

parameters are values at the toe of the beach slope. Two different still water levels at the
wavemaker, 0.36m and 0.34m, respectively, were tested. Stansby and Feng [39] measured
the water surface elevation at 12 points along the flume using sensors with a resolution of
about 0.5mm. The geometry of the experimental configuration and water surface elevation
deployment is indicated in Figure 8.

Stansby and Feng [39] experiments were simulated in a numerical wave flume
based on the 2DV Navier-Stokes equations solved by the PFEM. As in the previous case
(overtopping of nonbreaking waves at low-crested structure), to discretize the flume domain,
two different nodal distances have been considered. In the first 6.5m of the flume length
a 0.01m nodal distance was applied. For the other part of the domain, a 0.005m distance
between nodes was considered. This domain discretization leads to an initial finite elements
mesh of 26875 and 24569 nodes for the still water level of 0.36m and 0.34m, respectively. The
maximum time step used in the simulations was 0.001 s. The numerical tests were run on a
2.67GHz Intel Core i7 CPU920, and the average execution time was about 85 hours for 35.4 s
simulated.

Other time and mesh resolutions were tested in order to evaluate the computational
time and the accuracy of the results along the flume. It was found that the accuracy of the
overtopping results decreases substantially for nodal distances around the structure greater
than 0.005m.

A numerical piston paddle, with sinusoidal movement calculated by 3.1, was used
to generate the waves. To calibrate the wave generation process, a set of simulations with
different wave heights and wave period T = 2.39 s were run for the still water level of 0.36m.
It was found that wave height H = 0.089m was the one that best fits the waves obtained in
the experiments at the free surface sensor S1. The same paddle movement was used for both
still water level cases.

Figure 9 is a snapshot of horizontal velocities for four different time steps and for
the 0.36m still water depth case. In this figure, we can see how the numerical flume is
reproducing wave breaking and overtopping.

Figures 10 and 11 compare the free surface elevations obtained in the numerical and
physical flumes for the still water level 0.36m and 0.34m cases, respectively. Graphics in these
figures correspond to measured data and numerical results obtained with probes S1, S4, S6,
S8, S11, and S12 that are located at 2.470m, 3.970m, 4.970m, 5.964m, 7.468m, and 7.718m
away from the paddle, respectively.

Generally speaking, the water free surface evolution is well reproduced at the six
probes. These results indicate that wave generation, shoaling, breaking, reflection, and
overtopping processes are reproduced with an acceptable level of accuracy by the numerical
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Figure 9: Horizontal velocities (m/s) along the flume for the case with a still water level of 0.36m.

model for both mean water level cases. Although overtopping events are well detected by
the numerical flume, the maximum water level reached by the flow over the structure is
overestimated.

The differences observed between the physical and numerical free surfaces are
attributed to the limits in accuracy of the numerical simulation for the complex physical
processes involved (wave breaking turbulence, friction, etc.). However, we should notice
that the nonexact reproduction of the boundary condition at the paddle can induce some
distortion on the results.

5. Conclusions

A fully nonlinear numerical wave flume, based on the PFEM, has been developed to
investigate the interaction of waves and maritime structures. Special efforts have been
undertaken to improve the ability to simulate the actual (physical) flume with emphasis on
the control of boundary conditions.

We have also defined and proposed a well-defined benchmark test case to study wave
overtopping of regular nonbreaking waves at a simple low-crested maritime structure. This
case has been tested in a small-scale physical flume and in a numerical flume based on the
PFEM. Comparing physical data with numerical results, an assessment of the performance
and robustness of the numerical flume has been carried out. The results show that for the
two wave conditions tested the numerical flume reproduced with accuracy the nonlinear
processes controlling the benchmark test proposed, such as nonlinear wave generation,
energy losses along propagation and overtopping. The complex time and spatial evolution
of the flux over the structure induced by overtopping events were well captured by the
numerical simulations.

The Madsen [38] model to estimate the reduction of the generated wave height due
to the leakage around the piston was successfully applied to calibrate wave generation in the
numerical flume.
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Figure 10: Numerical and physical free surface comparison at six different locations, corresponding to the
case with a still water level of 0.36m.

Depending on the scale and energy of the physical processes appearing along the
flume, differentmesh resolutions should be used along the calculation domain. Consequently,
a nonfixed spatial resolution was applied, with good results for wave overtopping. This has
allowed reducing the computational time effort.
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Figure 11: Numerical and physical free surface comparison at six different locations, corresponding to the
case with a still water level of 0.34m.

State-of-the-art physical experiments of regular waves overtopping for breaking
conditions at an impermeable trapezoidal obstacle placed on a sloping beach have also been
simulated with acceptable accuracy and robustness in the numerical wave flume based on
the PFEM.
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The results obtained for both breaking and nonbreaking waves indicate that a
compromise has to be made between accuracy and computational efforts when selecting the
time and space domain discretizations.

Overtopping events are typically defined by the mean discharge obtained at the back
of the structure. However, we have shown in this paper that the shape of the flow over
the structure induced by wave overtopping can lead to high velocity values that produce
damages on maritime structures or even the loss of life. The results obtained in this work
indicate that a numerical wave flume based on the PFEM can be applied as a complementary
tool to physical models and semiempirical formulations to deal with overtopping studies
of maritime structures. However, a compromise has to be made between the accuracy and
validity field of each calculation tool, suggesting the use of one or other or even a hybrid
modeling approach.
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physical and numerical simulations,” Journal of Waterway, Port, Coastal and Ocean Engineering, vol. 134,
no. 4, pp. 226–236, 2008.

[24] P. L. F. Liu, P. Lin, K. A. Chang, and T. Sakakiyama, “Numerical modeling of wave interaction with
porous structures,” Journal of Waterway, Port, Coastal and Ocean Engineering, vol. 125, no. 6, pp. 322–330,
1999.

[25] D. E. Reeve, A. Soliman, and P. Z. Lin, “Numerical study of combined overflow andwave overtopping
over a smooth impermeable seawall,” Coastal Engineering, vol. 55, no. 2, pp. 155–166, 2008.

[26] I. J. Losada, J. L. Lara, R. Guanche, and J. M. Gonzalez-Ondina, “Numerical analysis of wave
overtopping of rubble mound breakwaters,” Coastal Engineering, vol. 55, no. 1, pp. 47–62, 2008.

[27] S. Shao, “Incompressible SPH simulation of wave breaking and overtopping with turbulence
modelling,” International Journal for Numerical Methods in Fluids, vol. 50, no. 5, pp. 597–621, 2006.

[28] H. Gotoh, H. Ikari, T. Memita, and T. Sakai, “Lagrangian particle method for simulation of wave
overtopping on a vertical seawall,” Coastal Engineering Journal, vol. 47, no. 2-3, pp. 157–181, 2005.

[29] S. R. Idelsohn, E. Oñate, and F. Del Pin, “A Lagrangian meshless finite element method applied to
fluid-structure interaction problems,” Computers and Structures, vol. 81, no. 8-11, pp. 655–671, 2003.
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