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A C1 piecewise rational trigonometric cubic function with four shape parameters has been
constructed to address the problem of visualizing positive data. Simple data-dependent constraints
on shape parameters are derived to preserve positivity and assure smoothness. The method is
then extended to positive surface data by rational trigonometric bicubic function. The order of
approximation of developed interpolant is O(h3

i ).

1. Introduction

Data visualization is the mechanism to communicate information by means of graphs,
images, diagrams, and animations. It is extensively used in interactive simulation, geomet-
rical design, geometric modeling, and computer-aided geometric design. It is an efficacious
way to abridge complexity of data and facilitates prompt understanding of data.

The three significant features of data are convexity, monotonicity, and positivity. Either
of these features arises in the data whether it is a result of physical process or chemical exper-
iment, and so forth. Plenty of spline functions exist which can produce smooth and visibly
pleasant curves but incapable to visualize the inherited shape (convexity, monotonicity, and
positivity) of given data. In this paper, the positive data visualization of both curve and
surface data is addressed by a rational trigonometric cubic function.

The objective of this paper is to preserve duly emphasized characteristic of data that
is, positivity. Asim and Brodlie [1] developed a piecewise rational cubic function to preserve
the positivity of positive data. In [1], if the interpolating function did not preserve the
positivity in a subinterval, then the authors inserted extra knot to improve this matter. Butt
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and Brodlie [2] developed a piecewise rational cubic interpolant to preserve the shape of
positive data by interval subdivision technique. Goodman et al. [3] constructed nonplanar
shape preserving interpolating curve scheme. They obtained a curve through an optimization
process involving some fairness criteria, in order to achieve curve by G2 piecewise rational
cubic function. Goodman [4] surveyed the shape preserving interpolating algorithms for 2D
data. Han [5] presented the cubic trigonometric polynomial curves with shape parameters. It
was investigated that partition of knot vector and value of free parameter affect the order of
continuity of trigonometric polynomial curves with shape parameters. These cubic trigono-
metric polynomial curves were approximation of cubic B-spline curves but more convergent
to control polygon. Their degree could be reduced to quadratic for a particular value of shape
parameter.

Brodlie et al. [6] used piecewise bicubic function to preserve the shape of positive
data arranged over the rectangular mesh. They developed sufficient conditions in the term
of the first and mixed partial derivatives at the rectangular grid points to preserve positivity.
Duan et al. [7] developed a bivariate rational interpolant with four shape parameters in each
rectangular patch. The developed interpolant was C1 for equally spaced data with a suitable
choice of shape parameters. The sufficient restrictions were developed on shape parameters
for constrained interpolation of data. M. Z. Hussain and M. Hussain [8] constructed a local
positivity preserving scheme for positive data by making constraints on free parameters in
the account of rational bicubic partially blended patches. In [8], the authors also developed
the constraints on parameters to preserve the shape of data that is lying above the plane. The
user did not enjoy the liberty to refine the curves and surface as desired in these schemes.
Hussain and Sarfraz [9] developed a piecewise rational cubic function with four families of
parameters to preserve the shape of positive data. Further, the authors extended a rational
cubic function into rational bicubic function with eight free parameters for the data arranged
over the rectangular grid. In [9], simple sufficient conditions were derived on these free
parameters to preserve the shape of positive data. The scheme seemed to be computationally
expansive.

Duan et al. [10] discussed the rate of convergence of a rational spline with two shape
parameters. The range of optimal error coefficient was determined. The jump in the curvature
was also studied for uniform data.

In this paper, an alternative cubic trigonometric function is used to preserve positivity
of data. The developed scheme has ample useful aspects. It produces C1 interpolant. No
extra knots are inserted between any two knots to preserve positivity. The developed scheme
works for both equally and unequally spaced data. Positivity is attained by imposing the
data-dependent constraints on the free parameters rather than assuming certain functional
values.

The work in this paper is set up in such a way that Section 2 elucidates the construction
of theC1 rational trigonometric cubic function to be used in curve scheme. Section 3 discusses
the error of approximation. Section 4 extends the C1 rational trigonometric cubic function to
a C1 rational trigonometric bicubic function. Constraints are developed on free parameters in
Section 5 to preserve the positive shape of curve and surface data. Finally, Section 6 concludes
the paper.

2. C1 Rational Trigonometric Cubic Function

In this section, the C1 piecewise rational trigonometric cubic function is developed.
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The curve data under consideration over the interval [a, b] is {(xi, yi), i = 0, 1,
2, . . . , n}, where the partition of data is x0 < x1 < x2 < · · · < xn. The rational trigonometric
cubic function over each subinterval Ii = [xi, xi+1] is defined as:

Si(x) =
pi(θ)
qi(θ)

, (2.1)

with

pi(θ) = αifi(1 − sin(θ))3 +
{
βif i +

2hiαidi

π

}
sin(θ)(1 − sin(θ))2

+
{
γif i+1 −

2hiδidi+1

π

}
cos(θ)(1 − cos(θ))2 + δifi+1(1 − cos(θ))3,

qi(θ) = αi(1 − sin(θ))3 + βi sin(θ)(1 − sin(θ))2 + γi cos(θ)(1 − cos(θ))2

+δi(1 − cos(θ))3,

(2.2)

where

θ =
π

2

(
x − xi

hi

)
, hi = xi+1 − xi. (2.3)

The rational trigonometric cubic function (2.1) has the following properties:

S(xi) = fi, S(xi+1) = fi+1, S(1)(xi) = di, S(1)(xi+1) = di+1. (2.4)

Here, S(1) and di are the derivatives with respect to x and computed derivatives at
knots xi. The values of di can be computed by any numerical scheme if not given with data.
S(x) ∈ C1[x0, xn] has αi and δi as free parameters.

3. Error Estimation of Interpolation

This section studies the approximation properties of rational trigonometric cubic function
(2.1). It is assumed that the data is generated from third-order continuously differentiable
function f(x) ∈ C3[x0, xn].Since the developed interpolation in Section 2 is local, the error
of approximation is computed in the subinterval [xi, xi+1]. The absolute error is expressed in
terms of Peono-Kernel [10] as follows:

∣∣f(x) − Si(x)
∣∣ ≤ 1

2

∥∥∥f3(x)
∥∥∥
∫xi+1

xi

∣∣∣Rx

[
(x − τ)2+

]∣∣∣dτ, (3.1)
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where Rx[(x − τ)2+] is the Peono-Kernel. Rx[(x − τ)2+] = r(τ, x) for xi < τ < x and
Rx[(x − τ)2+] = s(τ, x) for x < τ < xi+1. Therefore, the integral involved in (3.1) can be
expressed as

∫xi+1

xi

∣∣∣Rx

[
(x − τ)2+

]∣∣∣dτ =
∫x

xi

|r(τ, x)|dτ +
∫xi+1

x

|s(τ, x)|dτ. (3.2)

For theC1 rational trigonometric cubic function (2.1), r(τ, x) and s(τ, x) have the value

r(τ, x) = (x − τ)2 − 1
qi(θ)

{(
γiB2 + δiB3

)
(xi+1 − τ)2 − 4hiδiB2

π
(xi+1 − τ)

}
,

s(τ, x) = − 1
qi(θ)

{(
γiB2 + δiB3

)
(xi+1 − τ)2 − 4hiδiB2

π
(xi+1 − τ)

}
,

B2 = cos(θ)(1 − cos(θ))2, B3 = (1 − cos(θ))3.

(3.3)

To compute the integral of absolute values in (3.1), the roots of r(τ, x) and s(τ, x) are
calculated. The roots of r(x, x) in [0, 1] are θ = 1, θ∗ = 1 − 2δi/π(γi − δi).

The roots of r(τ, x) = 0 are τ1 = x + hi((B −D)/A) and τ2 = x + hi((B +D)/A), where

A = 2
(
αiB0 + βiB1

)
, B =

4B2δi − 2π
(
B2γi + B3δi

)
(1 − θ)

π
,

D =

√√√√
σ −

4
(
αiB0 + βiB1

)(
4B2δi(1 − θ) − π

(
B2γi + B3δi

)
(1 − θ)2

)
π

,

σ =

[
4B2δi − 2π

(
B2γi + B3δi

)
(1 − θ)

π

]2
B0 = (1 − sin(θ))3, B1 = sin(θ)(1 − sin(θ))2.

(3.4)

σ denotes [(4B2δi − 2π(B2γi + B3δi)(1 − θ))/π]2.
The roots of s(τ, x) are τ3=xi+1 and τ4 = xi+1−4hiδiB2/π(γiB2 − δiB3).
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The following possible cases arise.

Case 1. 0 ≤ γi ≤ 1, 0 ≤ θ ≤ 1, (3.1) takes the form

∣∣f(x) − Si(x)
∣∣ ≤ 1

2

∥∥∥f3(τ)
∥∥∥h3

i ω1
(
δi, γi, θ

)
,

ω1
(
δi, γi, θ

)
=
∫x

xi

|r(τ, x)|dτ +
∫xi+1

x

|s(τ, x)|dτ

=
1

qi(θ)

{
2γiB2θ

2 − π(1 − θ)
(
γiB2 + δiB3

)
θ2

π

+
4γiB2(1 − θ)θ − π

(
γiB2 + δiB3

)
(1 − θ)2θ

π

+

(
αiB0 + βiB1

)
θ3

3
+

(1 − θ)2
(
6γiB2 − π

(
γiB2 + δiB3

)
(1 − θ)

)
3π

}
.

(3.5)

Case 2. γi > 1 + 2/πδi, 0 ≤ θ ≤ θ∗, (3.1) takes the form

∣∣f(x) − Si(x)
∣∣ ≤ 1

2

∥∥∥f3(τ)
∥∥∥h3

i ω2
(
δi, γi, θ

)
,

ω2
(
δi, γi, θ

)
=
∫x

xi

|r(τ, x)|dτ +
∫xi+1

x

|s(τ, x)|dτ

=
1

qi(θ)

{
−2
(
αiB0 + βiB1

)
3

(
B −D

A

)3

+

(
4δiB2 − 2π(1 − θ)

(
γiB2 + B3

))
π

(
B −D

A

)2

−
(

8δiB2(1 − θ) − 2π
(
γiB2 + δiB3

)
(1 − θ)2

π

)(
B −D

A

)

−
(
αiB0 + βiB1

)
θ3

3
−
(

2δiB2 − (1 − θ)
(
γiB2 + δiB3

)
π

)
θ2

−
(

4δiB2(1 − θ) − (γiB2 + δiB3
)
(1 − θ)2

π

)
θ +

64δiB2

3π3
(
γiB2 + δiB3

)2

−2δiB2 (1 − θ)2

π
+
(1 − θ)3

(
γiB2 + δiB3

)
3

}
.

(3.6)

Case 3. θ∗ ≤ θ ≤ 1, (3.1) takes the form

∣∣f(x) − Si(x)
∣∣ ≤ 1

2

∥∥∥f3(τ)
∥∥∥h3

i ω3
(
δi, γi, θ

)
, (3.7)
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where

ω3
(
δi, γi, θ

)
=
∫x

xi

|r(τ, x)|dτ +
∫xi+1

x

|s(τ, x)|dτ

=
1

qi(θ)

{
2
(
αiB0 + βiB1

)
3

(
B −D

A

)3

+

(
4δiB2 − 2π(1 − θ)

(
γiB2 + B3

))
π

(
B −D

A

)2

+

(
8δiB2(1 − θ) − 2π

(
γiB2 + δiB3

)
(1 − θ)2

π

)(
B −D

A

)

− 2
(
αiB0 + βiB1

)
3

(
B +D

A

)3

+

(
4δiB2 − 2π(1 − θ)

(
γiB2 + δiB3

)
π

)(
B +D

A

)2

+

(
αiB0 + βiB1

)
θ3

3

+

(
8δiB2(1 − θ) − 2π

(
γiB2 + δiB3

)
(1 − θ)2

π

)(
B +D

A

)

+

(
2δiB2 − π(1 − θ)

(
γiB2 + δiB3

)
π

)
θ2

+

(
4δiB2(1 − θ) − π(1 − θ)2

(
γiB2 + δiB3

)
π

)

+

(
6δiB2 − π

(
γiB2 + δiB3

)
(1 − θ)

3π

)
(1 − θ)2

}
.

(3.8)

The above can be summarized as follows.

Theorem 3.1. The error of C1 rational trigonometric cubic function (2.1), forf(x) ∈ C3[x0, xn], in
each subinterval [xi, xi+1] is

∣∣f(x) − Si(x)
∣∣ ≤ 1

2

∥∥∥f3(x)
∥∥∥h3

i ci,

ci = max
0≤θ≤1

ω
(
δi, γi, θ

)
,

ω
(
δi, γi, θ

)
=

⎧⎪⎪⎨
⎪⎪⎩

maxω1
(
δi, γi, θ

)
, 0 ≤ γi ≤ 1, 0 ≤ θ ≤ 1,

maxω2
(
δi, γi, θ

)
, γi > 1 +

2
π
δi, 0 ≤ θ ≤ θ∗,

maxω3
(
δi, γi, θ

)
, θ∗ ≤ θ ≤ 1.

(3.9)
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4. Rational Trigonometric Bicubic Function

The rational trigonometric cubic function (2.1) is extended to a rational bicubic function
defined over a rectangular mesh D = [x0, xm] × [y0, yn]. Let d : a = x0 < x1 < · · · < xm = b
be a partition of [a, b] and d1 : c = y0 < y1 < · · · < yn = d be a partition of [c, d]. Rational
trigonometric bicubic function is defined over each rectangular patch [xi, xi+1]× [yj, yj+1], i =
0, 1, . . . , m − 1; j = 0, 1, . . . , n − 1 as follows:

S
(
x, y

)
= Si,j

(
x, y

)
= Ai(θ)F

(
i, j
)
ÂT

j

(
ϕ
)
, (4.1)

where

F
(
i, j
)
=

⎡
⎢⎢⎢⎢⎣

Fi,j Fi,j+1 F
y

i,j F
y

i,j+1

Fi+1,j Fi+1,j+1 F
y

i+1,j F
y

i+1,j+1

Fx
i,j Fx

i,j+1 F
xy

i,j F
xy

i,j+1

Fx
i+1,j Fx

i+1,j+1 F
xy

i+1,j F
xy

i+1,j+1

⎤
⎥⎥⎥⎥⎦,

Ai(θ) =
[
a0(θ) a1(θ) a2(θ) a3(θ)

]
, Âj

(
ϕ
)
=
[
â0
(
ϕ
)

â1
(
ϕ
)

â2
(
ϕ
)

â3
(
ϕ
)]
,

a0(θ) =
αi,j(1 − sin(θ))3 + βi,j sin(θ)(1 − sin(θ))2

qi(θ)
,

a1(θ) =
γi,j cos(θ)(1 − cos(θ))2 + δi,j(1 − cos(θ))3

qi(θ)
,

a2(θ) =
2hiαi,j sin(θ)(1 − sin(θ))2

πqi(θ)
, a3(θ) =

−2hiδi,j cos(θ)(1 − cos(θ))2

πqi(θ)
,

qi(θ) = αi,j(1 − sin(θ))3 + βi,j sin(θ)(1 − sin(θ))2

+ γi,j cos(θ)(1 − cos(θ))2 + δi,j(1 − cos(θ))3,

â0
(
ϕ
)
=

α̂i,j

(
1 − sin(ϕ)

)3 + β̂i,j sin
(
ϕ
)(
1 − sin(ϕ)

)2
qj
(
ϕ
) ,

â1
(
ϕ
)
=

γ̂i,j cos
(
ϕ
)(
1 − cos

(
ϕ
))2 + δ̂i,j

(
1 − cos(ϕ)

)3
qj
(
ϕ
) ,

â2
(
ϕ
)
=

2hjα̂i,j sin
(
ϕ
)(
1 − sin

(
ϕ
))2

πqj
(
ϕ
) , â3

(
ϕ
)
=

−2hjδ̂i,j cos
(
ϕ
)(
1 − cos

(
ϕ
))2

πqj
(
ϕ
) ,

qj
(
ϕ
)
= α̂i,j

(
1 − sin

(
ϕ
))3 + β̂i,j sin

(
ϕ
)(
1 − sin

(
ϕ
))2

+ γ̂i,j cos
(
ϕ
)(
1 − cos

(
ϕ
))2 + δ̂i,j

(
1 − cos

(
ϕ
))3

,

ϕ =
π

2

(
y − yj

hj

)
.

(4.2)

The entries of F(i, j) are the first and mixed partial derivatives at the four corner posi-
tions of the cubic patch.
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4.1. C1 Rational Trigonometric Bicubic Function

The rational trigonometric function defined in (3.2) interpolates the data values Fi,j and par-
tial derivatives Fx

i,j , F
y

i,j , F
xy

i,j defined at four corners of rectangular patch, that is,

S
(
xi , yj

)
= Fi,j ,

∂S
(
xi, yj

)
∂x

= Fx
i,j ,

∂S
(
xi, yj

)
∂y

= F
y

i,j ,
∂S
(
xi, yj

)
∂x∂y

= F
xy

i,j . (4.3)

Since each rectangular patch is bounded by four boundary curves so to blend the
rectangular patches to generate a C1 continuous surface, following sufficient conditions must
be satisfied along the four boundaries of each rectangular patch:

∂Si,j

(
xi+1, y

)
∂x

∣∣∣∣∣
θ=π/2

− ∂Si+1,j
(
xi+1, y

)
∂x

∣∣∣∣∣
θ=0

= 0,

∂Si−1,j
(
xi, y

)
∂x

∣∣∣∣∣
θ=π/2

− ∂Si,j

(
xi, y

)
∂x

∣∣∣∣∣
θ=0

= 0,

∂Si,j

(
x, yj+1

)
∂y

∣∣∣∣∣
ϕ=π/2

− ∂Si,j+1
(
x, yj+1

)
∂y

∣∣∣∣∣
ϕ=0

= 0,

∂Si,j−1
(
x, yj

)
∂y

∣∣∣∣∣
ϕ=π/2

− ∂Si,j

(
x, yj

)
∂y

∣∣∣∣∣
ϕ=0

= 0.

(4.4)

The entities hi, hj , Fi,j , Fx
i,j , F

y

i,j , F
xy

i,j , i = 0, 1, 2, . . . , m; j = 0, 1, 2, . . . , n are assumed fixed
then, we have the following observations: ∂Si,j(xi+1, y)/∂x|θ=π/2 − (∂Si+1,j(xi+1, y))/∂x|θ=0 = 0
if

πhiαi+1,jβi+1,jδ
2
i,jFi+1,j

(
α̂i,j − α̂i+1,j

)
= 0,

2πhihi+1α
2
i+1,jδ

2
i,jF

x
i+1,j

(
β̂i,j − β̂i+1,j

)
+ 4hihi+1hjα

2
i+1,jδ

2
i,jF

xy

i+1,j

(
α̂i,j − α̂i+1,j

)
= 0,

2πhihi+1α
2
i+1,jδ

2
i,jF

x
i+1,j+1

(
γ̂i,j − γ̂i+1,j

)
+ 4hihi+1hjα

2
i+1,jδ

2
i,jF

xy

i+1,j+1

(
δ̂i,j − δ̂i+1,j

)
= 0,

2α2
i+1,jhihi+1δ

2
i,jF

x
i+1,j+1

(
δ̂i,j − δ̂i+1,j

)
= 0,

(4.5)

then

(1) πhiαi+1,jβi+1,jδ
2
i,jFi+1,j(α̂i,j − α̂i+1,j) = 0 if α̂i,j = α̂i+1,j ,

(2) 2πhihi+1α
2
i+1,jδ

2
i,jF

x
i+1,j(β̂i,j−β̂i+1,j)+4hihi+1hjα

2
i+1,jδ

2
i,jF

xy

i+1,j(α̂i,j−α̂i+1,j) = 0 if α̂i,j = α̂i+1,j ,

β̂i,j = β̂i+1,j ,

(3) 2πhihi+1α
2
i+1,jδ

2
i,jF

x
i+1,j+1(γ̂i,j − γ̂i+1,j) + 4hihi+1hjα

2
i+1,jδ

2
i,jF

xy

i+1,j+1(δ̂i,j − δ̂i+1,j) = 0 if γ̂i,j =

γ̂i+1,j , δ̂i,j = δ̂i+1,j ,
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(4) 2α2
i+1,jhihi+1δ

2
i,jF

x
i+1,j+1(δ̂i,j − δ̂i+1,j) = 0 if δ̂i,j = δ̂i+1,j . Consider that

∂Si−1,j
(
xi, y

)
∂x

∣∣∣∣∣
θ=π/2

− ∂Si,j

(
xi, y

)
∂x

∣∣∣∣∣
θ=0

= 0 (4.6)

if

2α2
i,jhihi−1δ2

i−1,jF
x
i,j

(
α̂i−1,j − α̂i,j

)
= 0,

2πα2
i,jhihi−1δ2

i−1,jF
x
i,j

(
β̂i−1,j − β̂i,j

)
+ 4α2

i,jhihi−1δ2
i−1,jF

x
i,j

(
α̂i−1,j − α̂i,j

)
= 0,

4α2
i,jhihi−1δ2

i−1,jF
xy

i,j+1

(
δ̂i−1,j − δ̂i,j

)
+ 2πα2

i,jhihi−1δ2
i−1,jF

x
i,j

(
γ̂i−1,j − γ̂i,j

)
= 0,

2α2
i,jhihi−1δ2

i−1,jF
x
i,j+1

(
δ̂i−1,j − δ̂i,j

)
= 0,

(4.7)

then

(1) 2α2
i,jhihi−1δ2

i−1,jF
x
i,j(α̂i−1,j − α̂i,j) = 0 if α̂i−1,j = α̂i,j ,

(2) 2πα2
i,jhihi−1δ2

i−1,jF
x
i,j(β̂i−1,j − β̂i,j)+ 4α2

i,jhihi−1δ2
i−1,jF

x
i,j(α̂i−1,j − α̂i,j)) = 0 if β̂i−1,j = β̂i,j and

α̂i−1,j = α̂i,j ,

(3) 4α2
i,jhihi−1δ2

i−1,jF
xy

i,j+1(δ̂i−1,j − δ̂i,j)+2πα2
i,jhihi−1δ2

i−1,jF
x
i,j(γ̂i−1,j − γ̂i,j) = 0 if δ̂i−1,j = δ̂i,j and

γ̂i−1,j = γ̂i,j ,

(4) 2α2
i,jhihi−1δ2

i−1,jF
x
i,j+1(δ̂i−1,j − δ̂i,j) = 0 if δ̂i−1,j = δ̂i,j . Consider that

∂Si,j

(
x, yj+1

)
∂y

∣∣∣∣∣
ϕ=π/2

− ∂Si,j+1
(
x, yj+1

)
∂y

∣∣∣∣∣
ϕ=0

= 0 (4.8)

if

α̂2
i,j+1δ̂

2
i,jF

y

i,j+1

(
αi,j − αi,j+1

)
= 0,

2hiδ̂
2
i,jF

xy

i,j+1

(
αi,j − αi,j+1

)
= 0,

πα̂2
i,j+1δ̂

2
i,jF

y

i+1,j+1

(
γi,j − γi,j+1

)
+ 2hiα̂

2
i,j+1δ̂

2
i,jF

xy

i+1,j+1

(
δi,j − δi,j+1

)
= 0,

δ̂2
i,j α̂

2

i,j+1
F
y

i+1,j+1

(
δi,j − δi,j+1

)
= 0,

(4.9)

then

(1) α̂2
i,j+1δ̂

2
i,jF

y

i,j+1(αi,j − αi,j+1) = 0 if αi,j = αi,j+1,

(2) 2hiδ̂
2
i,jF

xy

i,j+1(αi,j − αi,j+1) = 0 if αi,j = αi,j+1,



10 Journal of Applied Mathematics

(3) πα̂2
i,j+1δ̂

2
i,jF

y

i+1,j+1(γi,j − γi,j+1) + 2hiα̂
2
i,j+1δ̂

2
i,jF

xy

i+1,j+1(δi,j − δi,j+1) = 0 if γi,j = γi,j+1, δi,j =
δi,j+1,

(4) δ̂2
i,j α̂

2

i,j+1
F
y

i+1,j+1(δi,j − δi,j+1) = 0 if δi,j = δi,j+1. Consider that

∂Si,j−1
(
x, yj

)
∂y

∣∣∣∣∣
ϕ=π/2

− ∂Si,j

(
x, yj

)
∂y

∣∣∣∣∣
ϕ=0

= 0 (4.10)

if

α̂2
i,j δ̂

2
i,j−1F

y

i,j

(
αi,j−1 − αi,j

)
= 0,

πα̂2
i,j δ̂

2
i,j−1F

y

i,j

(
βi,j−1 − βi,j

)
+ 2hiα̂

2
i,j δ̂

2
i,j−1F

xy

i,j

(
αi,j−1 − αi,j

)
= 0,

πα̂2
i,j δ̂

2
i,j−1F

y

i+1,j

(
γi,j−1 − γi,j

)
+ 2hiα̂

2
i,j δ̂

2
i,j−1F

xy

i,j

(
δi,j−1 − δi,j

)
= 0,

α̂2
i,j δ̂

2
i,j−1F

y

i+1,j

(
δi,j−1 − δi,j

)
= 0,

(4.11)

then

(1) α̂2
i,j δ̂

2
i,j−1F

y

i,j(αi,j−1 − αi,j) = 0 if αi,j−1 = αi,j ,

(2) πα̂2
i,j δ̂

2
i,j−1F

y

i,j(βi,j−1−βi,j)+2hiα̂
2
i,j δ̂

2
i,j−1F

xy

i,j (αi,j−1−αi,j) = 0 if βi,j−1 = βi,j and αi,j−1 = αi,j ,

(3) πα̂2
i,j δ̂

2
i,j−1F

y

i+1,j(γi,j−1−γi,j)+2hiα̂
2
i,j δ̂

2
i,j−1F

xy

i,j (δi,j−1−δi,j) = 0 if γi,j−1 = γi,j and δi,j−1 = δi,j ,

(4) α̂2
i,j δ̂

2
i,j−1F

y

i+1,j(δi,j−1 − δi,j) = 0 if δi,j−1 = δi,j .

The above discussion is summarized as follows.

Theorem 4.1. The piecewise bivariate rational cubic trigonometric function S(x, y) defined in (4.1)
is C1 over the whole domain if the shape design parameters satisfy the following relations:

(1) αi,j = αi, βi,j = βi, γi,j = γi, δi,j = δi, i = 0, 1, 2, . . . , m − 1 and for all values of j.

(2) α̂i,j = α̂j , β̂i,j = β̂j , γ̂i,j = γ̂j , δ̂i,j = δ̂j , j = 0, 1, 2, . . . , n − 1 and for all values of i.

5. Positivity Preserving Techniques

Preserving positivity is the essence of data visualization in many fields of study. There
are many physical situations where the entities only have meaning when their values are
positive. For instance, population density, probability distribution, amount of rain fall, and
resistance of an electric circuit are some of the areas where data values can not be negative.
Similarly, terrain modeling, formation of geological crust movement to predict earth quake
and volcanic eruptions, fluid dynamic, and carbon dating are few of the fields in which the
resulting surface is required to be positive. Therefore, it is customary that interpolating curve
and surface inherent the positivity of data. The subsequent subsections aim at developing
constraints on the shape parameters in the description of rational trigonometric function and
rational trigonometric bicubic function so that the resultant curve and surface are positive for
a positive data and visibly eye catching.
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5.1. Positive Curve Interpolation

The positive curve data is data set {(xi, fi), i = 0, 1, 2, . . . , n} satisfying the condition

fi > 0, i = 0, 1, 2, . . . , n − 1. (5.1)

The piecewise rational trigonometric cubic function defined in (2.1) inherits the
positive shape in curve if in each subinterval Ii = [xi, xi+1] the following relation is true

Si(x) > 0, i = 0, 1, 2, . . . , n − 1. (5.2)

The central idea is to impose conditions on free parameters to assure positivity. It can
be observed that strictly positive denomination qi(θ) can be guaranteed if

αi > 0, βi > 0, γi > 0, δi > 0. (5.3)

Thus, the positivity of Si(x) = pi(θ)/qi(θ) depends on the positivity of the trigono-
metric cubic polynomial pi(θ), and the difficulty level only reduces to the determination of
suitable values of αi, βi, γi and δi; for which the polynomial pi(θ) > 0.

pi(θ) > 0 if the coefficients Ai, i = 0, 1, 2, 3, of trigonometric basis function are positive.
Positivity of these coefficients yields the following result:

βi >
−2hidiαi

πfi
, γi >

2hidi+1δi
πfi+1

. (5.4)

The above discussion can be summarized as follows.

Theorem 5.1. The C1 piecewise rational trigonometric cubic function preserve the positivity of
positive data if in each subinterval Ii = [xi, xi+1], the parameters βi and γi satisfy the following
sufficient conditions:

βi > Max
{
0,

−2hidiαi

πfi

}
,

γi > Max
{
0,

2hidi+1δi
πfi+1

}
.

(5.5)

The above constraints can be rearranged as follows:

βi = ui +Max
{
0,

−2hidiαi

πfi

}
, ui > 0,

γi = vi +Max
{
0,

2hidi+1δi
πfi+1

}
, vi > 0.

(5.6)

Proof . The Theorem 5.1 can be easily established by combining (5.3) and (5.4).
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5.2. C1 Positive Surface Interpolation

Let {Fi,j : i = 0, 1, 2, . . . , m; j = 0, 1, 2, . . . , n} be the positive data, that is, Fi,j > 0, i =
0, 1, 2, . . . , m; j = 0, 1, 2, . . . , n. The aim is to construct a C1 rational trigonometric bicubic
function S(x, y) on D = [a, b] × [c, d] such that

S
(
xi, yj

)
= Fi,j , S

(
x, y

)
> 0 for all

(
x, y

) ∈ D. (5.7)

The C1 rational trigonometric bicubic function S(x, y) is simplified to the following
form

S
(
x, y

)

=
ai,j(1 − sin(θ))3 + bi,j sin(θ)(1 − sin(θ))2 + ci,j cos(θ)(1 − cos(θ))2 + di,j(1 − cos(θ))3

αi(1 − sin(θ))3 + βi sin(θ)(1 − sin(θ))2 + γi cos(θ)(1 − cos(θ))2 + δi(1 − cos(θ))3
,

(5.8)

with

ai,j =
(1 − sin(θ))3

qj
(
ϕ
) {(

1 − sin
(
ϕ
))3

A0 + sin
(
ϕ
)(
1 − sin

(
ϕ
))2

A1

+ cos
(
ϕ
)(
1 − cos

(
ϕ
))2

A2 +
(
1 − cos

(
ϕ
))3

A3

}
,

A0 = αiα̂jFi,j , A1 = αiβ̂jFi,j + 2hjαiα̂jF
y

i,j , A2 = αiγ̂jFi,j+1 − 2hjαiδ̂jF
y

i,j+1,

A3 = αiδ̂jFi,j+1,

bi,j =
sin(θ)(1 − sin(θ))2

qj
(
ϕ
) {(

1 − sin
(
ϕ
))3

E0 + sin
(
ϕ
)(
1 − sin

(
ϕ
))2

E1

+cos
(
ϕ
)(
1 − cos

(
ϕ
))2

E2 +
(
1 − cos

(
ϕ
))3

E3

}
,

E0 = βiα̂jFi,j + 2hiαiα̂jF
x
i,j ,

E1 = βiβ̂jFi,j+1 + 2hiαiβ̂jF
x
i,j + 2hj

(
βiδ̂jF

y

i,j + 2hiαiα̂jF
xy

i,j

)
,

E2 = βiγ̂jFi,j+1 + 2hiαiγ̂jF
x
i,j+1 − 2hj

(
βiδ̂jF

y

i,j+1 + 2hiαiδ̂jF
xy

i,j+1

)
,

E3 = βiδ̂jFi,j+1 + 2hiαiδ̂jF
x
i,j+1,

ci,j =
cos(θ)(1 − cos(θ))2

qj
(
ϕ
) {(

1 − sin
(
ϕ
))3

C0 + sin
(
ϕ
)(
1 − sin

(
ϕ
))2

C1

+ cos
(
ϕ
)(
1 − cos

(
ϕ
))2

C2+
(
1 − cos

(
ϕ
))3

C3

}
,
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C0 = βiα̂jFi,j + 2hiαiα̂jF
x
i,j ,

C1 = γiβ̂jFi+1,j+1 − 2hiδiβ̂jF
x
i+1,j+1 + 2hj

(
γiα̂jF

y

i+1,j − 2hiδiα̂jF
xy

i+1,j

)
,

C2 = γiγ̂jFi+1,j+1 − 2hiδiγ̂jF
x
i+1,j+1 − 2hj

(
γiδ̂jF

y

i+1,j+1 − 2hiδiδ̂jF
xy

i+1,j+1

)
,

C3 = γiδ̂jF
y

i+1,j+1 − 2hiδiδ̂jF
xy

i+1,j+1,

di,j =
(1 − cos(θ))3

qj
(
ϕ
) {(

1 − sin
(
ϕ
))3

D0 + sin
(
ϕ
)(
1 − sin

(
ϕ
))2

D1

+ cos
(
ϕ
)(
1 − cos

(
ϕ
))2

D2 +
(
1 − cos

(
ϕ
))3

D3

}
,

D0 = δiα̂jFi+1,j , D1 = δiβ̂jFi+1,j + 2hjδiα̂jF
y

i+1,j ,

D2 = δiγ̂jFi+1,j+1 − 2hjδiδ̂jF
y

i+1,j+1, D3 = δiδ̂jFi+1,j+1.

(5.9)

Since αi, βi, γi, δi, α̂j , β̂j , γ̂j , δ̂j are assumed positive real numbers and 0 ≤ θ ≤ π/2,
0 ≤ ϕ ≤ π/2, so S(x, y) > 0 if

ai,j > 0, bi,j > 0, ci,j > 0, di,j > 0. (5.10)

ai,j > 0 if

Ai > 0, i = 0, 1, 2, 3. (5.11)

Ai > 0, i = 0, 1, 2, 3, if

β̂j >
−2hjα̂jF

y

i,j

πFi,j
, γ̂j >

2hjδ̂jF
y

i,j+1

πFi,j+1
. (5.12)

Similarly, bi,j > 0 if

Ei > 0, i = 0, 1, 2, 3. (5.13)

Ei > 0, i = 0, 1, 2, 3, if

γ̂j >
2hjδ̂jF

y

i,j+1

πFi,j+1
,

βi > Max{Cd0, Cd1, Cd2, Cd3, Cd4},
(5.14)
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with

Cd0 =
−2hjα̂jF

y

i,j

πFi,j
, Cd1 =

−2hiαiF
x
i,j

πFi,j
, Cd2 =

−2hiαiF
x
i,j+1

πFi,j+1
,

Cd3 =
−2hiαi

(
πβ̂jF

x

i,j
+ 2hjα̂jF

xy

i,j

)

π2Fi,j β̂j + 2πhjα̂jF
y

i,j

, Cd4 =
−2hiαi

(
πγ̂jF

x
i,j+1 − 2hjδ̂jF

xy

i,j+1

)

π2Fi,j+1γ̂j − 2πhjδ̂jF
y

i,j+1

.

(5.15)

Similarly, ci,j > 0, implies the following constraints:

Ci > 0, i = 0, 1, 2, 3. (5.16)

Ci > 0, i = 0, 1, 2, 3, if

β̂j >
−2hjα̂jF

y

i+1,j

πFi+1,j
,

γi > Max{Cd5, Cd6, Cd7, Cd8, Cd9},
(5.17)

where

Cd5 =
2hjδ̂jF

y

i+1,j+1

πFi+1,j+1
, Cd6 =

−2hiδiF
x
i+1,j

πFi+1,j
, Cd7 =

2hiδiF
x
i+1,j+1

πFi+1,j+1
,

Cd8 =
2hiδi

(
πβ̂jF

x

i+1,j + 2hjα̂jF
xy

i+1,j

)

π2Fi+1,j β̂j + 2πhjα̂jF
y

i+1,j

, Cd9 =
2hiδi

(
πγ̂jF

x
i+1,j+1 − 2hjδ̂jF

xy

i+1,j+1

)

π2Fi+1,j+1γ̂j − 2πhjδ̂jF
y

i+1,j+1

,

(5.18)

and finally, di,j > 0 if

Di > 0, i = 0, 1, 2, 3. (5.19)

Di > 0, i = 0, 1, 2, 3, if

β̂j >
−2α̂jhjF

y

i+1,j

πFi+1,j
, γ̂j >

2δ̂jhjF
y

i+1,j+1

πFi+1,j+1
. (5.20)

The above conditions can be summarized as follows.
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Theorem 5.2. The C1 piecewise rational trigonometric bicubic interpolant S(x, y) defined over the
rectangular meshD = [x0, xn]× [y0, ym], in (5.8), is positive if the following sufficient conditions are
satisfied

S
(
xi, yj

)
= Fi,j, i = 0, 1, 2, . . . , m; j = 0, 1, 2 . . . , n,

αi > 0, α̂j > 0, δi > 0, δ̂j > 0,

β̂j > Max

⎧⎨
⎩0,

−2hjα̂jF
y

i,j

πFi,j
,
−2hjα̂jF

y

i+1,j

πFi+1,j

⎫⎬
⎭,

γ̂j > Max

⎧⎨
⎩0,

2hjδ̂jF
y

i,j+1

πFi,j+1
,
2hjδ̂jF

y

i+1,j+1

πFi+1,j+1

⎫⎬
⎭,

βi > Max{0, Cd0, Cd1, Cd2, Cd3, Cd4},
γi > Max{0, Cd5, Cd6, Cd7, Cd8, Cd9},

(5.21)

where Cd0, Cd1, Cd2, Cd3, Cd4, Cd5, Cd6, Cd7, Cd8, and Cd9 have been defined in Section 5.

Proof. By combining (5.12)–(5.20), Theorem 5.2 can be easily obtained.

6. Numerical Examples

This section exemplifies the curve and surface scheme for positive data developed in Sections
4 and 5. The C1 rational trigonometric cubic function (2.1) is first used to interpolate the
positive data sets taken in Tables 1 and 2, respectively. Arbitrary values are assigned to free
parameters and resulting curves are shown in Figures 1 and 3, respectively. It is clear from
Figures 1 and 3 that rational trigonometric cubic function does not preserve the shape of
data for arbitrary values of free parameters. The positive curves for the same data sets are
produced in Figures 2 and 4 by the rational positivity preserving surface scheme developed
in Section 5.1.

The 3D positive data set in Tables 3 and 4 are generated from the functions F(x, y) =
x2 + xy+y2 + 0.1 and F(x, y) = x2+y2, respectively.

Figure 5 and Figure 7 are produced by interpolating the positive data sets in Tables 3
and 4, respectively by C1 rational trigonometric bicubic function for arbitrary values of free
parameter. Positive surfaces in Figures 6 and 8 are produced by interpolating the same data
by the positivity preserving scheme developed in Section 5.2.

7. Conclusion

In recent years, the trigonometric curves are attaining considerable importance due to
their trigonometric basis functions which provide them the opportunity to construct conics,
cylinders, surface of revolution, catenary, and so on. Han [5] used B-spline representation
of cubic trigonometric curve with shape parameter for shape designing. In this paper, a
Hermite form of C1 rational trigonometric function is introduced. The developed interpolant
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Figure 1: C1 rational trigonometric cubic function with αi = 0.5, βi = 1.0, γi = 0.5, and δi = 1.0.
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Figure 2: C1 positive rational trigonometric cubic function with αi = 0.5, δi = 1.0.
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Figure 3: C1 rational trigonometric cubic function with αi = 0.5, βi = 1.0, γi = 0.5, and δi = 1.0.
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Figure 4: C1 rational trigonometric cubic function with αi = 0.5, δi = 1.0.



Journal of Applied Mathematics 17

0 1 2 3
012

0

10

20

30

−10

−1 −2 −3 −1−2−3y-axis
x-axis

z
-a
xi
s

3

Figure 5: C1 rational trigonometric bicubic function with αi = 8, βi = 8, γi = 8, δi = 8, α̂j = 4, β̂j = 4, γ̂j =
4, and δ̂j = 4.
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Figure 6: C1 positive rational trigonometric bicubic function with αi = 8, δi = 8, α̂j = 8, and δ̂j = 8.
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Figure 7: C1 rational trigonometric bicubic function with αi = 7, βi = 7, γ i = 7, δi = 7, α̂j = 3, β̂j = 3, γ̂j =
3, and δ̂j = 3.
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Figure 8: C1 positive rational trigonometric bicubic function with αi = 6, δi = 6, α̂j = 6, and δ̂j = 6.
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Table 1: A 2D positive data set.

x 1 3 8 10 11 12 16
y 14 2 0.8 0.65 0.75 0.70 0.69

Table 2: A 2D positive data set.

x 0.1 6 10 28
y 4 0.1 15 25

Table 3: A 3D positive data set.

y
x

−3 −2 −1 0 1 2 3
−3 27.1 19.1 13.1 9.1 7.1 7.1 9.1
−2 19.1 12.1 7.1 4.1 3.1 4.1 7.1
−1 13.1 7.1 3.1 1.1 1.1 3.1 7.1
0 9.1 4.1 1.1 0.1 1.1 4.1 9.1
1 7.1 3.1 1.1 1.1 3.1 7.1 13.1
2 7.1 4.1 3.1 4.1 7.1 12.1 19.1
3 9.1 7.1 7.1 9.1 13.1 19.1 27.1

Table 4: A 3D positive data set.

y
x

−3 −2 −1 0 1 2 3
−3 18 13 10 9 10 13 18
−2 13 8 5 4 5 8 13
−1 10 5 2 1 2 5 10
0 9 4 1 0 1 4 9
1 10 5 2 1 2 5 10
2 13 8 5 4 5 8 13
3 18 13 10 9 10 13 18

involves four free parameters in each subintervals. Constraints are developed on two of
these parameters to preserve positive shape of data, while the remaining was free for shape
modification. The developed C1 interpolant is extended to C1 rational trigonometric bicubic
interpolant for the treatment positive surface data. It is observed that error of developed
interpolant is of order three same as the polynomial interpolant. The surface interpolation
scheme developed in this paper is C1, whereas in [8, 9] it was C0 only. Moreover, the C1

continuity of curve and surface data interpolant does constrain step length.
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