
Hindawi Publishing Corporation
Journal of Applied Mathematics
Volume 2012, Article ID 246812, 22 pages
doi:10.1155/2012/246812

Research Article
Efficient Fatigue Analysis of Helix Elements in
Umbilicals and Flexible Risers: Theory and
Applications

Geir Skeie, Nils Sødahl, and Oddrun Steinkjer

Det Norske Veritas AS Riser Technology, Høvik, 1363 Oslo, Norway

Correspondence should be addressed to Geir Skeie, geir.skeie@dnv.com

Received 19 January 2012; Revised 30 March 2012; Accepted 11 April 2012

Academic Editor: Carl M. Larsen

Copyright q 2012 Geir Skeie et al. This is an open access article distributed under the Creative
Commons Attribution License, which permits unrestricted use, distribution, and reproduction in
any medium, provided the original work is properly cited.

Fatigue analysis of structural components such as helix tensile armors and steel tubes is a critical
design issue for dynamic umbilicals and flexible pipes. The basis for assessment of fatigue damage
of such elements is the long-term stress cycle distribution at critical locations on the helix elements
caused by long-term environmental loading on the system. The long-term stress cycle distribution
will hence require global dynamic time domain analysis followed by a detailed cross-sectional
analysis in a large number of irregular sea states. An overall computational consistent and efficient
fatigue analysis scheme is outlined with due regard of the cross-sectional analysis technique
required for fatigue stress calculation with particular attention to the helix elements. The global
cross-section is exposed to pure bending, tensile, torsion, and pressure loading. The state of the
different cross-section elements is based on the global response. Special emphasis is placed on
assessment of friction stresses caused by the stick-slip behavior of helix elements in bending
that are of special importance for fatigue life assessments. The described cross-sectional analysis
techniques are based on an extensive literature survey and are hence considered to represent
industry consensus. The performance of the described calculation scheme is illustrated by case
studies.

1. Introduction

The required bending flexibility of risers and umbilicals is achieved by arranging strength
and functional elements in a helix geometry. The helix geometry allows the elements to
slip in order to release axial stresses built up by cross-sectional bending. This mechanism
is essential for arranging flexible risers and umbilicals in compliant configurations that are
capable of absorbing loads due to floater motions in harsh environmental conditions. The
penalty is, however, that assessment of fatigue stresses in helix elements becomes complex
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z

y

Hotspots

Helix positions
θs

X3

X2

Figure 2: Hotspots and helix positions for fatigue analysis.

due to the stick-slip behavior of helix elements in bending, as in Figure 1. The purpose of
fatigue analysis is assessment of fatigue damage in all relevant elements in the cross-section
for a long-term dynamic loading environment. Fatigue analysis of helix elements such as
tensile armors and steel tubes is a critical design issue for umbilicals and flexible pipes.
Critical areas are normally at the floater interface where bend limiting devices, that is, a bend
stiffener or a bellmouth, are applied to avoid overbending in extreme load situations and
reduce long-term fatigue loading, see, for example, [1, 2] for further details.

ISO 13628-5 Subsea umbilicals [3] is the main reference for design and load-effect
analysis of umbilicals. This standard requires that fatigue life will be calculated considering
all relevant cyclic loading imposed on the umbilical over its design life. The most onerous
fatigue loading for umbilicals in dynamic service is normally as follows:

(1) Wave-induced fatigue loading due to direct wave loading and associated floater
motions;

(2) Vortex-induced vibration (VIV) in steady current conditions.

Both loading scenarios will require fatigue damage calculations in numerous short-
term conditions to represent the long-term fatigue loading environment. As an example,
wave-induced fatigue analyses will typically require stress calculation in about 100–300
stationary irregular sea states each with duration of 1 hour. In addition, an iterative analysis
scheme is in general required for consistent assessment of fatigue damage caused by VIV due
to the highly nonlinear stick-slip damping mechanism in bending, see [4] for details.

The basis for assessment of fatigue damage in helix elements is the long-term cycle
distribution in several hot-spots, that is, critical positions on the helix cross-section, for a
representative number of helix positions, that is, positions along the helix in one pitch, as
shown in Figure 2.
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The main challenge is hence to establish an overall manageable computational scheme
to establish fatigue life estimates with sufficient confidence. A computational efficient cross-
sectional analysis strategy is hence a vital part of the overall fatigue analysis approach. DNV
has developed a dedicated computer program named Helica to address these design and
analysis challenges [5, 6]. The main capabilities are as follows:

(i) applicable to umbilicals, power cables, flexible risers, and similar unbonded
structures;

(ii) load sharing analysis for combined loading;

(iii) calculation of cross-sectional stiffness properties: axial, bending, and torsion;

(iv) fatigue stress analysis of helix elements considering stick-slip behavior in bending;

(v) Calculation of consistent fatigue stresses by direct application of global response
time series as external loading.

(vi) calculation of capacity curves for the entire cross-section in compliance with
applicable design codes;

(vii) short-term fatigue life and long-term fatigue analysis capabilities;

(viii) efficient and robust analysis scheme;

(ix) well-documented transparent theoretical formulation representing industry con-
sensus;

One of the main drivers behind this development has been to establish an efficient and
consistent fatigue analysis scheme. The main focus of this paper is to give a detailed
description of the cross-sectional response models applied to achieve an efficient and robust
analysis scheme.

2. Numerical Model

2.1. Introduction

The computational model is based on an essential 2D formulation allowing for cross-sectional
modeling of composite tubes containing helix elements in an unbonded structure. 2D is here
to be understood as an average description where the averaging is applied in longitudinal
pipe direction. The consequence of this is that possible 3D effects close to terminations can
not be handled.

The helix elements are assumed to be arranged in well-defined layers allowing for
treating each helix layer by means of an equivalent tube model with stiffness properties
assembled from the individual helix elements. Different types of helix elements may be
applied in the same layer to model, for example, umbilicals. Different distance from the cross-
sectional centerline may also be specified for the individual elements in the same layer. All
elements are assumed to have linear elastic material properties.

2.2. Response Models

The main purpose of the cross-sectional analysis is to predict the stresses in all interior
elements for an applied external loading. In order to establish efficient response models for
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Figure 3: Response models for cross-sectional analysis.

cross-sectional analysis, it is convenient to distinguish between the following load models,
see Figure 3:

(i) axis-symmetric loads due to effective tension, torsion moment, and internal and
external pressure;

(ii) pure bending, that is, constant global cross-section curvature.

Separate response models are established for the different load conditions in order to obtain
an overall robust, flexible, and computational efficient numerical solution scheme. The
main purpose and underlying assumptions for these response models are discussed in the
following. The purpose of the axis-symmetric response model is to establish the load sharing
between the individual components of the cross-section as well as contact forces between the
layers under axis-symmetric loading: effective tension, torsion, and hydrostatic pressure loads.
This analysis requires a full model of the cross-section and needs to solve the overall static
equilibrium with due regard to interlayer contact. Frictional effects are disregarded in the
axis-symmetrical response model.

Effective tension is used to comply with other software used in this industry segment,
like Riflex [7]. The use of effective tension is outlined in Sparks [8].

The bending response model is an analytical model for the calculation of stresses in
helix elements due to cross-sectional bending. The stick-slip model is based on contact
forces established by the axis-symmetrical analysis. A major advantage by the analytical
bending model is that bending analysis of the helix elements can be carried out one by one
without considering a complete model of the cross-section. This ensures a very flexible and
efficient computation scheme. The main assumptions of the analytical bending model can be
summarized as follows:

(i) constant interlayer contact pressure found by axis-symmetrical analysis. Additional
contact pressure induced by bending itself is neglected;

(ii) friction/contact between helical elements in the same layer is neglected, for
example, possible blocking/locking interlayer behavior can not be modeled
explicitly;
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Table 1: Typical elements used in modeling and analysis of axis-symmetrical response.

Element type Assumption

Thin cylindrical element Constant through thickness radial displacements; axial,
circumferential, and in-plane shear strains: εxx, εθθ , and εxθ .

Thick cylindrical element
Logarithmic through thickness radial displacements; radial,
axial, circumferential, and in-plane shear strains: εRR, εxx, εθθ ,
and εxθ .

Core element Generalized cylinder element where the effect is expressed
through and element stiffness matrix: kij .

Helix element Helix element with axial strains only: ε011.

Helix element Helix element with axial strains, curvatures, and torsional
shear strains: ε011, κ2, κ3, and γs.

(iii) no end effects included, that is, bending takes place well away from terminations;

(iv) constant global cross-sectional curvature is assumed;

(v) axial slip of helix elements is assumed, that is, loxodromic helix geometry assumed
during bending.

2.3. Axis-Symmetrical Response Model

2.3.1. General

The axis-symmetrical model is built up of concentric layers to model the entire cross-sections.
All layers are assumed to have the same axial and torsional deformation, while the radial
deformation is described separately for all layers. Each layer will hence have 1 or 2 radial
degrees of freedom (dof) depending on whether the radial deformation of the layer itself is
considered or not. The element types used in modeling and analysis are listed in Table 1.

The cylinder layers are intended for modeling of concentric plastic/metallic sheaths,
for example, inner/outer pressure barrier of flexible pipes and external/interior sheaths of
umbilicals. The core element is intended for modeling of resulting stiffness properties of
one or several layers. A typical application is modeling of resulting stiffness properties of
underlying layers supporting one or several layers of cross-wound tensile amours. The helix
layers are modeled as equivalent thin cylinder layers in the axis-symmetrical analysis. The
equivalent cylinder layer is established by assembling the stiffness contributions from each
helix component in the layer. The stiffness matrix of each helix element is derived based on
slender beam theory assuming the as-produced nominal helix geometry as initial stress-free
condition, that is, a state of no stress. The deformations and stresses of each helix component
due to axis-symmetrical loading are hence uniquely described by the global axial, torsional,
and radial deformation of each layer. Full details of all elements are given in Skeie [5] while
the kinematics of the cylindrical and helix element are pursued next.



6 Journal of Applied Mathematics

2.3.2. Kinematics

The kinematic description of the cylindrical and helical layers is essential for the response
of the composite cross-section. The configuration may be described in parametric form. The
cylinder is given by

xc(x, θ) = xix + R cos θiy + R sin θiz. (2.1)

ij denotes the global coordinate system. A helix is a curve on the cylindrical surface following
a fixed trajectory defined by the inclination angle, α. This yields also a relation between the
helical axis denoted s and the polar angle θ. The helix geometry is thus a one-parameter
specialization of the cylinder

xh(s) = xc
(
s cosα,

s sinα
R

)
where we have used

θ =
s sinα
R

= θs, x = s cosα = xs.

(2.2)

It is noted that the relations hold both for the initial and deformed configuration of the
geometry. An orthogonal local triad for the helix is expressed through

g1 =
∂xh
∂s

= cosαix − sinα sin θsiy + sinα cos θsiz,

g2 =
g3 × g1
‖g3 × g1‖ = sinαix + cosα sin θsiy − cosα cos θsiz,

g3 =
∂xc
∂R

= cos θsiy + sin θsiz.

(2.3)

Depending on the length parameter, s, the triad forms an orthonormal set of base vectors as
seen in the formulas in (2.3). The deformation of the cylinder consists of three independent
components constant change of radius, linear change of angle, and linear extension of the
overall cross-section. The undeformed and deformed geometries are related by

x′ = x +
x

L
ux, R′ = R + uR, θ′ = θ +

x

L
uθ, (2.4)

where we have used primed superscripts to denote the deformed configuration. The global
displacement pattern yields a relation between the initial and deformed helix angles

tanα′ =
R′θ′

L′ =
(R + uR)(θ + uθ)

L + ux
= tanα

(1 + uR/R)(1 + Ruθ/L tanα)
1 + ux/L

. (2.5)

There exists a relation between the initial curvilinear quantity s and the deformed measure s′

given by

s′ =
x′

cosα′ =
x(1 + ux/L)

cosα′ =
s cosα(1 + ux/L)

cosα′ . (2.6)
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The trigonometric quantities are related by

cosα =
1√

1 + tan2α
, sinα =

tanα√
1 + tan2α

. (2.7)

Appropriate strain expressions may be derived from the kinematic relations. The Green-
Lagrange strain measure is used in the following, and the linearized expressions are derived
consistently. The general strain state in the helix elements is expressed in the form

ε11 = ε011 +X2κ2 +X3κ3, 2ε12 = X3γs, 2ε13 = −X2γs, (2.8)

where ε011 is the beam axial strain, κα is the local beam curvature about the two local cross-
section axes, and γs denotes the torsional shear strain. The different expression is derived
from geometry and is linearized to yield

ε011 =
1
2
(
g′1 · g′1 − g1 · g1

)
=

1
2

((
s cosα(1 + ux/L)

cosα′

)2

− 1

)

=̇ cos2α
ux

L
+ sin2α

uR

R
+ R cosα sinα

uθ

L
,

(2.9)

where =̇ denotes linearization. The curvatures and shear strain terms are defined accordingly

κα = g′1 · g′α,1 − g1 · gα,1 γs = g′3,1 · g′2 − g3,1 · g2, (2.10)

where the subscript ,1 is used to denote differentiation with respect to the arc-length
parameter s or direction 1. It is noted that the relation in (2.10) includes stretching of the helix
centerline. Under the assumption that the extension of the centerline is small, it is customary
to use the approximation

∂g′i
∂s

≈ ∂g′i
∂s

∂s

∂s′
=

∂g′i
∂s′

. (2.11)

The detailed expressions are then given by

κ2 = 0,

κ3 =
sin2α′

R′ − sin2α

R

=̇ 2 sin(α)cos3(α)
uθ

L
− 2
R
sin2(α)cos2(α)

ux

L
+

1
R
cos(2α)sin2(α)

uR

R
,

γs = −cosα
′ sinα′

R′ +
cosα sinα

R

=̇ − cos2(α) cos(2α)
uθ

L
+

1
4R

sin(4α)
ux

L
− 2
R
cos(α)sin3(α)

uR

R

(2.12)
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and are consistent with the equations given by Love [9] and also used in Witz and Tan [10].
The expressions may be used in the constitutive relations to derive stresses, cross-sectional
properties, and global stiffness relations through the use of virtual work.

The strains, εRR, εxx, εθθ, and εxθ, in the cylindrical sheets may be found using
equivalent expressions. The convective base vectors are defined by

g1 = gx =
∂xc
∂x

, g2 = gθ =
∂xc
∂θ

, g3 = gθ =
∂xc
∂R

. (2.13)

The covariant linearized strain terms for a thin cylinder are expressed by

εxx = ε11 =
1
2
(
g′1 · g′1 − g1 · g1

)
=̇
ux

L
(2.14)

and similar for the other components such that

εθθ =̇RuR, εxθ =̇
R

L
uθ. (2.15)

Physical relevant strain expressions appear when expressing them in an orthonormal
cylindrical coordinate frame where g2 = g2/R.

A thick cylinder is also considered where the radial deformation is assumed to vary
according to

uR(θ, R) = uR(R) =
Ri

R2
o − R2

i

(
−R +

R2
o

R

)
uRi +

Ro

R2
o − R2

i

(
R − R2

i

R

)
uRo, (2.16)

which then gives rise to radial strains

εRR = ε33 =
1
2
(
g′3 · g′3 − g3 · g3

)
=̇
∂uR

∂R
. (2.17)

Ri and Ro denote the inner and outer cylinder radii, respectively.

2.3.3. Governing Equations

The global assembled system of equations for the axis-symmetrical analysis can hence be
expressed as

Kr = R, gi(r) = r inneri+1 − routeri ≥ 0 i ∈ {1, m}. (2.18)

The first equation expresses global equilibrium of the cross-section, while the latter states the
impenetrability condition of them interface layers, see Figure 4.K denotes the stiffnessmatrix
assembled from all layers, R is the external load vector, while r is the displacement vector
for all the unknown degrees of freedom (dof) in the system. Physically, the impenetrability
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equations allow for gaps to open between the layers, but they are not allowed to deform
into each other. In order to support an efficient solution of the linear system of equations
subjected to constraints, it is convenient to reformulate the problem as an associated quadratic
programming (QP) problem. This is a special type ofmathematical optimization problem that
in our case reduces to

minΠ(r) =
1
2
rTKr − rTR subjected to Cr < 0. (2.19)

C is a matrix that expresses the interlayer impenetrability constraints discussed above. It is
noted that the two formulations are equivalent and thus yield identical results. The advantage
of the latter formulation is that it is widely studied in the literature, and a number of well
established and robust solution schemes exists including the interior point method, active
set methods, augmented Lagrangian methods, conjugate gradient methods, and gradient
projections. The basis for solution of our quadratic programming problem is minimization
of the augmented potential energy function which can be expressed as

Πa(r,λ) = Π(r) −
m∑
i=1

λigi(r), (2.20)

where λi are denoted Lagrange multipliers. Karush-Kuhn-Tucker (KKH) conditions for
impenetrability constraints are

gi ≤ 0, λi ≥ 0, giλi = 0. (2.21)

It can be shown that the Lagrange multipliers are the contact forces between the layers. The
QP solution scheme will hence yield both contact forces and layer displacements as direct
output from the analysis. Layer displacements yield the stresses and strains in all interior
elements of the cross-section, while the layer interface contact forces are crucial input to
subsequent bending analysis of the helix elements. A concentric layer model, depicted in
Figure 5, for solving the axis-symmetrical problem has been applied by several authors.
However, the solution strategy proposed in this paper has proved to yield a very versatile
an efficient axis-symmetrical solver. Extensive validation of the axis symmetrical response
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Table 2: Axis-symmetrical analysis results—comparison, Vaz et al. [11], Sævik and Bruaseth [12], and
Skeie [5].

Feature Test [11] Vaz et al. [11] Sævik and Bruaseth
[12] Skeie [5]

EA under tension, (MN) 70–101 82.9 100 79.5
Coupling—tension/torsion (m) 0.19 0.21 0.19
GJ clockwise, T = 0 kN(kNm2) 14.5–56.0 44.7 44.3 45.4
Coupling clockwise—torsion/tension,
(rad/m) 182 188 180

GJ anticlockwise, T = 0 kN(kNm2) 15.9–17.2 19.1 19.5 18.7
Coupling
anticlockwise—torsion/tension,
(rad/m)

−406 −330 −343

model has been conducted. Comparison to other published results [10–12] shows very good
correlation, Table 2.

2.4. Bending Model

2.4.1. General

The additional stresses due to bending can be derived by assuming that the helix follows
a loxodromic curve during cross-sectional bending. This means that the helix remains in
its original position on the supporting cylinder surface during bending, and that it slips in
axial direction. This geometrical assumption has gained consensus in the literature, see, for
example, [13–15]. Experiments have also been conducted to validate this assumption, see, for
example, [16]. Based on this geometrical assumption, it is fairly straightforward to establish
the stress components during bending, see, for example, [13, 14]. Full details are given in [5].

The main stress components in a helix element during bending are the following:

(i) local bending stress due to bending about local weak/strong axes of the helix,

(ii) friction stress due to the stick/slip behavior in bending.

It is noted that other models for bending exist and especially the path followed by the
helix when it slips, a loxodromic or the geodesic path. The subject is pursued in a number of
publications, and discussionsmay be found in Féret and Bournazel [17], Out and vonMorgan
[18], Kraincanic and Kebadze [14], and Østergaard et al. [19] among others.
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2.4.2. Kinematics

The undeformed configuration of the helical element is described in Section 2.3.2. The model
now considers a pure bending behavior, and the deformed configuration is thus a torus. The
parametric representation of the torus may be written as

xtc(u, θ) =
(
ρβ − R cos θ

)
sinuix +

(
ρβ −

(
ρβ − R cos θ

)
cosu

)
iβ + R sin θiβ′ , (2.22)

where ρβ is the radius of curvature in the β direction, and the global coordinate is located at
the center of the bent cylinder. ij denotes the global coordinate frame, while iβ is the axis of
curvature, while iβ′ is the axis that is not bent. This is shown in Figure 6. The formulas hold
for iβ = iy and a careful use of the right sign should be exercised when iβ = iz. The helix
element lay on the loxodromic curve which, again, is a specialization of the torus

xth(s) = xch(us, θs) = xch
(
sκβ cosα,

s sinα
R

)
=
(
ρβ − R cos θs

)
sinusix +

(
ρβ −

(
ρβ − R cos θs

)
cosus

)
iβ + R sin θsiβ′ ,

(2.23)

where we have used

θs =
s sinα
R

, us = sκβ cosα. (2.24)
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Figure 7: Forces on infinitesimal helix element ds.

The axial strains may be derived in the same way as in Section 2.3.2,

ε011 =
1
2
(
g′1 · g′1 − g1 · g1

)
=̇ − Rκβ cos2α sin θs, (2.25)

and the same for the curvatures and shear strain

κ2 = cosα
(
1 + sin2α

)
sin θsκ, κ3 = cos4α cos θsκ, γs = −cos3α sinα cos θsκ, (2.26)

where again we have used the approximation that g′1 is a unit vector.

2.4.3. Stick-Slip Behavior

The local bending stresses can be expressed as

σb = E
[
X2 cosα

(
1 + sinα2 cos θs

)]
κβ + E

[
X3 cosα4 sin θs

]
κβ, (2.27)

where E is the Young’s modulus, α is the helix lay angle, and κβ denotes the cross-
sectional curvature with the radius in β-axis direction. X2 and X3 are the local coordinates
for calculation of bending stresses, see Figure 2. It should be noted that the local bending
stress only depends on the cross-sectional curvature and is hence not linked to the stick-
slip behavior of the helix element in bending. These stress components may therefore
be computed separately. A response model for the stick-slip behavior can be established
by considering the equilibrium between axial force built up in the helix element due to
bending and the friction forces restraining axial displacement, see Figure 7. Equilibrium
considerations in axial direction of an infinitesimal helix element give the following slip
criterion:

dN

ds
> f, (2.28)

whereN denotes the axial force in helix element, and f is the available friction force per unit
length.

Thus, slip will start when the tension gradient exceeds the available friction. This
criterion governs onset of slip, but it gives no information on the behavior of the helix after
slip initiation. Equilibrium considerations between slip/stick parts of the helix are required



Journal of Applied Mathematics 13

Stick Slip

S

F = N

Figure 8: Slip progression from neutral axis.

to study the slip progression after onset. Assuming that the helix element is completely fixed
on the supporting cylinder, the axial force due to cross-sectional bending is given by

N = −EAR cosα2 sin θsκβ, (2.29)

where R is the helix radius, A is the helix cross-sectional area, and θs is helix position angle.
This stick force is valid for the situation where the friction force between the helix element and
supporting cylinder prevents axial slip of the helix element. The corresponding axial force
gradient can hence be expressed as

dN

ds
= −EA cosα2 sinα cos θsκβ. (2.30)

This expression shows that a significant force gradient will develop along a helix fixed to
a supporting cylinder bent to a constant curvature. It is seen that the axial force gradient is
largest at the neutral axis, θs = 0. Slip will hence start at the neutral axis. The critical curvature
for onset of slip at the neutral axis is given by

κ0
cr =

f

−EA cosα2 sinα
. (2.31)

The available friction can be determined from the axis-symmetric analysis by the following
expression:

f = qiμi + qoμo. (2.32)

μi and μo are the inner- and outer-side friction coefficient, respectively, and qi and qo denotes
the associated inner and outer contact force per unit length along the helix. After onset, the
slip will progress along the helix away from the neutral axis for increasing curvature as
illustrated in Figure 8. To find an expression for the slip progression after onset, it is required
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to consider the equilibrium between the slip-stick parts of the helix. The total friction force F
over a distance s from the neutral axis along the helix is

F = s × f =
Rθs
sinα

f. (2.33)

By conservatively assuming that the slope is maintained and considering the equilibrium
between the friction force, F, and the stick force, N, at distance s from the neutral axis this
gives

κcr = − f

EA cos2α sinα
θs

sinα
, 0 ≤ θs ≤ π

2
. (2.34)

It is observed that full slip is obtained for θs = π/2 giving

κmax
cr = κ0

cr

π

2
. (2.35)

Friction stress σf , shown in Figure 9, is defined as the axial stress in the helix element at slip
due to cross-sectional bending. Friction stress can hence be expressed as

σf =
F

A
=

Rθs
A sinα

f, 0 ≤ θs ≤ π

2
. (2.36)

This simple formula gives the basic relations between the governing geometric parameters
and the friction stress. The friction stress is zero at the neutral axis and increases linearly to its
maximum value for a helix position normal to the bending axis. The maximum friction stress
σmax
f and the corresponding friction stress range Smax

f are given as

σmax
f =

πR

2A sinα
f, Smax

f = 2σmax
f =

πR

A sinα
f. (2.37)

These expressions allow for simple conservative assessments of effects from friction stress
to the fatigue life of the helix elements without performing bending analysis of the entire
cross-section. For practical analysis, it is required that the analytical bending model shall be
able to predict helix stresses in an arbitrary helix position due to external loading from biaxial
bending and effective tension time histories. The following extensions of the described model
are required to meet these requirements:

(i) Extend formulations given in 1st quarter pitch to arbitrary helix positions.

(ii) Implementation of stick—slip stress hysteresis formulation.

(iii) Extend formulas given for bending about β′-axis to bi-axial bending.

This generalization is fairly straight forward but somewhat detailed. A detailed description is
therefore not given, but it suffice to note that the approach is based on the definition of proper
sign convention, symmetry observations and proper bookkeeping of curvature reversals.
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An example of the performance of the bending hysteresis model for tensile armor
stresses is displayed in the Figure 10 for a harmonic curvature loading history. A significant
variation in the effect from friction stress for different helix positions is observed. This
underlines the importance of consistent treatment of friction stresses due to bi-axial bending
in fatigue analysis of helix elements.

3. Case Studies

3.1. Capacity Curves

The extreme stress capacity is most conveniently determined in terms of a cross-sectional
capacity curve. ISO 13628-5 Subsea umbilicals [3] describes allowable combinations of
curvature and effective tension that can be applied to the cross-sectionwithout compromising
the structural integrity of the interior strength and functional elements. Examples of umbilical
capacity curves are shown in Figure 11 for different utilization levels reflecting different
modes of operation, for example, installation and in-place operation. The utilization level
is defined according to allowable stress levels, σa, related to the yield stress, σa = kuσy, where
σy denotes the yield stress, and ku is a utilization factor. Similar considerations also hold
for strains that are typically used for plastic sheaths. The methodology as outlined in the
previous section is applied to determine stresses in all interior elements for combined tension
and curvature loading. The utilization in each component is evaluated against acceptance
criteria given in, for example, [3] or other relevant design codes. The capacity curve is finally
established as the allowable effective tension and curvature combinations that ensure that the
stresses in all interior elements fulfill the defined acceptance criteria. A recursive calculation
scheme is applied for consistent calculation of capacity curves of cross-sections with higher-
order composite helix elements, for example, cables applied in helix geometry in the cross-
section [5, 6]. The procedure is as follows:

(1) establish capacity curve and resulting stiffness properties of the composite helix
component. This is done by a separate straightforward cross-sectional analysis
using a cross-sectional model of the composite helix component only;
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Figure 10: Performance of the bending hysteresis model.

(2) include composite helix component in the total cross-sectional model in terms of
equivalent stiffness—geometrical parameters established from (1). Load sharing
analysis yields tension as well as local curvature acting on the composite helix
component. Utilization in the composite helix component is then based on the
capacity curve from (1).



Journal of Applied Mathematics 17

0 200 400 600 800
0

0.05

0.1

0.15

0.2

0.25

0.3

80% utilization
90% utilization
100% utilization

Effective tension (    )Tc

C
ur

va
tu

re
,κ

Figure 11: Example of umbilical capacity curves.

Several levels of recursive calculation can be applied to establish consistent capacity
curves of complex cross-sectional layouts. The main benefit of the recursive calculation
scheme is that very complex cross-sections can be subdivided into simpler components that
can be solved by standard cross-section analysis without having to build a comprehensive
overall cross-sectional model.

3.2. Fatigue Analysis

3.2.1. System Description

Fatigue analysis of rectangular cross-wound tensile armors of an umbilical operated from
a turret-moored FPSO in typical Norwegian environmental conditions is considered [20].
The umbilical is arranged in a classic wave configuration with bend stiffener interface to the
floater, see Figure 12. The fatigue loading environment is described by the omnidirectional
wave scatter diagram.

3.2.2. Analysis Methodology

The main steps in the fatigue analysis are the following:

(i) discretization of the wave scatter diagram into representative number of blocks.
Each block covers several sea states in the wave scatter diagram. 30 blocks are used
in the present study to represent the long-term fatigue loading;

(ii) perform global response analyses for all blocks in the wave scatter diagram
considering all heading and direction combinations as defined in Table 3. A total
of 270 short-term global response analyses is hence required to describe the long-
term fatigue loading on the system;
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Figure 12: Umbilical operated from a turret-moored FPSO.

Table 3: Fatigue load case description.

Vessel heading (deg) Direction Probability of vessel heading per direction
0 Near 60%
15 Near 30%
30 Near 10%
0 Far 60%
15 Far 30%
30 Far 10%
0 Cross 60%
15 Cross 30%
30 Cross 10%

(iii) perform helix fatigue analysis for all fatigue loading conditions using simultaneous
time histories of biaxial curvature and effective tension from the global analysis as
input.

The methodology as outlined in [21] is used as basis for the wave scatter diagram
discretization to achieve fatigue life estimates with adequate statistical confidence.

Global nonlinear time domain dynamic analysis is conducted by means of the Riflex
finite element analysis (FEA), [7], computer program for static and dynamic analysis of
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Figure 13: Short-term fatigue analysis for one hotspot/helix location.

slender marine structures. Dynamic simulations with duration of 1 hour are conducted
in each block of the wave scatter diagram considering random wave loading. Response
time histories are stored for subsequent fatigue analysis at 76 locations along the umbilical
covering potential critical areas including bend stiffener area, buoyancy section, and touch-
down area. The main steps in the subsequent short-term helix fatigue analysis conducted for
each fatigue load case are the following:

(i) establish fatigue stress time histories at all locations/hotspots. This analysis is
performed by combined axis-symmetrical analysis and bending analysis at each
time step. In this way, the interlayer contact forces governing the stick-slip bending
response are updated according to the instantaneous effective tension loading;

(ii) establish cycle histogram by rain flow counting of the generated fatigue stress time.

This procedure is outlined in Figure 13. The long-term helix fatigue analysis consists of the
following steps:

(i) accumulate long-term cycle histograms at all locations/hotspots with due consider-
ation of the probability of occurrence of the short-term fatigue loading conditions;

(ii) establish fatigue life from the long-term cycle histograms.

Key figures for the helix fatigue analysis are summarized in Table 4. The key figures
for the global analyses and subsequent fatigue analyses show that the computational efforts
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Table 4: Key figures for the helix fatigue analysis.

Number of hot-spots (corner points) 4
Number of helix locations 12
Total number of fatigue stress time series calculations of 1-hour duration (270 × 76 × 4 × 12) 984960
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Figure 14: Long-term cycle histogram and fatigue damage at most critical hot-spot location.

required are substantial. It should be emphasized that this example is of representative size
for this type of analysis.

3.2.3. Evaluation of Results and Numerical Performance

Analyses have been conducted with two different models for stress calculation:

(i) helix model with stick-slip modeling included;

(ii) helix model with no friction.

The latter model is included as a reference case only. This approach produce quite similar
results as the so-called straight tube analogy (STA) widely used in the industry for fatigue life
assessment of helix structures. The long-term cycle distribution and corresponding fatigue
damage is shown in Figure 14 for the most critical hot-spot location. The following can be
concluded:

(i) a pronounced peak in the cycle histogram is observed at 15MPa. This corresponds
to the maximum friction stress range;

(ii) the effect from frictional stresses is decisive for fatigue life prediction. Consistent
treatment of the stick-slip behavior in bending is hence essential;
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(iii) a substantial part of the fatigue damage can be attributed to the upper part of the
stress cycle histogram, that is, to relatively few large stress cycles. It is therefore
essential that the duration of the short-term simulations is sufficient to give a
representative frequency of large stress cycles.

The total computation time for the helix fatigue analysis on a standard single core lap top is
about 5 hours. The computation time is highly acceptable considering the size of the problem.
Parallel computing functionality is included in the software; thus, the computation time may
be reduced proportional to the number of available processors. No numerical instabilities or
anomalies were detected.

4. Conclusions

An overall computational consistent and highly efficient helix fatigue analysis scheme has
been established. This has been achieved by combined use of a versatile and efficient
axis-symmetrical solver with an analytical helix bending model. This model ensures full
consistency with the global response model as the computational efficiency allows for
application of global response time histories as direct loading on the cross-sectional response
model. The effect from frictional stresses is decisive for fatigue life prediction. Consistent
treatment of the stick-slip behavior in bending is hence essential for fatigue life prediction on
nonbonded cross-sections containing helix elements.
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