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A class of three-dimensional Gause-type predator-prey model is considered. Firstly, local stability
of equilibrium indicating the extinction of top-predator is obtained. Meanwhile, we construct a
Lyapunov function, which is an extension of the Lyapunov functions constructed by Hsu for
predator-prey system (2005), to give the global stability of the equilibrium. Secondly, we analyze
the stability of coexisting equilibrium of predator-prey system with time delay when the predator
catches the prey of pregnancy or with growth time. The delay can lead to periodic solutions, which
is consistent with the law of growth for birds and some mammals. Further, an explicit formula is
given which determines the stability of the bifurcating periodic solutions theoretically and the
existence of periodic solutions is displayed by numerical simulations.

1. Introduction

The predator-prey systems have been extensively studied. The most popular one is Lotka-
Volterra type model, which exhibits the well-known “paradox of enrichment” observed by
[1, 2] and so on. However, there is often the interaction amongmultiple populations in nature,
whose relationships are more complex than those in two populations. So the dynamics of
three-dimensional model may become more complicated [3–8].

In general, the relationship among three groups may be competitive, a predator and
two preys, two species catching the same prey, or a food chain. See [6, 9–11]. The Gause-type
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predator-prey food chain model was proposed by Freedman andWaltman in 1977 [5], which
can be described as follows:

dx(t)
dt

= xg(x) − yp(x),

dy(t)
dt

= y
[−h + ep(x)

] − zq(y),

dz(t)
dt

= z
[−s + dq(y)],

(1.1)

where x(t), y(t), and z(t) are the population densities of prey, predator, and top predator at
time t, respectively. g(x) is the intrinsic growth rate of prey; p(x) and q(y) are the specific
growth rates of predator and top predator; h, s > 0 are the death rates of y(t) and z(t);
e, d > 0 are the conversion rates for prey and predator. For (1.1), there have been a lot of
results, including the properties of equilibria and bifurcations. Freedman has argued that
the unique interior equilibrium exists and it is locally asymptotically stable [5]. In [7, 12], the
authors performed the normal forms for Hopf bifurcations and saddle node bifurcations near
a degenerate equilibrium and showed that the model within a certain parameter range could
take on chaos by numerical simulations. Many biologists believe that if the unique equilib-
rium of a predator-prey system is locally asymptotically stable, then it is globally asymptoti-
cally stable. For proving the global stability of the equilibrium, one can construct a Lyapunov
function. If we are able to construct a Lyapunov function for the system, then the global
stability is directly established from the modified LaSalle’s invariant principle [13]. Many
authors presented some globally qualitative analysis of solutions of system (1.1) (see [8, 14–
17]).

We assume that g(x), p(x), and q(y) satisfy the following conditions.

(H1) g(0) > 0, there exists K > 0 such that g(K) = 0 (K is called the carrying capacity of
prey species), and g ′(x) ≤ 0 for 0 ≤ x < K.

(H2) p(0) = 0 and p′(x) > 0.

(H3) q(0) = 0 and q′(y) > 0.

In general, there are three prototypes of monotone response functions which we often
refer to as Holling I, II, and III, respectively. In [9, 15], Chiu and Hsu considered the three-
dimensional food chain model that the response function is of Holling II; in [18], Hsu et al.
obtained a complete classification about the asymptotic behavior of the solutions of Gause-
type predator-prey system with Holling II function. In this paper, we discuss the general
Gause-type food chain models, in particular, the case of Holling’s type I and II functional
responses for predator and prey, respectively. So we let g(x) = α(1−x/K), p(x) = βx/(1+px),
and q(y) = ry. For simplicity, we nondimensionalize the system (1.1) with the following
scaling:

x → x

K
, t → αt, y → y, z → z. (1.2)
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Then the system (1.1) takes the form

dx(t)
dt

= x(1 − x) − axy

x + b
,

dy(t)
dt

= y
(
−l + cx

x + b
− rz

)
,

dz(t)
dt

= z
(−s + dy),

(1.3)

which satisfies x(0) = α1 > 0, y(0) = α2 > 0, and z(0) = α3 > 0, where

a =
β

pkα
, b =

1
pk

, r =
h

α
, c =

eβ

pα
, d = mr. (1.4)

Through simple analysis, we know that (1.3) has four equilibriums: E1(0, 0, 0),
E2(1, 0, 0), E3(x0, y0, 0), and E(x∗, y∗, z∗), where

x0 =
bl

c − l ,

y0 =
(1 − x0)(x0 + b)

a
,

x∗ =
(1 − b) +

√
(1 − b)2 + 4b − 4as/d

2
,

y∗ =
s

d
,

z∗ = − l
r
+

cx∗

r(x∗ + b)
.

(1.5)

There is no obvious biological significance for E1(0, 0, 0) and E2(1, 0, 0). The behavior of the
solutions of (1.3) can be very complicated (see [12, 19–21]). We know that the time delay
can be incorporated into (1.1) in three different ways: a time delay τ in the prey-specific
growth term g(x(t)), a time delay τ in the predator response term p(x(t)), a time delay τ
in the interaction term y(t)p(x(t)). The predators have a gestation period or reaction time
such as grass-hare-fox food chain. Thus, a time delay τ can be incorporated into the predator
response term p(x), that is,

dx(t)
dt

= x(1 − x) − ay x(t − τ)
x(t − τ) + b ,

dy(t)
dt

= y
(
−l + cx(t − τ)

x(t − τ) + b − rz
)
,

dz(t)
dt

= z
(−s + dy).

(1.6)
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In general, delay differential equations (DDEs) exhibit much more complicated dynamics
than ordinary differential equations (ODEs) such as the existence of Bogdanov-Takens bifur-
cation and even chaos (see [21, 22], etc.). The reason is that a time delay could destabilize a
stable equilibrium and induce bifurcations (see [23–26]). The cyclic phenomenon is very sig-
nificant for the stability and the balance of ecosystems. Using the delay as a bifurcation
parameter, we investigate the stability of the positive equilibrium and the existence of Hopf
bifurcation of the model with delay. It is shown that Hopf bifurcation can occur as the delay
crosses some critical values.

The rest of our paper is organized as follows: in Section 2, we construct a Lyapunov
function to prove the global stability of the equilibrium E3(x0, y0, 0) indicating the extinction
of top-predator. In Section 3, we first investigate the stability of coexisting equilibrium
E(x∗, y∗, z∗) and the existence of Hopf bifurcation of (1.6). To determine the dynamics of the
delay model, we study the characteristic equation of the linearized system at the equilibrium.
In Section 4, we derive an explicit formula for determining the stability of bifurcating periodic
solutions and the direction of Hopf bifurcation by the normal form method and the center
manifold theory. In Section 5, we carry out some numerical simulations to illustrate the results
obtained.

2. Global Stability of the Extinction of Top Predator

We consider the linearized system of (1.3) at E3. The characteristic equation at the equilibrium
E3 is given by

D(λ, τ) = λ3 − (m33 +m11 + n11)λ2 + (m11m33 + n11m33 −m12n21)λ +m12m33n21 = 0, (2.1)

where

m11 = 1 − 2x0, m12 = − ax0
x0 + b

< 0, m23 = −ry0 < 0,

m33 = −s + dy0, n11 = − aby0

(x0 + b)
2
< 0, n21 =

bcy0

(x0 + b)
2
> 0.

(2.2)

When m11 < 0 and m33 ≤ 0, E3 is locally asymptotically stable by the Routh-Hurwitz
criterion, so we have the following.

Lemma 2.1. If bl/(c− l) > 1/2 and (c− (b+ 1)l)/(c− l)2 ≤ as/bcd, E3(x0, y0, 0) is locally asymp-
totically stable.

To show that E3(x0, y0, 0) is globally stable, we construct a Lyapunov function:

V
(
x, y, z

)
=
∫x

x0

cp(ξ) − l
p(ξ)

dξ + a
∫y

y0

η − y0
η

dη +
ra

d
z. (2.3)
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It is obvious that V (x, y, z) ∈ C1(R3
+,R), V (x0, y0, 0) = 0, and V (x, y, z) > 0 for

(x, y, z) ∈ R
3
+ − {(x0, y0, 0)}. For simplicity, let g(x) = 1 − x, and p(x) = x/(b + x); then x′ = 0

if and only if y = xg(x)/ap(x); y′ = 0 if and only if x = x0, where x0 satisfies p(x0) = l/c:

V̇
(
x, y, z

)∣∣
(1.3) =

cp(x) − l
p(x)

[
xg(x) − ap(x)y] + a(y − y0

)(−l + cp(x) − rz) + ra

d
z
(−s + dy)

=
cp(x) − l
p(x)

[
xg(x) − ap(x)y + ap(x)y0 − ap(x)y0

]
+ a

(
y − y0

)[−l + cp(x)]

+ a
(
y − y0

)
(−rz) + ra

d
z
(−s + dy)

=
cp(x) − l
p(x)

[
xg(x) − ap(x)y0 + ap(x)

(
y0 − y

)]
+ a

(
y − y0

)[−l + cp(x)]

+ a
(
y − y0

)
(−rz) + ra

d
z
(−s + dy)

=
(
cp(x) − l)

[
xg(x)
p(x)

− ay0
]
+ razy0 − ras

d
z

=
c

a

(
p(x) − p(x0)

)[xg(x)
p(x)

− y0
]
+ raz

(
y0 − s

d

)
≤ 0.

(2.4)

We have y0 − s/d ≤ 0 whenm33 ≤ 0, and it follows that

V̇
(
x, y, z

)∣∣
(1.3) ≤ 0, for 0 < x < 1, y > 0, z > 0. (2.5)

Hence, we have the following theorem by Lasalle’s invariance principle [13].

Theorem 2.2. If bl/(c − l) > 1/2 and (c − (b + 1)l)/(c − l)2 ≤ as/bcd, E3(x0, y0, 0) is global
asymptotically stable.

3. Stability and Hopf Bifurcation of Coexisting Equilibrium

In this part, we mainly study the stability of the coexisting equilibrium E(x∗, y∗, z∗). If as/d ≤
b < 1, then E(x∗, y∗, z∗) is a unique nontrivial equilibrium of (1.6). We consider the linearized
system of (1.6) at E. The equation of Jacobian determinant at the equilibrium E is given by

∣∣∣∣∣∣∣∣

λ −m11 − n11e−λτ −m12 0

−n21e−λτ λ −m23

0 −m32 λ

∣∣∣∣∣∣∣∣

= 0, (3.1)
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where

m11 = 1 − 2x∗ − aby∗

(x∗ + b)2
, m12 = − ax∗

x∗ + b
< 0, m23 = −ry∗ < 0,

m32 = dz∗ > 0, n11 =
−aby∗

(x∗ + b)2
< 0, n21 =

bcy∗

(x∗ + b)2
> 0.

(3.2)

The eigenvalue λ satisfies the characteristic equation

D(λ, τ) = λ3 + a2λ2 + a1λ + a0 +
(
b2λ

2 + b1λ + b0
)
e−λτ = 0, (3.3)

where a2 = −m11, a1 = −m32m23 > 0, a0 = −m32m23m11, b2 = −n11 > 0, b1 = −m12m21 > 0, and
b0 = m32m23n11 > 0.

If m11 < 0, then all the eigenvalues of (3.3) have negative real parts when τ = 0 by the
Routh-Hurwitz criterion. So we have the following lemma.

Lemma 3.1. If as/d ≤ b < 1 and m11 < 0, then the coexisting equilibrium E(x∗, y∗, z∗) of (1.3) is
locally asymptotically stable.

It is known that E(x∗, y∗, z∗) is asymptotically stable if all roots of the corresponding
characteristic equation (3.3) have negative real parts. We study the distribution of the roots
of the transcendental equation (3.3) when τ /= 0. We assume that the equilibrium E(x∗, y∗, z∗)
of the ODE model (1.3) is stable; then we derive some conditions to ensure that the steady
state of the delay model is still stable.

Now we substitute λ = iω into (3.3):
(1)when ω = 0, D(0, τ) = a0 + b0 = m23m32(m11 + n11)/= 0;
(2) when ω/= 0, D(iω, τ) = (iω)3 + a2(iω)

2 + a1iω + a0 + (−b2ω2 + b1iω + b0)e−iωτ = 0.
Separating the real and imaginary parts gives

−a2ω2 + a0 − b2ω2 cosωτ + b1ω sinωτ + b0 cosωτ = 0,

−ω3 + a1ω + b2ω2 sinωτ + b1ω cosωτ − b0 sinωτ = 0.
(3.4)

We get

ω6 +
(
a22 − 2a1 − b22

)
ω4 +

(
a21 − 2a0a2 + 2b0b2 − b21

)
ω2 + a20 − b20 = 0. (3.5)

Let ω2 = l, P1 = a22 − 2a1 − b22, P2 = a21 − 2a0a2 + 2b0b2 − b21, and P3 = a20 − b20; then (3.5) becomes

l3 + P1l2 + P2l + P3 = 0. (3.6)

From Ruan and Wei [27], we have the following results on the distribution of roots of (3.6).
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Lemma 3.2. If one of the followings holds:

(a) P3 ≥ 0, P 2
1 − 3P2 < 0,

(b) P3 ≥ 0, P2 > 0, P1 > 0,

then (3.6) has no positive root.

Therefore, the real parts of all the eigenvalues of (3.3) are negative for all delay τ ≥ 0,
so we have the following.

Theorem 3.3. Suppose that

(a) as/d ≤ b < 1 andm11 < 0,

(b) either P3 ≥ 0, P 2
1 − 3P2 < 0 or P3 ≥ 0, P2 > 0, P1 > 0.

Then the equilibrium E(x∗, y∗, z∗) of the delay model (1.6) is absolutely stable; that is, E(x∗, y∗, z∗)
is asymptotically stable for all τ ≥ 0.

However, the stability of the steady state depends on the delay and the delay could
even induce oscillations if the conditions in Lemma 3.2 are not satisfied.

Lemma 3.4. Denote

h(l) = l3 + P1l2 + P2l + P3, l0 =
−P1 +

√
P1

2 − 3P2
3

. (3.7)

If one of the followings holds:

(a) P3 < 0,

(b) P3 ≥ 0, P2 < 0,

(c) P3 ≥ 0, l0 > 0, h(l0) ≤ 0,

then (3.6) has at least one positive root. This implies that the characteristic equation (3.3) has at least
a pair of purely imaginary roots.

Suppose that the (3.6) has positive roots. Without loss of generality, we assume that
it has three positive roots, denoted by l1, l2, and l3, respectively. Then (3.6) has three positive
roots ωi =

√
li (i = 1, 2, 3). Let τ (0)k be the unique root of (3.4) such that τ (0)k ωk ∈ [0, 2π). Also

denote

τ
(j)
k

= τ (0)
k

+
2jπ
ωk

, (3.8)

for k = 1, 2, 3.
So (±ωk, τ

(j)
k
) is the solution of (3.3). Clearly,

lim τ
(j)
k

= ∞, k = 1, 2, 3. (3.9)
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We can define

τ0 = τk0 = min τ (0)
k
, ω0 = ωk0 ; (3.10)

that is, ±iω0 are the purely imaginary roots of (3.3) for τ = τ0.
Denoting λ(τ) = α(τ) + β(τ) be the root of (3.3) satisfying α(τ0) = 0, ω(τ0) = ω0, we

have the following lemma.

Lemma 3.5. If h′(ω2
0)/= 0, one has (dReλ(τ)/dτ)|τ=τ0 > 0.

Proof. Assume that

h
(
ω2

0

)
= ω0

6 +
(
a22 − 2a1 − b22

)
ω0

4 +
(
a21 − 2a0a2 + 2b0b2 − b21

)
ω0

2 + a20 − b20; (3.11)

then

h′
(
ω2

0

)
= 3ω4

0 + 2
(
a22 − 2a1 − b22

)
ω2

0 +
(
a21 − 2a0a2 + 2b0b2 − b21

)
. (3.12)

Because

sign
[
dReλ(τ)

dτ

]∣∣∣∣
τ=τ0

= sign
[
dReλ(τ)

dτ

]−1∣∣∣∣∣
τ=τ0

,

[
dλ(τ)
dτ

]−1
=

(
3λ2 + 2a2λ + a1

)
+ (2b2λ + b1)e−λτ − τ

(
b2λ

2 + b1λ + b0
)
e−λτ

λ(b2λ2 + b1λ + b0)e−λτ

=

(
3λ2 + 2a2λ + a1

)
eλτ

λ(b2λ2 + b1λ + b0)
+

2b2λ + b1
λ(b2λ2 + b1λ + b0)

− τ

λ
,

(3.13)

we have

sign
[
dReλ(τ)

dτ

]−1∣∣∣∣∣
τ=τ0

= sign

[

Re

[(
3λ2 + 2a2λ + a1

)
eλτ

λ(b2λ2 + b1λ + b0)

]

τ=τ0

+ Re
[

2b2λ + b1
λ(b2λ2 + b1λ + b0)

]∣∣∣∣
τ=τ0

]

= sign

⎡

⎣
3ω4

0 + 2
(
a22 − 2a1 − b22

)
ω2

0 +
(
a21 − 2a0a2 + 2b0b2 − b21

)

b21ω
2
0 +

(
b0 − b2ω2

0

)2

⎤

⎦

= sign

⎡

⎣
h′
(
ω2

0

)

b21ω
2
0 +

(
b0 − b2ω2

0

)2

⎤

⎦

= sign
(
h′
(
ω2

0

))
.

(3.14)
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If h′(ω2
0)/= 0, then (dReλ(τ)/dτ)|τ=τ0 /= 0. There must be (dReλ(τ)/dτ)|τ=τ0 > 0. This

is because (3.3) has the positive real part roots as τ < τ0 if (dReλ(τ)/dτ)|τ=τ0 < 0. This
contradicts to the fact when τ ∈ [0, τ0) and E(x∗, y∗, z∗) is asymptotically stable.

By Lemma 3.5 we have the following theorem.

Theorem 3.6. Suppose that as/d ≤ b < 1 and m11 < 0. If Lemma 3.4 holds, then the equilibrium
E(x∗, y∗, z∗) of the delay model (1.6) is asymptotically stable when τ < τ0, and unstable when τ > τ0,
where τ0 is defined by (3.10). In addition, if h′(ω2

0)/= 0, then Hopf bifurcation occurs when τ = τ0.

4. Direction and Stability of Hopf Bifurcation

Let x1(t) = x(t) − x∗, x2(t) = y(t) − y∗, x3(t) = z(t) − z∗, Xi(t) = xi(τt)(i = 1, 2, 3), τ = τ0 + μ,
μ ∈ R, and

B =

⎛

⎜⎜
⎝

m11 −1 m12

0 0 m23

0 m32 0

⎞

⎟⎟
⎠, C =

⎛

⎜⎜
⎝

n11 0 0

n21 0 0

0 0 0

⎞

⎟⎟
⎠. (4.1)

The system (1.6) is transformed into a functional differential equation (FDE) in C =
C([−1, 0],R3) [28], defining

Lμ
(
φ
)
=
(
τ0 + μ

)
Bφ(0) +

(
τ0 + μ

)
Cφ(−1), (4.2)

where φ = (φ1, φ2, φ3)
T ∈ C([−1, 0],R3). And the nonlinear term is

h
(
μ, φ

)
=
(
τ0 + μ

)

⎛

⎜⎜⎜⎜⎜
⎝

−2φ2
1(0) −

2bn11
x∗ + b

φ2
1(−1)

−2φ2(0)φ3(0) − n21
y∗ φ2(0)φ1(−1) + 2n21

x∗ + b
φ2
1(−1)

2drφ2(0)φ3(0)

⎞

⎟⎟⎟⎟⎟
⎠
. (4.3)

Obviously μ = 0 is a Hopf bifurcation point. So the system (1.6) can transform into an abstract
functional differential equation:

v ˙(t) = Lμ(vt) + h
(
μ, vt

)
, (4.4)

where v(t) = (x1(t), x2(t), x3(t))
T ∈ R

3.
There exists a 3 × 3 matrix η(θ, μ) (−1 ≤ θ ≤ 0), whose elements are of bounded varia-

tion functions such that

Lμ
(
φ
)
=
∫0

−1

[
dη

(
θ, μ

)]
φ(θ), for φ ∈ C

(
[−1, 0],R3

)
. (4.5)
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In fact, we can choose

η
(
(θ), μ

)
=

⎧
⎪⎪⎪⎨

⎪⎪⎪⎩

(
τ0 + μ

)
B, θ = 0,

0, θ ∈ (−1, 0),
(
τ0 + μ

)
C, θ = −1.

(4.6)

Then (4.5) is satisfied. For φ ∈ C1([−1, 0],R3), we define

A
(
μ
)
φ(θ) =

⎧
⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎩

dφ(θ)
dθ

, θ ∈ [−1, 0),

∫0

−1

[
dη

(
ξ, μ

)]
φ(ξ), θ = 0,

R
(
μ
)
φ(θ) =

⎧
⎨

⎩

0, θ ∈ [−1, 0),
h
(
μ, φ

)
, θ = 0.

(4.7)

So (4.5) is equivalent to the following abstract equation:

ẋt = A
(
μ
)
xt + R

(
μ
)
xt, (4.8)

where x = (x1, x2, x3)
T and xt = x(t + θ) for θ ∈ [−1, 0].

For ψ ∈ C1([0, 1],R3∗), we define

A∗ψ(s) =

⎧
⎪⎪⎨

⎪⎪⎩

−dψ(s)
ds

, s ∈ (0, 1],
∫0

−1
ψ(−ξ)dη(ξ, 0), s = 0,

(4.9)

and a bilinear form:

〈
ψ(s), φ(θ)

〉
= ψ(0)φ(0) −

∫0

−1

∫θ

ξ=0
ψ(ξ − θ)dη(θ)φ(ξ)dξ, (4.10)

where η(θ) = η(θ, 0). Then A(0) and A∗ are adjoint operators. We know that ±iω0τ0 are
eigenvalues of A(0) and therefore they are also eigenvalues of A∗(0). The vectors q(θ) =
(1, α, β)Teiω0τ0θ (θ ∈ [−1, 0]) and q∗(s) = D(α∗, β∗, 1)eiω0τ0s(s ∈ [0, 1]) are the eigenvectors
of A(0) and A∗ corresponding to the eigenvalue iω0τ0 and −iω0τ0, respectively, satisfying
〈q∗(s), q(θ)〉 = 1, 〈q∗(s), q(θ)〉 = 0 with α = (iω0−m11)/m12, β = (iω0(iω0)−m11)/m23m12, α∗ =
((iω2

0) −m23m32)/m12m23, β∗ = −iω0/m23, and D = 1/(α∗ + αβ
∗
+ β − (α∗n11 + β

∗
n21)τ0eiω0τ0).
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Following the same algorithms as Hassard et al. [29], we can obtain the coefficients whichwill
be used to determine the important quantities:

g02 = 2Dτ0

⎡

⎢
⎣−2α∗ − 2rβ

∗
β + 2dαβ +

2
(
β
∗
n21 − α∗bn11

)

x∗ + b
e2iω0 − n21β

∗
α

y∗ eiω0

⎤

⎥
⎦,

g20 = 2Dτ0

⎡

⎢
⎣−2α∗ − 2rβ

∗
β + 2dαβ +

2
(
β
∗
n21 − α∗bn11

)

x∗ + b
e−2iω0 − n21β

∗
α

y∗ e−iω0

⎤

⎥
⎦,

g11 = 2Dτ0

⎡

⎢
⎣−2α∗ − 2rβ

∗
Re β + 2dReαβ +

2
(
β
∗
n21 − α∗bn11

)

x∗ + b
− n21β

∗
α

y∗ Reαeiω0

⎤

⎥
⎦,

g21 = 2Dτ0

[

− 4α∗W1
11(0) +

(
−2α∗ − 2rβ

∗
β
)
W1

20(0) +
(
2dα − 2rβ

∗)
W3

11(0)

+ 2dαW3
20(0) +

(
2β∗n21e−iω0

x∗ + b
− 2α∗n11e−iω0

x∗ + b
− 2αβ

∗
n21

y∗

)

W1
11(−1)

+

(
2β∗n21eiω0

x∗ + b
− 2α∗n11eiω0

x∗ + b
− 2αβ

∗
n21

y∗

)

W1
20(−1)

]

.

(4.11)

Since there areW20(θ) andW11(θ) in g21, we still need to compute them. From [29], we have

W20(θ) =
ig20
ω0τ0

q(θ) +
ig02

3ω0τ0
q(θ) + E1e

2iω0τ0θ. (4.12)

According to

[

2iω0τ0I −
∫0

−1
dη(θ)e2iω0θ

]

E1 = hz2 , (4.13)

where

hz2 =

⎛

⎜⎜⎜⎜⎜
⎝

−2α∗ − 2rβ
∗
β + 2αβd

2
(
β
∗
n21 − α∗bn11

)

x∗ + b
e−2iω0 − n21β

∗
α

y∗ e−iω0

0

⎞

⎟⎟⎟⎟⎟
⎠
, (4.14)
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we have E1 = (E(1)
1 , E

(2)
1 , E

(3)
1 )T , where E(i)

1 = 2Δ(i)
1 /Δ1 (i = 1, 2, 3) with

Δ1 = (2iω0 −m11)
(
−4ω2

0 −m23m32

)
,

Δ(1)
1 =

(
8ω2

0 + 2m32m23

)(
α∗ + rβ

∗
β − dαβ

)
+ 2m12iω0

⎛

⎜
⎝

2
(
β
∗
n21 − α∗bn11

)

x∗ + b

⎞

⎟
⎠e−2iω0

− n21β
∗
α

y∗ e−iω0 ,

Δ(2)
1 =

(
−4ω2

0 − 2m11iω0

)
⎛

⎜
⎝

2
(
β
∗
n21 − α∗bn11

)

x∗ + b

⎞

⎟
⎠e−2iω0 − n21β

∗
α

y∗ e−iω0 ,

Δ(3)
1 = (−m11m32 + 2m32iω0)

⎛

⎜
⎝

2
(
β
∗
n21 − α∗bn11

)

x∗ + b

⎞

⎟
⎠e−2iω0 − n21β

∗
α

y∗ e−iω0 .

(4.15)

And similarly,

W11(θ) = − ig11
ω0τ0

q(θ) +
ig11

ω0τ0
q(θ) + E2. (4.16)

According to

(∫0

−1
dη(θ)

)

E2 = −hzz, (4.17)

where

hzz =

⎛

⎜⎜⎜⎜⎜⎜
⎝

−2α∗ − 2rβ
∗
Re

{
β
}
+ 2dRe

{
αβ

}
+
2
(
β
∗
n21 − α∗bn11

)

x∗ + b

−n21β
∗

y∗ Re
{
αeiω0

}

0

⎞

⎟⎟⎟⎟⎟⎟
⎠

, (4.18)

we have E2 = (E(1)
2 , E

(2)
2 , E

(3)
2 )T , where E(i)

2 = 2Δ(i)
2 /Δ2 (i = 1, 2, 3) with

Δ2 = m23m32(m11 + n11),

Δ(1)
2 = −2m23m32

(

α∗ − rβ∗ Re{β} + 2dRe
{
αβ

}
+
β
∗
n21 − α∗bn11
x∗ + b

)

,

Δ(2)
2 = 0,
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Δ(3)
2 = −2n21m32

(

α∗ + rβ
∗
Re

{
β
} − dRe

{
αβ

}
+ 2dRe

{
αβ

}
+
β
∗
n21 − α∗bn11
x∗ + b

)

+m32(m11 + n11)
n21β

∗

y∗ Re
{
αeiω0

}
.

(4.19)

Consequently, gij can be expressed explicitly by the parameters and delay in the sys-
tem (4.2). Thus, we can compute the following values:

c1(0) =
i

2ω0τ0

(

g11g20 − 2
∣∣g11

∣∣2 −
∣∣g02

∣∣2

3

)

+
g21
2
,

μ2 = − Re(c1(0))
Re(λ′(τ0))

,

T2 = − Im c1(0) + μ2 Imλ′(τ0)
ω0τ0

,

β2 = 2Re(c1(0)),

(4.20)

which determine the properties of bifurcating periodic solutions at the critical value τ0. That
is, μ2 determines the direction of Hopf bifurcation: if μ2 > 0(μ2 < 0), then Hopf bifurcation at
τ0 is forward (or backward); β2 determines the stability of bifurcating periodic solutions: β2 <
0 (β2 > 0); the bifurcating periodic solution is orbitally asymptotically stable (unstable); T2
determines the period of the bifurcating periodic solutions: the period increases (decreases)
if T2 > 0 (T2 < 0).

5. Numerical Simulations

In order to check our conclusions, we perform some numerical simulations. We choose the
parameters as follows:

(1) a = 0.3232, b = 0.4017, c = 0.399, r = 0.282, s = 0.235, d = 0.303, and l = 0.015;

(2) a = 0.432, b = 0.6700, c = 0.32, r = 0.12, s = 0.235, d = 0.333, and l = 0.031.

Thus, all the conditions in Theorem 3.3 are satisfied. E(0.7013, 0.7755, 1.2312) with initial
value (0.48, 0.32, 0.25) for (1) and E(0.9037, 0.7057, 0.8022) with initial value (0.08, 0.02, 0.25)
for (2) are asymptotically stable for all τ > 0 (see Figure 1). From a biological sense, the prey,
predator, and top predator will have a short-term shock in the initial stage as the effect of τ .
But the population would tend to a steady level after a long period of time.

We choose another set of parameters which satisfies Theorem 3.6.
(3) τ = 8.6208, a = 0.6000, s = 0.3000, d = 0.6000, b = 0.3700, r = 0.2200, l = 0.1500, and

c = 0.3300.
By (3.10), we have τ0 = 15.7288,ω0 = 4.6133, and c1(0) = −0.0643+i0.0031. Theorem 3.6

indicates that the equilibrium of the delay model (1.6) is asymptotically stable when τ < τ0
(see Figure 2).



14 Journal of Applied Mathematics

0 100 200 300 400 500 600
0

0.5

1

1.5

2

2.5

3

3.5

(a)

0 100 200 300 400 500 600
0

0.5

1

1.5

2

2.5

(b)

Figure 1: E is asymptotically stable for all τ > 0.

0 500 1000 1500 2000 2500 3000

x

t

0.9

0.91

0.92

0.93

0.94

0.95

0.96

0.97

0.98

0.99

(a)

0 500 1000 1500 2000 2500 3000
0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

x

t

(b)

0 500 1000 1500 2000 2500 3000
0

0.05

0.1

0.15

0.2

0.25

0.3

0.35

0.4

x

t

(c)

0.2

0.25

0.3

0.35

0.4

1.5
1

0.5
0 0.2

0.4
0.6

0.8
1

x
y

z

(d)

Figure 2: E(0.9433, 0.5000, 0.2871) with initial value (0.985, 0.34, 0.4) is asymptotically stable when τ =
8.6208 < τ0 = 15.7288.

Hopf bifurcation occurs when τ = τ0, and the bifurcating periodic solution is orbitally
asymptotically for τ > τ0 (see Figure 3).

In addition, the periodic solution of system (1.6) still exists when τ is large and its am-
plitude is larger compared with the solution in Figure 3 (see Figure 4). The numerical results
of Figure 4 show that the global existence of periodic solutions is generated by the Hopf
bifurcation. How to explain the phenomenon theoretically needs further researches.
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Figure 3: A stable periodic orbit of system (1.6) when initial value is (0.985, 0.34, 0.4) and τ = 28.7206 >
τ0 = 15.7288.
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Figure 4: The stable periodic orbits of system (1.6) when τ = 420.7288 and τ = 890.7288 with parameters
given by (3).

6. Conclusion

In this paper, we analyze the dynamics of the equilibria of the extinction of top-predator and
coexistence for a class of three-dimensional Gause-type predator-prey model. We obtain that
the equilibrium of the extinction of top-predator is not only locally but also globally asymp-
totically stable for the certain parameters; introducing delay changes the stability of the co-
existing equilibrium and Hopf bifurcation occurs with the increase of τ . The existence of
periodic solutions for sufficiently large delay has been shown by numerical simulations.
We know that the population outbreak may happen for the species with periodic fluctuation.
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The outbreaks of pests and mice are famous. For example, the number of locusts is estimated
as many as 1.6 × 1010 and their weight is 5000 t, which appeared in a plague of locusts in
Somalia in 1957 [30]. Thus, it is of great significance to research multiple periodic solutions
of biological systems for controlling insect pests, preventing epidemics, and maintaining
ecological balance.
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