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We investigate the global existence of the delayed nonlinear evolutionary equation ∂tu + Au =
f(u(t), u(t−τ)). Our work space is the fractional powers spaceXα. Under the fundamental theorem
on sectorial operators, we make use of the fixed-point principle to prove the local existence and
uniqueness theorem. Then, the global existence is obtained by Gronwall’s inequality.

1. Introduction

On the existence for solutions of evolutionary equations, there are many works and methods
[1–7]. For example, the fixed principle [1, 3–5, 7] and Galerkin approximations [2, 6]. They
are very classical methods to prove existence and uniqueness. Generally speaking, there are
four solution concepts. That is, weak solution, mild solution, strong solution, and classical
solution. We can obtain different types for different conditions. For instance [1], consider the
following inhomogeneous initial value problem:

u′(t) +Au = f(t), t > 0,

u(0) = x ∈ X,
(1.1)

where X is Banach space. If the nonlinearity f ∈ L1(0, T ;X), the initial value problem has a
unique mild solution. If the nonlinearity f is differentiable a.e. on [0, T] and f ′ ∈ L1(0, T ;X),
then for every x ∈ D(A) the initial value problem has a unique strong solution. Furthermore,
if the nonlinearity f ∈ L1(0, T ;X) is locally Hölder continuous, then the initial value problem
has a unique classical solution.
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In the article [5], the author considered scalar reaction-diffusion equations with small
delay

u′(t) −Δu = f(u(t), u(t − τ)). (1.2)

There the nonlinearity is assumed to be locally lipschitz and to satisfy the one-sided growth
estimates

f(u, v) ≤ (u + 1)γ(v), u ≥ 0,

f(u, v) ≥ − (|u| + 1)γ(v), u ≤ 0,
(1.3)

for some continuous γ . To prove existence, he treated the equation stepwise as a
nonautonomous undelayed parabolic partial differential equation on the time intervals
[(j−1)τ, jτ] by regarding the delayed values as fixed. His strategy was to mimic the results of
Henry [3, Theorem 3.3.3 and Corollary 3.3.5], but with his assumption of Hölder continuity
in replaced by p-integrability. Many authors had investigated the nondelayed one in [8–10].

In this paper, we consider the following nonlinear evolutionary equation with small
delay:

u′(t) +Au = f(u(t), u(t − τ)), t > 0,

u|[−τ,0] = ϕ(t).
(1.4)

Under the hypothesis of (A1), (A2), and (A3) (see Section 2), we firstly make use of the fixed
principle to prove the local existence and uniqueness theorem. Then we obtain the global
existence and uniqueness by Gronwall inequality. In the whole paper, our work space is
fractional powers space Xα. Its definition can be referred to [1, 3, 4].

2. Preliminaries

In this section, we will give some basic notions and facts. Firstly, basic assumptions are listed.

(A1) Let A be a positive, sectorial operator on a Banach Space X. e−At is an analytic
semigroup generated by −A. Fractional powers operator Aα is well defined.
Fractional powers space Xα = D(Aα) with the graph norm ‖u‖α = ‖Aαu‖X . For
simplicity, we will denote ‖ · ‖X as ‖ · ‖.

(A2) For some 0 < α < 1, the nonlinearity f : Xα × Xα → X is locally Lipschitz in (u, v).
More precisely, there exists a neighborhood U such that for ui, vi ∈ U and some
constant L

∥
∥f(u1, v1) − f(u2, v2)

∥
∥ ≤ L(‖u1 − u2‖α + ‖v1 − v2‖α). (2.1)

(A3) The initial value ϕ(t) is Hölder continuous from [−τ, 0] to Xα.
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Definition 2.1. Let I be an interval. A function u is called a (classical) solution of (1.4) in the
space Xα provided that u : I → Xα is continuously differentiable on I with ∂tu ∈ C(I, X) and
satisfies (1.4) everywhere in I.

Obviously the (classical) solution of (1.4) can be expressed by the variation of constant
formula

u(t) = e−Atx +
∫ t

0
e−A(t−s)f(u(s), u(s − τ))ds, for t ≥ 0, (2.2)

where we let ϕ(0) = x. Next we come to the main theorem on analytic semigroup which is
extremely important in the study of the dynamics of nonlinear evolutionary equations [4].

Theorem 2.2 (fundamental theorem on sectorial operators). Let A be a positive, sectorial
operator on a Banach SpaceX and e−At be the analytic semigroup generated by −A. Then the following
statements hold.

(i) For any α ≥ 0, there is a constant Cα > 0 such that for all t > 0

∥
∥
∥Aαe−At

∥
∥
∥
L(X)

≤ Cαt
−αe−at, (a > 0). (2.3)

(ii) For 0 < α ≤ 1, there is a constant Cα > 0 such that for t ≥ 0 and x ∈ D(Aα)

∥
∥
∥e−Atx − x

∥
∥
∥ ≤ Cαt

α‖Aαx‖. (2.4)

(iii) For every α ≥ 0, there is a constant Cα > 0 such that for all t > 0 and x ∈ X

∥
∥
∥

(

e−A(t+h) − e−At
)

x
∥
∥
∥
α
≤ Cα|h|t−(1+α)‖x‖. (2.5)

Lemma 2.3 (Gronwall’s equality, [2–4]). Let v(t) ≥ 0 and be continuous on [t0, T]. If there exists
positive constants a, b, α (α < 1) such that for t ∈ [t0, T]

v(t) ≤ a + b

∫ t

t0

(t − s)α−1v(s)d, (2.6)

then there exists positive constant M such that for t ∈ [t0, T]

v(t) ≤ Ma. (2.7)

3. Main Results

Theorem 3.1. Suppose (A1), (A2), and (A3) hold. Then there exists a sufficiently small T > 0 such
that (1.4) has a unique solution on [−τ, T].
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Proof. For convenience, we still denote ϕ(0) = x. Select δ > 0 and construct set

V = {(u, v) | ‖u − x‖α ≤ δ, ‖v − x‖α ≤ δ}. (3.1)

Let B = ‖f(x, x)‖, choose sufficient small T < τ such that

∥
∥
∥

(

e−At − I
)

x
∥
∥
∥
α
≤ δ

2
, 0 ≤ t < T, (3.2)

Cα(B + 2Lδ)
∫T

0
u−αe−audu ≤ δ

2
. (3.3)

Let Y be the Banach space C([−τ, T];X)with the usual supremum norm which we denote by
‖ · ‖Y . Let S be the nonempty closed and bounded subset of Y defined by

S =
{

y : y ∈ Y,
∥
∥y(t) −Aαx

∥
∥ ≤ δ

}

. (3.4)

On Swe define a mapping F by

Fy(t) =

⎧

⎪⎨

⎪⎩

e−tAAαx +
∫ t

0
Aαe−(t−s)Af

(

A−αy(s), A−αy(s − τ)
)

ds, 0 < t < T,

Aαϕ(t), −τ ≤ t ≤ 0.
(3.5)

Next we will utilize the contraction mapping theorem to prove the existence of fixed point. In
order to complete this work, we need to verify that F maps S into itself and F is a contraction
mapping on S with the contraction constant ≤1/2.

It is easy to see from (3.4) and (3.5) that for −τ ≤ t ≤ 0, F : S → S. For 0 < t < T ,
considering (2.1), (2.3), (3.2), and (3.3), we obtain

∥
∥Fy(t) −Aαx

∥
∥ ≤

∥
∥
∥e−tAAαx −Aαx

∥
∥
∥ +

∫ t

0

∥
∥
∥Aαe−(t−s)Af

(

A−αy(s), A−αy(s − τ)
)
∥
∥
∥ds

≤
∥
∥
∥e−tAAαx −Aαx

∥
∥
∥ +

∫ t

0

∥
∥
∥Aαe−(t−s)Af

(

A−αy(s), A−αy(s − τ)
) − f(x, x)

∥
∥
∥ds

+
∫ t

0

∥
∥
∥Aαe−(t−s)Af(x, x)

∥
∥
∥ds

≤ δ

2
+ Cα(2Lδ + B)

∫ t

0
(t − s)−αe−a(t−s)ds

≤ δ

2
+ Cα(2Lδ + B)

∫T

0
u−αe−audu

≤ δ.

(3.6)
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Therefore F : S → S. Furthermore if y1, y2 ∈ S then from (3.3) and (3.5)

∥
∥Fy1(t) − Fy2(t)

∥
∥

≤
∫ t

0

∥
∥
∥Aαe−(t−s)A

[

f
(

A−αy1(s), A−αy1(s − τ)
) − f

(

A−αy2(s), A−αy2(s − τ)
)]
∥
∥
∥ds

≤
∫ t

0

∥
∥
∥Aαe−(t−s)A

∥
∥
∥

∥
∥
[

f
(

A−αy1(s), A−αy1(s − τ)
) − f

(

A−αy2(s), A−αy2(s − τ)
)]∥
∥ds

≤
∫ t

0
Cα(t − s)−αe−a(t−s)L

∥
∥y1(s) − y2(s)

∥
∥ds

≤ CαL

∫T

0
u−αe−auds · ∥∥(y1 − y2

)∥
∥
Y

≤ 1
2
∥
∥
(

y1 − y2
)∥
∥
Y ,

(3.7)

which implies that

∥
∥Fy1(t) − Fy2(t)

∥
∥
Y ≤ 1

2
∥
∥
(

y1 − y2
)∥
∥
Y . (3.8)

By the contraction mapping theorem the mapping F has a unique fixed point y ∈ S. This
fixed point satisfies the following:

y(t) = e−tAAαx +
∫ t

0
Aαe−(t−s)Af

(

A−αy(s), A−αy(s − τ)
)

ds, 0 < t < T, (3.9)

y(t) = Aαϕ(t), −τ ≤ t ≤ 0. (3.10)

From (2.1) and the continuity of y it follows that t → f(A−αy(t), A−αy(t − τ)) is
continuous on [0, T] and a fortiori bounded on this interval. Let

∥
∥f

(

A−αy(t), A−αy(t − τ)
)∥
∥ ≤ N. (3.11)

Next wewant to show that t → f(A−αy(t), A−αy(t−τ)) is locally Hölder continuous on (0, T).
To this end, we show first that the solution y of (3.9) is locally Hölder continuous on (0, T).
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Select [t0, t1] ⊂ (0, T), t0 ≤ t < t + h ≤ t1 such that

∥
∥y(t + h) − y(t)

∥
∥ ≤

∥
∥
∥

(

e−hA − I
)

Aαe−tAx
∥
∥
∥

+
∫ t

0

∥
∥
∥

(

e−hA − I
)

Aαe−(t−s)Af
(

A−αy(s), A−αy(s − τ)
)
∥
∥
∥ds

+
∫ t+h

t

∥
∥
∥Aαe−(t+h−s)Af

(

A−αy(s), A−αy(s − τ)
)
∥
∥
∥ds

= I1 + I2 + I3.

(3.12)

Considering (2.3) and (2.4), we select β ∈ (0, 1 − α) such that

I1 ≤ Cβh
β
∥
∥
∥Aα+βe−tAx

∥
∥
∥

≤ Cβh
βCα+βt

−(α+β)‖x‖

≤ M1h
β,

I2 ≤ NCβh
β

∫ t

0

∥
∥
∥Aα+βe−(t−s)A

∥
∥
∥ds

≤ NChβ

∫ t

0
(t − s)−(α+β)ds

≤ M2h
β,

I3 ≤ NCα

∫ t+h

t

(t + h − s)−αds

=
NCα

1 − α
h1−α

≤ M3h
β.

(3.13)

Synthesizing (3.12) and (3.13), we get

∥
∥y(t + h) − y(t)

∥
∥ ≤ Chβ, t ∈ [t0, t1] ⊂ (0, T). (3.14)

So we proved the solution y of (3.9) is locally Hölder continuous on (0, T). Furthermore, in
view of (2.1)we have

∥
∥f

[

A−αy(t + h), A−αy(t + h − τ)
] − f

[

A−αy(t), A−αy(t − τ)
]∥
∥

≤ L
(∥
∥y(t + h) − y(t)

∥
∥ +

∥
∥y(t + h − τ) − y(t − τ)

∥
∥
)

≤ LChβ +
∥
∥Aαϕ(t + h − τ) −Aαϕ(t − τ)

∥
∥

≤ Mhγ.

(3.15)
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Let y be the solution of (3.9) and (3.10) and f̃(t) = f(A−αy(t), A−αy(t − τ)). In view of
locally Hölder continuous on (0, T) of f̃(t), consider the inhomogeneous initial value problem

u′(t) +Au = f̃(t), 0 < t < T,

u(0) = x.
(3.16)

By Corollary 4.3.3 in [1], this problem has a unique solution and the solution is given by

u(t) = e−tAx +
∫ t

0
e−(t−s)Af

(

A−αy(s), A−αy(s − τ)
)

ds. (3.17)

Each term of (3.17) is inD(A) and a fortiori inD(Aα). Operating on both sides of (3.17)with
Aα we find

Aαu(t) = e−tAAαx +
∫ t

0
Aαe−(t−s)Af

(

A−αy(s), A−αy(s − τ)
)

ds. (3.18)

By (3.9) the right-hand side of (3.18) equals y(t) and therefore u(t) = A−αy(t). So for 0 < t < T ,
by (3.17) we have

u(t) = e−tAx +
∫ t

0
e−(t−s)Af(u(s), u(s − τ))ds. (3.19)

So u is a u ∈ C1(0, T ;X) solution of (1.4). The uniqueness of u follows readily from the
uniqueness of the solutions of (3.9) and (3.16), and the proof is complete.

Before giving our global existence theorem, we should first prove extended theorem
of solution.

Theorem 3.2 (extended theorem). Assume that (A1), (A2), and (A3) hold. And also assume that
for every closed bounded set B ⊂ U, the image f(B) is bounded in X. If u is a solution of (1.1) on
[−τ, Tmax), then either Tmax = +∞ or there exists a sequence tn → Tmax as n → +∞ such that
u(tn) → ∂U. (IfU is unbounded, the point at infinity is included in ∂U.)

Proof. Suppose Tmax < +∞, there exists a closed bounded B subset of U and τ0 < Tmax such
that for τ0 ≤ t < Tmaxu(t) ∈ B. We prove there exists x∗ ∈ B such that

lim
t→ T−

max

u(t) = x∗
(3.20)

in Xα, which implies the solution may be extended beyond time Tmax.
Now let

C = sup
{∥
∥f(u, v)

∥
∥, (u, v) ∈ B

}

. (3.21)

We show firstly that ‖u(t)‖β remains bounded as t → T−
max for any β ∈ [α, 1).
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Observe that if α ≤ β < 1, τ0 ≤ t < Tmax, in view of (2.3) and (3.19)we have

‖u(t)‖β ≤
∥
∥
∥Aβ−αe−tA

∥
∥
∥‖x‖α +

∫ t

0

∥
∥
∥Aβe−(t−s)A

∥
∥
∥

∥
∥f(u(s), u(s − τ))

∥
∥ds

≤ Cβ−αt−(β−α)‖x‖α + CβC

∫ t

0
(t − s)−βds

= Cβ−αt−(β−α)‖x‖α +
CβC

1 − β
t1−β

≤ M, 0 < τ0 ≤ t < Tmax.

(3.22)

Secondly, suppose τ0 ≤ t1 < t < Tmax, so

u(t) − u(t1) =
(

e−(t−t1)A − I
)

u(t1) +
∫ t

t1

e−(t−s)Af(u(s), u(s − τ))ds. (3.23)

From (2.3) and (2.4) we get

‖u(t) − u(t1)‖α ≤
∥
∥
∥

(

e−(t−t1)A − I
)

Aαu(t1)
∥
∥
∥ + C

∫ t

t1

∥
∥
∥Aαe−(t−s)A

∥
∥
∥ds

≤ Cβ−α(t − t1)β−α
∥
∥
∥Aβ−α+αu(t1)

∥
∥
∥ + CCα

∫ t

t1

(t − s)−αds

= Cβ−α(t − t1)β−α‖u(t1)‖β +
CCα

1 − α
(t − t1)1−αds

≤ C0(t − t1)β−α.

(3.24)

Thus (3.20) holds, and the proof is completed.

Theorem 3.3 (global existence and uniqueness). Assume that (A1), (A2), and (A3) hold. And for
all (u, v) ∈ Xα ×Xα, f satisfies

∥
∥f(u, v)

∥
∥ ≤ L(‖u‖α + ‖v‖α). (3.25)

Then, the unique solution of (1.4) exists for all t ≥ −τ .

Proof. We need to verify that ‖u(t)‖α is bounded when t → T−
max. As for 0 ≤ t < Tmax

u(t) = e−tAx +
∫ t

0
e−(t−s)Af(u(s), u(s − τ))ds. (3.26)
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Considering (3.25), we can obtain

‖u(t)‖α = ‖Aαu(t)‖

≤
∥
∥
∥e−tAAαx

∥
∥
∥ +

∫ t

0

∥
∥
∥Aαe−(t−s)A

∥
∥
∥L(‖u(s)‖α + ‖u(s − τ)‖α)ds

≤ C1‖x‖α + LCα

∫ t

0
(t − s)−α‖u(s)‖αds

+ LCα

∫ t

0
(t − s)−α‖u(s − τ)‖αds,

(3.27)

For

∫ t

0
(t − s)−αu(s − τ)ds s−τ=w=

∫ t−τ

−τ
(t − τ −w)−αu(w)dw. (3.28)

Case 1. If Tmax ≤ τ . Because u(t) = ϕ(t) for −τ ≤ t ≤ 0 and ϕ is Hölder continuous from
[−τ, 0] to Xα. Let

M = max
t∈[−τ,0]

∥
∥ϕ(t)

∥
∥, (3.29)

∫ t

0
(t − s)−α‖u(s − τ)‖αds =

∫ t−τ

−τ
(t − τ −w)−α

∥
∥ϕ(w)

∥
∥
αdw

≤ M

∫0

−τ
(t − τ −w)−αdw ≤ M

1 − α
t1−α

≤ M1, t ∈ [0, Tmax).

(3.30)

From (3.27), we immediately get

‖u(t)‖α ≤ a + b

∫ t

0
(t − s)−α‖u(s)‖αds. (3.31)

From Lemma 2.3, that is, Gronwall’s inequality, we find ‖u(t)‖α ≤ C.
Case 2. If Tmax > τ , still let

M = max
t∈[−τ,0]

∥
∥ϕ(t)

∥
∥, (3.32)
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because

∫ t

0
(t − s)−α‖u(s − τ)‖αds =

∫ t−τ

−τ
(t − τ −w)−α‖u(w)‖αdw

=
∫0

−τ
(t − τ −w)−α

∥
∥ϕ(w)

∥
∥
αdw +

∫ t−τ

0
(t − τ −w)−α‖u(w)‖αdw

≤ M

∫0

−τ
(t − τ −w)−αdw +

∫ t

0
(t − s)−α‖u(s)‖αds

≤ M0 +
∫ t

0
(t − s)−α‖u(s)‖αds.

(3.33)

From (3.27) again, we obtain

‖u(t)‖α ≤ a0 + b0

∫ t

0
(t − s)−α‖u(s)‖αds. (3.34)

By Gronwall’s inequality again, we get ‖u(t)‖α ≤ C. This completes the proof of this theorem.
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