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The purpose of this paper is to investigate the problems of the well-posedness for a system
of mixed quasivariational-like inequalities in Banach spaces. First, we generalize the concept
of α-well-posedness to the system of mixed quasivariational-like inequalities, which includes
symmetric quasi-equilibrium problems as a special case. Second, we establish some metric
characterizations of α-well-posedness for the system of mixed quasivariational-like inequalities.
Under some suitable conditions, we prove that the α-well-posedness is equivalent to the existence
and uniqueness of solution for the system of mixed quasivariational-like inequalities. The
corresponding concept of α-well-posedness in the generalized sense is also considered for the
system of mixed quasivariational-like inequalities having more than one solution. The results
presented in this paper generalize and improve some known results in the literature.

1. Introduction

The classical notion of well-posedness for a minimization problem (MP) is due to Tykhonov
[1], which has already been known as the Tykhonov well-posedness. The so-called Tykhonov
well-posednessmeans the existence and uniqueness of solution, and the convergence of every
minimizing sequence toward the unique solution. Taking into account that in many practical
situations the solution may not be unique for a minimization problem, ones naturally intro-
duced the concept of well-posedness in the generalized sense, which means the existence of
minimizers and the convergence of some subsequence of every minimizing sequence toward
a minimizer. Obviously, the concept of well-posedness is inspired by numerical methods
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producing optimizing sequences for optimization problems. In the following years, the well-
posedness has receivedmuch attention because it plays a crucial role in the stability theory for
optimization problems. A large number of results about well-posedness have appeared in the
literature; see, for example, [2–10], where the work in [2, 3, 5, 7, 10] is for the class of scalar
optimization problems, and the work in [4, 6, 8, 11] is for the class of vector optimization
problems.

On the other hand, the concept of well-posedness has been generalized to other related
problems, such as variational inequalities [9, 12–22], Nash equilibrium problems [16, 23–25],
inclusion problems [12, 14, 26, 27], and fixed-point problems [12, 14, 26, 28, 29]. An initial
notion of well-posedness for variational inequalities is due to Lucchetti and Patrone [20].
They introduced the notion of well-posedness for variational inequalities and proved some
related results by means of Ekeland’s variational principle. Since then, many authors have
been devoted to generating the concept of well-posedness from the minimization problem
to various variational inequalities. Lignola and Morgan [19] introduced the parametric
well-posedness for a family of variational inequalities. Lignola [15] further introduced two
concepts of well-posedness and L-well-posedness for quasivariational-like inequalities and
derived some metric characterizations of well-posedness. At the same time, Del Prete et
al. [18] introduced the concept of α-well-posedness for a class of variational inequalities.
Recently, Fang et al. [14] generalized the concept of well-posedness to a class of mixed
variational inequalities in Hilbert spaces. They obtained some metric characterizations of its
well-posedness and established the links with the well-posedness of inclusion problems and
fixed-point problems. Furthermore, Ceng and Yao [12] generalized the results of Fang et al.
[14] to a class of generalized mixed variational inequalities in Hilbert spaces. Ceng et al.
[13] investigated the well-posedness for a class of mixed quasivariational-like inequalities in
Banach spaces. For the well-posedness of variational inequalities with functional constraints,
we refer to Huang and Yang [9] and Huang et al. [17]. In 2006, Lignola and Morgan [23]
presented the notion of α-well-posedness for the Nash equilibrium problem and gave some
metric characterizations of this type well-posedness. Petruşel et al. [29] and Llorens-Fuster
et al. [28] discussed the well-posedness of fixed-point problems for multivalued mappings in
metric spaces.

It is obvious that the equilibrium problem plays a very important role in the establish-
ment of a general mathematical model for a wide range of practical problems, which include
as special cases optimization problems, Nash equilibria problems, fixed-point problems,
variational inequality problems, and complementarity problems (see, e.g, [30, 31]), and has
been studied extensively and intensively. It is well known that each equilibrium problem can
equivalently be transformed into a minimizing problem by using gap function, and some
numerical methods have been extended to solve the equilibrium problem (see, e.g., [32]).
This fact motivates the researchers to study the well-posedness for equilibrium problems.
Recently, Fang et al. [33] introduced the concepts of parametric well-posedness for equilib-
rium problems and derived some metric characterizations for these types of well-posedness.
For the well-posedness of equilibrium problems with functional constraints, we refer
the readers to [34]. In 2009, Long and Huang [35] generalized the concept of α-well-
posedness to symmetric quasiequilibrium problems in Banach spaces, which includes eq-
uilibrium problems, Nash equilibrium problems, quasivariational inequalities, variational
inequalities, and fixed-point problems as special cases. Under some suitable conditions,
they established some metric characterizations of α-well-posedness for symmetric quasiequi-
librium problems. Moreover, they gave some examples to illustrate their results. Their
results represent the generalization and improvement of some previously known results in
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the literature, for instance, [12–15, 23, 33]. It is worth pointing out that up to the publication
of [35] there are no results concerned with the problems of the well-posedness for symmetric
quasiequilibrium problems in Banach spaces.

In this paper, we consider and study the problems of the well-posedness for a system
of mixed quasivariational-like inequalities in Banach spaces. First, we generalize the concept
of α-well-posedness to the system of mixed quasivariational-like inequalities, which include
symmetric quasiequilibrium problems as a special case. Second, some metric characteriza-
tions of α-well-posedness for the system of mixed quasivariational-like inequalities are given
under very mild conditions. Furthermore, it is also proven that under quite appropriate
conditions, the α-well-posedness is equivalent to the existence and uniqueness of solution for
the system of mixed quasivariational-like inequalities. At the same time, the corresponding
concept of α-well-posedness in the generalized sense is also considered for the system of
mixed quasivariational-like inequalities having more than one solution. In addition, we give
some examples to illustrate our results. The results presented in this paper generalize and
improve Long and Huang’s results in [35].

2. Preliminaries

Throughout this paper, unless specified otherwise, let X and Y be two real Banach spaces, let
their dual spaces be denoted by X∗ and Y ∗, respectively, and let the duality pairing between
X and X∗ and the one between Y and Y ∗ be denoted by the same 〈·, ·〉. We write xn ⇀ x to
indicate that the sequence {xn} converges weakly to x. However, xn → x implies that {xn}
converges strongly to x. Let C ⊂ X and D ⊂ Y be two nonempty closed and convex subsets.
Let S : C ×D → 2C and T : C ×D → 2D be two set-valued mappings, let A : C ×D → X∗,
B : C ×D → Y ∗, η̂ : C × C → X and η : D ×D → Y be four single-valued mappings, and let
f, g : C ×D → R be two real-valued functions. Suppose that α is a nonnegative real number
and N = {1, 2, . . .}.

In this paper, we consider the system of mixed quasivariational-like inequalities
(SMQVLIs), which is to find a point (x0, y0) ∈ C ×D such that

x0 ∈ S
(

x0, y0
)

,
〈

A
(

x0, y0
)

, η̂(x0, z)
〉

+ f
(

x0, y0
) − f

(

z, y0
) ≤ 0, ∀z ∈ S

(

x0, y0
)

,

y0 ∈ T
(

x0, y0
)

,
〈

B
(

x0, y0
)

, η
(

y0, w
)〉

+ g
(

x0, y0
) − g(x0, w) ≤ 0, ∀w ∈ T

(

x0, y0
)

.
(2.1)

Remark 2.1. Whenever A = 0, B = 0, η̂ = 0, and η = 0, the Problem (2.1) reduces to the
following symmetric quasiequilibrium problem (in short, SQEP) of finding a point (x0, y0) ∈
C ×D such that

x0 ∈ S
(

x0, y0
)

, f
(

x0, y0
) ≤ f

(

z, y0
)

, ∀z ∈ S
(

x0, y0
)

,

y0 ∈ T
(

x0, y0
)

, g
(

x0, y0
) ≤ g(x0, w), ∀w ∈ T

(

x0, y0
)

.
(2.2)

This problem was first considered by Noor and Oettli [21], which includes equilibrium
problems [30], Nash equilibrium problems [36], quasivariational inequalities [37], vari-
ational inequalities [38], and fixed-point problems [28, 29] as special cases. It is worth
mentioning that Noor and Oettli [21] only established the existence of solutions for SQEP
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(2.2). Subsequently, Long and Huang [35] investigated the α-well-posedness for SQEP (2.2)
in Banach spaces.

Denote by Γ the solution set of SMQVLI (2.1). In what follows, we introduce the
notions of α-approximating sequence and α-well-posedness for SMQVLI (2.1).

Definition 2.2. A sequence {(xn, yn)} ⊂ C × D is called an α-approximating sequence for
SMQVLI (2.1) if there exists a sequence εn > 0 with εn → 0 such that

d
(

xn, S
(

xn, yn

)) ≤ εn, that is, xn ∈ B
(

S
(

xn, yn

)

, εn
)

, ∀n ∈ N,

d
(

yn, T
(

xn, yn

)) ≤ εn, that is, yn ∈ B
(

T
(

xn, yn

)

, εn
)

, ∀n ∈ N,

〈

A
(

xn, yn

)

, η̂(xn, z)
〉

+ f
(

xn, yn

) − f
(

z, yn

) ≤ εn +
α

2
‖xn − z‖2, ∀z ∈ S

(

xn, yn

)

, ∀n ∈ N,

〈

B
(

xn, yn

)

, η
(

yn,w
)〉

+ g
(

xn, yn

) − g(xn,w) ≤ εn +
α

2
∥

∥yn −w
∥

∥

2
, ∀w ∈ T

(

xn, yn

)

, ∀n ∈ N,

(2.3)

where B(S(x, y), ε) denotes the ball of radius ε around S(x, y), that is, the set {m ∈ X :
d(S(x, y), m) = infb∈S(x,y)‖m−b‖ ≤ εn}. Whenever α = 0, one says that the sequence {(xn, yn)}
is an approximating sequence for SMQVLI (2.1).

We remark that if A = 0, B = 0, η̂ = 0, and η = 0, the notions of α-approx-
imating sequence and approximating sequence for SMQVLI (2.1) reduce to the ones of α-
approximating sequence and approximating sequence for SQEP (2.2) in [35, Definition 2.1],
respectively.

Definition 2.3. SMQVLI (2.1) is said to be α-well-posed if it has a unique solution (x0, y0) and
every α-approximating sequence {(xn, yn)} converges strongly to (x0, y0). Whenever α = 0,
we say that SMQVLI (2.1) is well-posed.

We remark that if A = 0, B = 0, η̂ = 0, and η = 0, the notions of α-well-posedness and
well-posedness for SMQVLI (2.1) reduce to the ones of α-well-posedness and well-posedness
for SQEP (2.2) in [35, Definition 2.2], respectively.

Definition 2.4. SMQVLI (2.1) is said to be α-well-posed in the generalized sense if the solution
set Γ of SMQVLI (2.1) is nonempty and every α-approximating sequence {(xn, yn)} has a
subsequence which converges strongly to some element of Γ. Whenever α = 0, one says that
SMQVLI (2.1) is well-posed in the generalized sense.

We remark that ifA = 0, B = 0, η̂ = 0, and η = 0, the notions of α-well-posedness in the
generalized sense and well-posedness in the generalized sense for SMQVLI (2.1) reduce to
the ones of α-well-posedness in the generalized sense and well-posedness in the generalized
sense for SQEP (2.2) in [35, Definition 2.3], respectively.

In order to investigate the α-well-posedness for SMQVLI (2.1), we need the following
definitions.
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Definition 2.5 (see [39]). The Painleve-Kuratowski limits of a sequence {Hn} ⊂ X are defined
by

lim inf
n

Hn =
{

y ∈ X : ∃yn ∈ Hn, n ∈ N, with lim
n

yn = y

}

,

lim sup
n

Hn =
{

y ∈ X : ∃nk ↑ +∞, nk ∈ N, ∃ynk ∈ Hnk , k ∈ N, with lim
k

ynk = y

}

.

(2.4)

Definition 2.6 (see [39]). A set-valued mapping F from a topological space (W, τ) to a
topological space (Z, σ) is called

(i) (τ, σ)-closed if for every x ∈ K, for every sequence {xn} τ-converging to x, and
for every sequence {yn} σ-converging to a point y, such that yn ∈ F(xn), one has
y ∈ F(x), that is,

F(x) ⊃ lim sup
n

F(xn), (2.5)

(ii) (τ, σ)-lower semicontinuous if for every x ∈ K, for every sequence {xn} τ-
converging to x, and for every y ∈ F(x), there exists a sequence {yn} σ-converging
to y, such that yn ∈ F(xn) for n sufficiently large, that is,

F(x) ⊂ lim inf
n

F(xn), (2.6)

(iii) (τ, σ)-subcontinuous on K, if for every sequence {xn} τ-converging in K, every
sequence {yn}, such that yn ∈ F(xn), has a σ-convergent subsequence.

Definition 2.7 (see [39]). Let V be a nonempty subset of X. The measure of noncompactness
μ of the set V is defined by

μ(V ) = inf

{

ε > 0 : V ⊂
n
⋃

i=1

Vi, diamVi < ε, i = 1, 2, . . . , n

}

, (2.7)

where diam means the diameter of a set.

Definition 2.8 (see [39]). Let (X, d) be a metric space and let U, V be nonempty subsets of X.
The Hausdorff metric H(·, ·) between U and V is defined by

H(U,V ) = max{e(U,V ), e(V,U)}, (2.8)

where e(U,V ) = supu∈Ud(u, V ) with d(u, V ) = infv∈V ‖u − v‖. Let {Un} be a sequence of
nonempty subsets of X. One says that Un converges to U in the sense of Hausdorff metric if
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H(Un,U) → 0. It is easy to see that e(Un,U) → 0 if and only if d(un,U) → 0 for all section
un ∈ Un. For more details on this topic, the readers refered one to [39].

Now, we prove the following lemma.

Lemma 2.9. Suppose that set-valued mappings S and T are nonempty convex-valued, the function
f(·, y) is convex on C for any y ∈ D, and the function g(x, ·) is convex on D for any x ∈ C. Then
(x0, y0) ∈ Γ if and only if the following two conditions hold:

x0 ∈ S
(

x0, y0
)

,
〈

A
(

x0, y0
)

, η̂(x0, z)
〉

+ f
(

x0, y0
) − f

(

z, y0
) ≤ α

2
‖x0 − z‖2,

∀z ∈ S
(

x0, y0
)

,

y0 ∈ T
(

x0, y0
)

,
〈

B
(

x0, y0
)

, η
(

y0, w
)〉

+ g
(

x0, y0
) − g(x0, w) ≤ α

2
∥

∥y0 −w
∥

∥

2
,

∀w ∈ T
(

x0, y0
)

,

(2.9)

where both η̂ : C×C → X and η : D×D → Y are affine in the second variable such that η̂(x, x) = 0
and η(y, y) = 0 for all (x, y) ∈ C ×D.

Proof. The necessity is obvious. For the sufficiency, suppose that (2.9) holds. Now let us show
that (x0, y0) ∈ Γ. Indeed, let z ∈ S(x0, y0) and for any t ∈ [0, 1], zt = tz + (1 − t)x0. Since
S(x0, y0) is convex, zt ∈ S(x0, y0) and so

〈

A
(

x0, y0
)

, η̂(x0, zt)
〉

+ f
(

x0, y0
) − f

(

zt, y0
) ≤ α

2
‖x0 − zt‖2, ∀t ∈ (0, 1]. (2.10)

Also, since f(·, y) is convex for any y ∈ D and η̂ : C × C → X is affine in the second variable
with η̂(x, x) = 0, ∀x ∈ X, we have

t
{〈

A
(

x0, y0
)

, η̂(x0, z)
〉

+ f
(

x0, y0
) − f

(

z, y0
)}

=
〈

A
(

x0, y0
)

, tη̂(x0, z) + (1 − t)η̂(x0, x0)
〉

+ f
(

x0, y0
) − (

tf
(

z, y0
)

+ (1 − t)f
(

x0, y0
))

≤ 〈

A
(

x0, y0
)

, η̂(x0, zt)
〉

+ f
(

x0, y0
) − f

(

zt, y0
)

≤ α

2
‖x0 − zt‖2

=
α

2
t2‖x0 − z‖2, ∀t ∈ (0, 1].

(2.11)

Thus, dividing by t in the above inequality, we have

〈

A
(

x0, y0
)

, η̂(x0, z)
〉

+ f
(

x0, y0
) − f

(

z, y0
) ≤ α

2
t‖x0 − z‖2, ∀t ∈ (0, 1], z ∈ S

(

x0, y0
)

.

(2.12)
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By the similar argument,

〈

B
(

x0, y0
)

, η
(

y0, w
)〉

+ g
(

x0, y0
) − g(x0, w) ≤ α

2
t
∥

∥y0 −w
∥

∥

2
, ∀t ∈ (0, 1], w ∈ T

(

x0, y0
)

.

(2.13)

The combination of (2.12) and (2.13) implies, for t tending to zero, that (x0, y0) is a solution
of SMQVLI (2.1). This completes the proof.

Corollary 2.10 (i.e., [35, Lemma 2.1]). Suppose that set-valued mappings S and T are nonempty
convex-valued, the function f(·, y) is convex on C for any y ∈ D, and the function g(x, ·) is convex
onD for any x ∈ C. Then (x0, y0) solves SQEP (2.2) if and only if the following two conditions hold:

x0 ∈ S
(

x0, y0
)

, f
(

x0, y0
) ≤ f

(

z, y0
)

+
α

2
‖x0 − z‖2, ∀z ∈ S

(

x0, y0
)

,

y0 ∈ T
(

x0, y0
)

, g
(

x0, y0
) ≤ g(x0, w) +

α

2
∥

∥y0 −w
∥

∥

2
, ∀w ∈ T

(

x0, y0
)

.

(2.14)

Proof. Put A = 0, B = 0, η̂ = 0, and η = 0 in Lemma 2.9. Then, utilizing Lemma 2.9 we get the
desired result.

3. Metric Characterizations of α-Well-Posedness for SMQVLI

In this section, we will investigate some metric characterizations of α-well-posedness for
SMQVLI (2.1).

For any ε > 0, the α-approximating solution set of SMQVLI (2.1) is defined by

Ωα(ε) =
{

(

x0, y0
) ∈ C ×D :

x0 ∈ B
(

S
(

x0, y0
)

, ε
)

,
〈

A
(

x0, y0
)

, η̂(x0, z)
〉

+ f
(

x0, y0
) − f

(

z, y0
)

≤ ε +
α

2
‖x0 − z‖2, ∀z ∈ S

(

x0, y0
)

, y0 ∈ B
(

T
(

x0, y0
)

, ε
)

,
〈

B
(

x0, y0
)

, η
(

y0, w
)〉

+ g
(

x0, y0
) − g(x0, w)≤ ε +

α

2
∥

∥y0 −w
∥

∥

2
, ∀w ∈ T

(

x0, y0
)

}

.

(3.1)

Theorem 3.1. SMQVLI (2.1) is α-well-posed if and only if the solution set Γ of SMQVLI (2.1) is
nonempty and

lim
ε→ 0

diamΩα(ε) = 0. (3.2)

Proof . Suppose that SMQVLI (2.1) is α-well-posed. Then, Γ is a singleton, and Ωα(ε)/= ∅ for
any ε > 0, since Γ ⊂ Ωα(ε). Suppose by contraction that

lim
ε→ 0

diamΩα(ε) > β > 0. (3.3)
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Then there exists εn > 0 with εn → 0, and (xn, yn), (xn, yn) ∈ Ωα(εn) such that

∥

∥

(

xn, yn

) − (

xn, yn

)∥

∥ > β, ∀n ∈ N, (3.4)

where the norm ‖ · ‖ in the product space X × Y is defined as follows:

‖(u, v) − (u, v)‖ =
√

‖u − u‖2 + ‖v − v‖2, ∀(u, v), (u, v) ∈ X × Y.

(

It is not difficult to verify that X × Y is a Banach space in terms of the last norm .
)

(3.5)

Since (xn, yn), (xn, yn) ∈ Ωα(εn), and SMQVLI (2.1) is α-well-posed, the sequences {(xn, yn)}
and {(xn, yn)}, which are both α-approximating sequences for SMQVLI (2.1), converge
strongly to the unique solution (x0, y0), and this leads to a contraction. Therefore, (3.2) holds.

Conversely, let (3.2) hold and let {(xn, yn)} ⊂ C ×D be any α-approximating sequence
for SMQVLI (2.1). Then, there exists a sequence εn > 0 with εn → 0 such that

d
(

xn, S
(

xn, yn

)) ≤ εn,
〈

A
(

xn, yn

)

, η̂(xn, z)
〉

+ f
(

xn, yn

) − f
(

z, yn

) ≤ εn +
α

2
‖xn − z‖2,

∀z ∈ S
(

xn, yn

)

,

d
(

yn, T
(

xn, yn

)) ≤ εn,
〈

B
(

xn, yn

)

, η
(

yn,w
)〉

+ g
(

xn, yn

) − g(xn,w) ≤ εn +
α

2
∥

∥yn −w
∥

∥

2
,

∀w ∈ T
(

xn, yn

)

.

(3.6)

This implies that {(xn, yn)} ⊂ Ωα(εn), for all n ∈ N. Since the solution set Γ of SMQVLI
(2.1) is nonempty, we can take two elements in Γ arbitrarily, denoted by (x0, y0) and (x0, y0),
respectively. Note that Γ ⊂ Ωα(ε) for all ε > 0. Hence both (x0, y0) and (x0, y0) lie in Ωα(εn)
for all n ≥ 1. This fact together with (3.2) yields

∥

∥

(

xn, yn

) − (

x0, y0
)∥

∥ ≤ diamΩα(εn) −→ 0,
∥

∥

(

xn, yn

) − (

x0, y0

)∥

∥ ≤ diamΩα(εn) −→ 0.
(3.7)

Utilizing (3.7) and the uniqueness of the limit, we conclude that (x0, y0) = (x0, y0). Thismeans
that Γ is a singleton. Thus, it is known that SMQVLI (2.1) has the unique solution (x0, y0) and
{(xn, yn)} converges strongly to (x0, y0). This shows that SMQVLI (2.1) is α-well-posed. This
completes the proof.

Corollary 3.2 (i.e., [35, Theorem 3.1]). SQEP (2.2) is α-well-posed if and only if the solution set Γ
of SQEP (2.2) is nonempty and

lim
ε→ 0

diamMε = 0, (3.8)
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where

Mε =
{

(

x0, y0
) ∈ C ×D : x0 ∈ B

(

S
(

x0, y0
)

, ε
)

, f
(

x0, y0
) − f

(

z, y0
)

≤ ε +
α

2
‖x0 − z‖2, ∀z ∈ S

(

x0, y0
)

, y0 ∈ B
(

T
(

x0, y0
)

, ε
)

, g
(

x0, y0
) − g(x0, w) ≤ ε

+
α

2
∥

∥y0 −w
∥

∥

2
, ∀w ∈ T

(

x0, y0
)

}

.

(3.9)

Proof. Put A = 0, B = 0, η̂ = 0, and η = 0 in Theorem 3.1. Then, utilizing Theorem 3.1 we get
the desired result.

In the sequel, the following concept will be needed to apply to our main results.

Definition 3.3. Let C be a nonempty, closed convex subset of X. A single-valued mapping
η : C × C → X is said to be Lipschitz continuous if there exists a constant λ > 0 such that

∥

∥η
(

x, y
)∥

∥ ≤ λ
∥

∥x − y
∥

∥, ∀x, y ∈ C. (3.10)

We remark that whenever X = H a Hilbert space and C = K a nonempty closed
convex subset of H, the Lipschitz continuous mapping η : K ×K → H has been introduced
and considered in Ansari and Yao [40]. In their main result for the existence of solutions and
convergence of iterative algorithm (i.e., [40, Theorem 3.1]), the Lipschitz continuousmapping
η : K ×K → H satisfies the following conditions:

(a) η(x, y) + η(y, x) = 0 for all x, y ∈ K,

(b) η(x, y) = η(x, z) + η(z, y) for all x, y, z ∈ K,

(c) η(·, ·) is affine in the first variable,

(d) for each fixed y ∈ K, x �→ η(y, x) is sequentially continuous from theweak topology
to the weak topology ((w,w)-continuous).

Inspired by the above restrictions imposed on the Lipschitz continuous mapping η, we
give the following theorem.

Theorem 3.4. Assume that the following conditions hold:

(i) set-valued mappings S and T are nonempty convex-valued, (s,w)-closed, (s, s)-lower
semicontinuous and (s,w)-subcontinuous on C ×D;

(ii) single-valued mappings A and B are (s,w∗)-continuous on C ×D;

(iii) single-valued mappings η̂ and η are Lipschitz continuous with constants ̂λ and λ
respectively, such that

(a) η̂(x1, x3) = η̂(x1, x2) + η̂(x2, x3) for all x1, x2, x3 ∈ C and η(y1, y3) = η(y1, y2) +
η(y2, y3) for all y1, y2, y3 ∈ D,

(b) η̂(·, ·) and η(·, ·) both are affine in the second variable;

(iv) functions f and g are continuous on C ×D;
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(v) for any y ∈ D, the function f(·, y) is convex on C; for any x ∈ C, the function g(x, ·) is
convex on D.

Then, SMQVLI (2.1) is α-well-posed if and only if

Ωα(ε)/= ∅, ∀ε > 0, lim
ε→ 0

diamΩα(ε) = 0. (3.11)

Proof . First, utilizing condition (iii) (a), we can readily obtain that

η̂(x1, x1) = 0, η̂(x1, x2) = −η̂(x2, x1), ∀x1, x2 ∈ C;

η
(

y1, y1
)

= 0, η
(

y1, y2
)

= −η(y2, y1
)

, ∀y1, y2 ∈ D.
(3.12)

The necessity has been proved in Theorem 3.1. For the sufficiency, let condition (3.11)
hold. Let {(xn, yn)} ⊂ C ×D be any α-approximating sequence for SMQVLI (2.1). Now let us
show that Γ is a singleton and {(xn, yn)} converges strongly to the unique element of Γ. As a
matter of fact, since {(xn, yn)} is α-approximating sequence for SMQVLI (2.1), there exists a
sequence εn > 0 with εn → 0 such that

d
(

xn, S
(

xn, yn

)) ≤ εn,
〈

A
(

xn, yn

)

, η̂(xn, z)
〉

+ f
(

xn, yn

) − f
(

z, yn

) ≤ εn +
α

2
‖xn − z‖2,

∀z ∈ S
(

xn, yn

)

,

d
(

yn, T
(

xn, yn

)) ≤ εn,
〈

B
(

xn, yn

)

, η
(

yn,w
)〉

+ g
(

xn, yn

) − g(xn,w) ≤ εn +
α

2
∥

∥yn −w
∥

∥

2
,

∀w ∈ T
(

xn, yn

)

.

(3.13)

This means {(xn, yn)} ⊂ Ωα(εn), for all n ∈ N. It follows from (3.11) that {(xn, yn)} is a
Cauchy sequence in Banach space (X × Y, ‖ · ‖) and hence converges strongly to a point
(x0, y0) ∈ X × Y . By the definition of the norm ‖ · ‖ in Banach space (X × Y, ‖ · ‖), we deduce
that

‖xn − x0‖ ≤
√

‖xn − x0‖2 +
∥

∥yn − y0
∥

∥

2 =
∥

∥

(

xn, yn

) − (

x0, y0
)∥

∥ −→ 0,

∥

∥yn − y0
∥

∥ ≤
√

‖xn − x0‖2 +
∥

∥yn − y0
∥

∥

2 =
∥

∥

(

xn, yn

) − (

x0, y0
)∥

∥ −→ 0.

(3.14)

On account of the closedness of C and D we conclude from {xn} ⊂ C and {yn} ⊂ D that
xn → x0 ∈ C and yn → y0 ∈ D. In order to show (x0, y0) ∈ Γ, we start to prove that

d
(

x0, S
(

x0, y0
)) ≤ lim inf

n
d
(

xn, S
(

xn, yn

))

= lim
n

εn = 0. (3.15)

Indeed, suppose that the left inequality does not hold. Then there exists a positive number γ
such that

lim inf
n

d
(

xn, S
(

xn, yn

))

< γ < d
(

x0, S
(

x0, y0
))

, (3.16)
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or equivalently, there exist an increasing sequence {nk} and a sequence {zk}, zk ∈ S(xnk , ynk),
fo all k ∈ N such that

‖xnk − zk‖ < γ, ∀k ∈ N. (3.17)

Since the set-valued mapping S is (s,w)-closed and (s,w)-subcontinuous, the sequence {zk}
has a subsequence, denoted still by {zk}, converging weakly to a point z0 ∈ S(x0, y0). From
the weak lower semicontinuity of the norm, it follows that

γ < d
(

x0, S
(

x0, y0
)) ≤ ‖x0 − z0‖ ≤ lim inf

k
‖xnk − zk‖ < γ, (3.18)

which leads to a contradiction. Thus we must have d(x0, S(x0, y0)) = 0 and hence x0 ∈
S(x0, y0). Similarly, we can prove y0 ∈ T(x0, y0).

To complete the proof, we take a point z ∈ S(x0, y0) arbitrarily. Since S is (s, s)-
lower semicontinuous, there exists a sequence {zn} converging strongly to z, such that
zn ∈ S(xn, yn) for n sufficiently large. Furthermore, utilizing condition (iii) (a) and the
Lipschitz continuity of η̂ we deduce that

∥

∥η̂(xn, zn) − η̂(x0, z)
∥

∥ =
∥

∥η̂(xn, zn) − η̂(x0, zn) + η̂(x0, zn) − η̂(x0, z)
∥

∥

≤ ∥

∥η̂(xn, zn) − η̂(x0, zn)
∥

∥ +
∥

∥η̂(x0, zn) − η̂(x0, z)
∥

∥

=
∥

∥η̂(xn, zn) + η̂(zn, x0)
∥

∥ +
∥

∥η̂(x0, zn) + η̂(z, x0)
∥

∥

=
∥

∥η̂(xn, x0)
∥

∥ +
∥

∥η̂(z, zn)
∥

∥

≤ ̂λ(‖xn − x0‖ + ‖zn − z‖) −→ 0 as n −→ ∞.

(3.19)

SinceA is (s,w∗)-continuous, it is known thatA(xn, yn) converges weakly toA(x0, y0), that is,
for each x ∈ X, the real sequence {〈A(xn, yn), x〉} converges to the real number 〈A(x0, y0), x〉.
This implies that {〈A(xn, yn), x〉} is a bounded sequence of real numbers for each x ∈ X.
Thus {A(xn, yn)} is bounded in the norm topology according to the uniform boundedness
principle [41], that is, supn≥1‖A(xn, yn)‖ < ∞.

Now observe that

∣

∣

〈

A
(

xn, yn

)

, η̂(xn, zn)
〉 − 〈

A
(

x0, y0
)

, η̂(x0, z)
〉∣

∣

=
∣

∣

〈

A
(

xn, yn

)

, η̂(xn, zn)
〉 − 〈

A
(

xn, yn

)

, η̂(x0, z)
〉

+
〈

A
(

xn, yn

)

, η̂(x0, z)
〉 − 〈

A
(

x0, y0
)

, η̂(x0, z)
〉∣

∣

≤ ∣

∣

〈

A
(

xn, yn

)

, η̂(xn, zn) − η̂(x0, z)
〉∣

∣ +
∣

∣

〈

A
(

xn, yn

) −A
(

x0, y0
)

, η̂(x0, z)
〉∣

∣

≤ ∥

∥A
(

xn, yn

)∥

∥

∥

∥η̂(xn, zn) − η̂(x0, z)
∥

∥

+
∣

∣

〈

A
(

xn, yn

) −A
(

x0, y0
)

, η̂(x0, z)
〉∣

∣ −→ 0 as n −→ ∞.

(3.20)
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Consequently, it follows from condition (iv) that

〈

A
(

x0, y0
)

, η̂(x0, z)
〉

+ f
(

x0, y0
) − f

(

z, y0
)

= lim
n

{〈

A
(

xn, yn

)

, η̂(xn, zn)
〉

+ f
(

xn, yn

) − f
(

zn, yn

)}

≤ lim
n

(

εn +
α

2
‖xn − zn‖2

)

=
α

2
‖x0 − z‖2, for all z ∈ S

(

x0, y0
)

.

(3.21)

Analogously, we have

〈

B
(

x0, y0
)

, η
(

y0, w
)〉

+ g
(

x0, y0
) − g(x0, w) ≤ α

2
∥

∥y0 −w
∥

∥

2
, ∀w ∈ T

(

x0, y0
)

. (3.22)

It follows from Lemma 2.9 that (x0, y0) ∈ Γ. Therefore, SMQVLI (2.1) is α-well-posed. This
completes the proof.

Corollary 3.5 (i.e., [35, Theorem 3.2]). Assume that the following conditions hold:

(i) set-valued mappings S and T are nonempty convex-valued, (s,w)-closed, (s, s)-lower
semicontinuous, and (s,w)-subcontinuous on C ×D;

(ii) functions f and g are continuous on C ×D;

(iii) for any y ∈ D, the function f(·, y) is convex on C; for any x ∈ C, the function g(x, ·) is
convex on D.

Then, SQEP (2.2) is α-well-posed if and only if

Mε /= ∅, ∀ε > 0, lim
ε→ 0

diamMε = 0. (3.23)

To illustrate Theorem 3.4, we give the following two examples.

Example 3.6. Let X = Y = R and C = D = R+(= [0,+∞)). Let S(x, y) = [0, x], T(x, y) = [0, y],
A(x, y) = B(x, y) = −(x − y)2, η̂(x, z) = x − z, η(y,w) = y − w, f(x, y) = x2 − y2, and
g(x, y) = y2−x2 for all x, z ∈ C and y,w ∈ D. Obviously, the conditions (i)–(v) of Theorem 3.4
are satisfied. Note that

{

(

x, y
) ∈ C ×D : d

(

x, S
(

x, y
)) ≤ ε,

〈

A
(

x, y
)

, η̂(x, z)
〉

+ f
(

x, y
) − f

(

z, y
)

≤ ε +
α

2
‖x − z‖2, ∀z ∈ S

(

x, y
)

}
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=
{

(

x, y
) ∈ C ×D : d

(

x, S
(

x, y
)) ≤ ε, −(x − y

)2(x − z) + x2 − z2

≤ ε +
α

2
(x − z)2, ∀z ∈ S

(

x, y
)

}

=
{

(

x, y
) ∈ C ×D : d

(

x, S
(

x, y
)) ≤ ε, −(x − y

)2(x − z)

−(2 + α)
(

z − αx

2 + α

)2
+

4
2 + α

x2 − 2ε ≤ 0, ∀z ∈ S
(

x, y
)

}

=

⎡

⎣0,

√

(2 + α)ε
2

⎤

⎦ × R,

{

(

x, y
) ∈ C ×D : d

(

y, T
(

x, y
)) ≤ ε,

〈

B
(

x, y
)

, η
(

y,w
)〉

+ g
(

x, y
) − g(x,w)

≤ ε +
α

2
∥

∥y −w
∥

∥

2
, ∀w ∈ T

(

x, y
)

}

=
{

(

x, y
) ∈ C ×D : d

(

y, T
(

x, y
)) ≤ ε, −(x − y

)2(
y −w

)

+ y2 −w2

≤ ε +
α

2
(

y −w
)2
, ∀w ∈ T

(

x, y
)

}

=
{

(

x, y
) ∈ C ×D : d

(

y, T
(

x, y
)) ≤ ε,−(x − y

)2(
y −w

)

−(2 + α)
(

w − αy

2 + α

)2
+

4
2 + α

y2 − 2ε ≤ 0, ∀w ∈ T
(

x, y
)

}

= R ×
⎡

⎣0,

√

(2 + α)ε
2

⎤

⎦.

(3.24)

It follows that

Ωα(ε) =

⎡

⎣0,

√

(2 + α)ε
2

⎤

⎦ ×
⎡

⎣0,

√

(2 + α)ε
2

⎤

⎦ (3.25)

and so diamΩα → 0 as ε → 0. By Theorem 3.4, SMQVLI (2.1) is α-well-posed.

Example 3.7. Let X = Y = R and C = D = R+(= [0,+∞)). Let S(x, y) = [0, x], T(x, y) = [0, y],
A(x, y) = B(x, y) = −(x − y)2, η̂(x, z) = x − z, η(y,w) = y − w, and f(x, y) = g(x, y) = −xy
for all x, z ∈ C and y,w ∈ D. It is easy to see that the conditions (i)–(v) of Theorem 3.4
are satisfied, and Ωα(ε) = [0,+∞) × [0,+∞). But, SMQVLI (2.1) is not α-well-posed, since
diamΩα(ε) � 0 as ε → 0.

Whenever α = 0, we have the following result.
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Theorem 3.8. Assume that the following conditions hold:

(i) set-valued mappings S and T are nonempty convex-valued, (s,w)-closed, (s, s)-lower
semicontinuous, and (s,w)-subcontinuous on C ×D;

(ii) single-valued mappings A and B are (s,w∗)-continuous on C ×D;

(iii) single-valued mappings η̂ and η are Lipschitz continuous with constants ̂λ and λ,
respectively, such that for all x1, x2, x3 ∈ C and y1, y2, y3 ∈ D :

η̂(x1, x3) = η̂(x1, x2) + η̂(x2, x3), η
(

y1, y3
)

= η
(

y1, y2
)

+ η
(

y2, y3
)

; (3.26)

(iv) functions f and g are continuous on C ×D.

Then, SMQVLI (2.1) is well-posed if and only if

Ω0(ε)/= ∅, ∀ε > 0, lim
ε→ 0

diamΩ0(ε) = 0. (3.27)

Corollary 3.9 (i.e., [35, Corollary 3.1]). Assume that the following conditions hold:

(i) set-valued mappings S and T are nonempty convex-valued, (s,w)-closed, (s, s)-lower
semicontinuous, and (s,w)-subcontinuous on C ×D;

(ii) functions f and g are continuous on C ×D.

Then, SQEP (2.2) is well-posed if and only if

Mε /= ∅, ∀ε > 0, lim
ε→ 0

diamMε = 0. (3.28)

The following theorem shows that under some suitable conditions, the α-well-
posedness of SMQVLI (2.1) is equivalent to the existence and uniqueness of its solutions.

Theorem 3.10. Let X and Y be two finite-dimensional spaces. Suppose that the following conditions
hold:

(i) set-valued mappings S and T are nonempty convex-valued, closed, lower semicontinuous,
and subcontinuous on C ×D;

(ii) single-valued mappings A and B are continuous on C ×D;

(iii) single-valued mappings η̂ and η are Lipschitz continuous with constants ̂λ and λ re-
spectively, such that

(a) η̂(x1, x3) = η̂(x1, x2) + η̂(x2, x3) for all x1, x2, x3 ∈ C and η(y1, y3) = η(y1, y2) +
η(y2, y3) for all y1, y2, y3 ∈ D,

(b) η̂(·, ·) and η(·, ·) both are affine in the second variable;

(iv) the functions f and g are continuous on C ×D;

(v) for any y ∈ D, the function f(·, y) is convex on C; for any x ∈ C, the function g(x, ·) is
convex on D;

(vi) Ωα(ε) is nonempty bounded for some ε > 0.

Then, SMQVLI (2.1) is α-well-posed if and only if SMQVLI (2.1) has a unique solution.
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Proof. The necessary of the theorem is obvious. In order to show the sufficiency, let (x0, y0) be
the unique solution of SMQVLI (2.1) and let {(xn, yn)} be any α-approximating sequence for
SMQVLI (2.1). Then there exists a sequence εn > 0 with εn → 0 such that

d
(

xn, S
(

xn, yn

)) ≤ εn,
〈

A
(

xn, yn

)

, η̂(xn, z)
〉

+ f
(

xn, yn

) − f
(

z, yn

) ≤ εn +
α

2
‖xn − z‖2,

∀z ∈ S
(

xn, yn

)

,

d
(

yn, T
(

xn, yn

)) ≤ εn,
〈

B
(

xn, yn

)

, η
(

yn,w
)〉

+ g
(

xn, yn

) − g(xn,w) ≤ εn +
α

2
∥

∥yn −w
∥

∥

2
,

∀w ∈ T
(

xn, yn

)

,

(3.29)

which means {(xn, yn)} ⊂ Ωα(εn), for all n ∈ N. Let ε > 0 be such that Ωα(ε) is nonempty
bounded. Then there exists n0 ∈ N such that {(xn, yn)} ⊂ Ωα(εn) ⊂ Ωα(ε) for all n ≥ n0.
Thus, {(xn, yn)} is bounded and so the sequence {(xn, yn)} has a subsequence {(xnk , ynk)}
which converges to (x̃, ỹ). Reasoning as in Theorem 3.4, one can prove that (x̃, ỹ) solves
SMQVLI (2.1). The uniqueness of the solution implies that (x0, y0) = (x̃, ỹ), and so the whole
sequence {(xn, yn)} converges to (x0, y0). Thus, SMQVLI (2.1) is α-well-posed. This completes
the proof.

Example 3.11. Let X = Y = R and C = D = R+(= [0,+∞)). Let S(x, y) = [0, x], T(x, y) = [0, y],
A(x, y) = B(x, y) = −(x − y)2, η̂(x, z) = x − z, η(y,w) = y −w, f(x, y) = x2 − y2, and g(x, y) =
y2 − x2 for all x, z ∈ C and y,w ∈ D. Clearly, the conditions (i)–(vi) of Theorem 3.8 are
satisfied, and SMQVLI (2.1) has a unique solution (x0, y0) = (0, 0). By Theorem 3.8, SMQVLI
(2.1) is α-well-posed.

Corollary 3.12 (i.e., [35, Theorem 3.3]). Let X and Y be two finite-dimensional spaces. Suppose
that the following conditions hold:

(i) set-valued mappings S and T are nonempty convex-valued, closed, lower semicontinuous
and subcontinuous on C ×D;

(ii) the functions f and g are continuous on C ×D;

(iii) for any y ∈ D, the function f(·, y) is convex on C; for any x ∈ C, the function g(x, ·) is
convex on D;

(iv) Mε is nonempty bounded for some ε > 0.

Then, SQEP (2.2) is α-well-posed if and only if SQEP (2.2) has a unique solution.

4. Metric Characterizations of α-Well-Posedness in the Generalized
Sense for SMQVLI

In this section, we derive some metric characterizations of α-well-posedness in the gen-
eralized sense for SMQVLI (2.1) by considering the noncompactness of approximate solution
set.
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Theorem 4.1. SMQVLI (2.1) is α-well-posed in the generalized sense if and only if the solution set
Γ of SMQVLI (2.1) is nonempty compact and

e(Ωα(ε),Γ) −→ 0 as ε −→ 0. (4.1)

Proof . Suppose that SMQVLI (2.1) is α-well-posed in the generalized sense. Then Γ is
nonempty. To show the compactness of Γ, let {(xn, yn)} ⊂ Γ. Clearly, if {(xn, yn)} is an
approximation sequence of SMQVLI (2.1), then it is also α-approximation sequence. Since
SMQVLI (2.1) is α-well-posed in the generalized sense, it contains a subsequence converging
strongly to an element of Γ. Thus, Γ is compact. Now, we prove that (4.1) holds. Suppose by
contradiction that there exist γ > 0, 0 < εn → 0, and (xn, yn) ∈ Ωα(εn) such that

d
((

xn, yn

)

,Γ
) ≥ γ. (4.2)

Being {(xn, yn)} ⊂ Ωα(εn), {(xn, yn)} is an α-approximating sequence for SMQVLI (2.1). Since
SMQVLI (2.1) is α-well-posed in the generalized sense, there exists a subsequence {(xnk , ynk)}
of {(xn, yn)} converging strongly to some element of Γ. This contradicts (4.2) and so (4.1)
holds.

To prove the converse, suppose that Γ is nonempty compact and (4.1) holds. Let
{(xn, yn)} be an α-approximating sequence for SMQVLI (2.1). Then {(xn, yn)} ⊂ Ωα(εn), and
so e(Ωα(εn),Γ) → 0. This implies that there exists a sequence {(zn,wn)} ⊂ Γ such that

∥

∥

(

xn, yn

) − (zn,wn)
∥

∥ −→ 0, (4.3)

where the norm ‖ · ‖ in the product space X × Y is defined as follows:

‖(u, v) − (u, v)‖ =
√

‖u − u‖2 + ‖v − v‖2, ∀(u, v), (u, v) ∈ X × Y.

(

It is not hard to verify that X × Y is a Banach space in terms of the last norm .
)

(4.4)

Since Γ is compact, there exists a subsequence {(znk ,wnk)} of {(zn,wn)} converging
strongly to (x0, y0) ∈ Γ. Hence the corresponding subsequence {(xnk , ynk)} of {(xn, yn)}
converges strongly to (x0, y0). Therefore, SMQVLI (2.1) is α-well-posed in the generalized
sense.

We give the following example to illustrate that the compactness condition of Γ is
necessary.

Example 4.2. Let X = Y = R and C = D = R+(= [0,+∞)). Let S(x, y) = [x, x + y], T(x, y) =
[y, x + y], A(x, y) = B(x, y) = x2 + y2, η̂(x, z) = x − z, η(y,w) = y − w, and f(x, y) =
g(x, y) = xy for all x, z ∈ C and y,w ∈ D. Then Γ = Ωα(ε) = [0,+∞) × [0,+∞). It is clear
that e(Ωα(ε),Γ) → 0 as ε → 0. It is easy to see that the diverging sequence {(n, n)}n∈N is an
α-approximating sequence, but it has no convergent subsequence. Therefore, SMQVLI (2.1)
is not α-well-posed in the generalized sense.
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Corollary 4.3 (i.e., [35, Theorem 4.1]). SQEP (2.2) is α-well-posed in the generalized sense if and
only if the solution set Γ of SQEP (2.2) is nonempty compact and

e(Mε,Γ) −→ 0 as ε −→ 0. (4.5)

Theorem 4.4. Assume that the following conditions hold:

(i) set-valued mappings S and T are nonempty convex-valued, (s,w)-closed, (s, s)-lower
semicontinuous, and (s,w)-subcontinuous on C ×D;

(ii) single-valued mappings A and B are (s,w∗)-continuous on C ×D;

(iii) single-valued mappings η̂ and η are Lipschitz continuous with constants ̂λ and λ
respectively, such that

(a) η̂(x1, x3) = η̂(x1, x2) + η̂(x2, x3) for all x1, x2, x3 ∈ C and η(y1, y3) = η(y1, y2) +
η(y2, y3) for all y1, y2, y3 ∈ D,

(b) η̂(·, ·) and η(·, ·) both are affine in the second variable;

(iv) functions f and g are continuous on C ×D;

(v) for any y ∈ D, the function f(·, y) is convex on C; for any x ∈ C, the function g(x, ·) is
convex on D.

Then, SMQVLI (2.1) is α-well-posed in the generalized sense if and only if

Ωα(ε)/= ∅, ∀ε > 0, lim
ε→ 0

μ(Ωα(ε)) = 0. (4.6)

Proof . Suppose that SMQVLI (2.1) is α-well-posed in the generalized sense. By the same
argument as in Theorem 4.1, Γ is nonempty compact, and e(Ωα(ε),Γ) → 0 as ε → 0. Clearly
Ωα(ε)/= ∅ for any ε > 0, because Γ ⊂ Ωα(ε). Observe that for any ε > 0, we have

H(Ωα(ε),Γ) = max{e(Ωα(ε),Γ), e(Γ,Ωα(ε))} = e(Ωα(ε),Γ). (4.7)

Since Γ is compact, μ(Γ) = 0 and the following relation holds (see, e.g, [2]):

μ(Ωα(ε)) ≤ 2H(Ωα(ε),Γ) + μ(Γ) = 2H(Ωα(ε),Γ) = 2e(Ωα(ε),Γ). (4.8)

It follows that (4.6) holds.
Conversely, suppose that (4.6) holds. It is easy to prove that Ωα(ε), for any ε > 0,

is closed. Note that Ωα(ε) ⊂ Ωα(ε′) whenever ε < ε′, their intersection Ωα =
⋂

ε>0 Ωα(ε) is
nonempty compact and satisfies limε→ 0H(Ωα(ε),Ωα) = 0 [39, page 412], where

Ωα =
{

(

x0, y0
) ∈ C ×D : x0 ∈ S

(

x0, y0
)

,
〈

A
(

x0, y0
)

, η̂(x0, z)
〉

+ f
(

x0, y0
) − f

(

z, y0
)

≤ α

2
‖x0 − z‖2, ∀z ∈ S

(

x0, y0
)

, y0 ∈ T
(

x0, y0
)

,
〈

B
(

x0, y0
)

, η
(

y0, w
)〉

+ g
(

x0, y0
) − g(x0, w)

≤ α

2
∥

∥y0 −w
∥

∥

2
, ∀w ∈ T

(

x0, y0
)

}

.

(4.9)
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By Lemma 2.9, we obtain that Ωα coincides with the solution set Γ of SMQVLI (2.1). Thus, Γ
is compact.

Let {(xn, yn)} be any α-approximating sequence for SMQVLI (2.1). Then there exists a
sequence εn > 0 with εn → 0 such that

d
(

xn, S
(

xn, yn

)) ≤ εn,
〈

A
(

xn, yn

)

, η̂(xn, z)
〉

+ f
(

xn, yn

) − f
(

z, yn

) ≤ εn +
α

2
‖xn − z‖2,

∀z ∈ S
(

xn, yn

)

,

d
(

yn, T
(

xn, yn

)) ≤ εn,
〈

B
(

xn, yn

)

, η
(

yn,w
)〉

+ g
(

xn, yn

) − g(xn,w) ≤ εn +
α

2
∥

∥yn −w
∥

∥

2
,

∀w ∈ T
(

xn, yn

)

,

(4.10)

which means {(xn, yn)} ⊂ Ωα(εn), ∀n ∈ N. It follows from (4.6) that there exists a sequence
{(zn,wn)} ⊂ Γ such that

∥

∥

(

xn, yn

) − (zn,wn)
∥

∥ = d
((

xn, yn

)

,Γ
) ≤ e(Ωα(εn),Γ) = H(Ωα(εn),Γ) −→ 0. (4.11)

Since Γ is compact, there exists a subsequence {(znj ,wnj )} of {(zn,wn)} converging strongly
to (x0, y0) ∈ Γ. Hence, the corresponding subsequence {(xnj , ynj )} of {(xn, yn)} converges
strongly to (x0, y0). Thus, SMQVLI (2.1) is α-well-posed in the generalized sense.

Example 4.5. Let X = Y = R and C = D = [0, 1]. Let S(x, y) = [0, x], T(x, y) = [0, y], A(x, y) =
B(x, y) = −(x − y)2, η̂(x, z) = x − z, η(y,w) = y − w, and f(x, y) = g(x, y) = −xy for all
x, z ∈ C and y,w ∈ D. Obviously, the conditions (i)–(v) of Theorem 4.4 are satisfied, and
Ωα(ε) = [0, 1]×[0, 1]. By Theorem 4.4, SMQVLI (2.1) is α-well-posed in the generalized sense.

Corollary 4.6 (i.e., [35, Theorem 4.2]). Assume that the following conditions hold:

(i) set-valued mappings S and T are nonempty convex-valued, (s,w)-closed, (s, s)-lower
semicontinuous, and (s,w)-subcontinuous on C ×D;

(ii) functions f and g are continuous on C ×D;

(iii) for any y ∈ D, the function f(·, y) is convex on C; for any x ∈ C, the function g(x, ·) is
convex on D.

Then, SQEP (2.2) is α-well-posed in the generalized sense if and only if

Mε /= ∅, ∀ε > 0, lim
ε→ 0

μ(Mε) = 0. (4.12)

We now give a sufficient condition for the α-well-posedness in the generalized sense
of SMQVLI (2.1) in finite-dimensional spaces.

Theorem 4.7. Let X and Y be two finite-dimensional spaces. Suppose that the following conditions
hold:

(i) set-valued mappings S and T are nonempty convex-valued, closed, lower semicontinuous,
and subcontinuous on C ×D;
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(ii) single-valued mappings A and B are continuous on C ×D;

(iii) single-valued mappings η̂ and η are Lipschitz continuous with constants ̂λ and λ
respectively, such that

(a) (a) η̂(x1, x3) = η̂(x1, x2) + η̂(x2, x3) for all x1, x2, x3 ∈ C and η(y1, y3) =
η(y1, y2) + η(y2, y3) for all y1, y2, y3 ∈ D,

(b) (b) η̂(·, ·) and η(·, ·) both are affine in the second variable;

(iv) functions f and g are continuous on C ×D;

(v) for any y ∈ D, the function f(·, y) is convex on C; for any x ∈ C, the function g(x, ·) is
convex on D;

(vi) Ωα(ε) is nonempty bounded for some ε > 0.

Then, SMQVLI (2.1) is α-well-posed in the generalized sense.

Proof. Let {(xn, yn)} be any α-approximating sequence for SMQVLI (2.1). Then there exists a
sequence εn > 0 with εn → 0 such that

d
(

xn, S
(

xn, yn

)) ≤ εn,
〈

A
(

xn, yn

)

, η̂(xn, z)
〉

+ f
(

xn, yn

) − f
(

z, yn

) ≤ εn +
α

2
‖xn − z‖2,

∀z ∈ S
(

xn, yn

)

,

d
(

yn, T
(

xn, yn

)) ≤ εn,
〈

B
(

xn, yn

)

, η
(

yn,w
)〉

+ g
(

xn, yn

) − g(xn,w) ≤ εn +
α

2
∥

∥yn −w
∥

∥

2
,

∀w ∈ T
(

xn, yn

)

.

(4.13)

As proven in Theorem 3.8, {(xn, yn)} is bounded. Then there exists a subsequence {(xnj , ynj )}
of {(xn, yn)} which converges to (x0, y0). Reasoning as in Theorem 3.4, one can prove that
(x0, y0) solves SMQVLI (2.1). Therefore, SMQVLI (2.1) is α-well-posed in the generalized
sense.

The following example shows that the nonempty boundedness of Ωα(ε) is necessary
for some ε > 0.

Example 4.8. Let X = Y = R and C = D = R+ (= [0,+∞)). Let S(x, y) = [0, x], T(x, y) = [0, y],
A(x, y) = B(x, y) = −(x − y)2, η̂(x, z) = x − z, η(y,w) = y − w, and f(x, y) = g(x, y) = −xy
for all x, z ∈ C and y,w ∈ D. Clearly, the conditions (i)–(v) of Theorem 4.7 are satisfied. But
Ωα(ε) = [0,+∞) × [0,+∞) is unbounded. Therefore, SMQVLI (2.1) is not α-well-posed in the
generalized sense.

Corollary 4.9 (i.e., [35, Theorem 4.3]].). Let X and Y be two finite-dimensional spaces. Suppose
that the following conditions hold:

(i) set-valued mappings S and T are nonempty convex-valued, closed, lower semicontinuous,
and subcontinuous on C ×D;

(ii) functions f and g are continuous on C ×D;
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(iii) for any y ∈ D, the function f(·, y) is convex on C; for any x ∈ C, the function g(x, ·) is
convex on D;

(iv) Mε is nonempty bounded for some ε > 0.

Then, SQEP (2.2) is α-well-posed in the generalized sense.

5. Concluding Remarks

In this paper, we generalize the concept of α-well-posedness to the system of mixed
quasivariational-like inequalities which includes as a special case symmetric quasiequi-
librium problems considered by Long and Huang [35]. It is well known that symmetric
quasiequilibrium problems include equilibrium problems, Nash equilibrium problems,
quasivariational inequalities, variational inequalities, and fixed-point problems as special
cases. It is worth emphasizing that the results presented in [35] generalize and improve some
known results in the recent literature; see, for example, [12–15, 23, 33].

Further, under some suitable conditions, we obtain some metric characterizations of
α-well-posedness for the system of mixed quasivariational-like inequalities in Banach spaces.
The results presented in this paper represent the supplement, improvement, generalization,
and development of Long and Huang’s known results [35] in the following aspects.

(i) The symmetric quasiequilibrium problem (SQEP) in [35] is extended to develop
the more general problem, that is, the system of mixed quasivariational-like
inequalities (SMQVLIs) in the setting of Banach spaces. Moreover, the concept of
α-well-posedness (resp., in the generalized sense) for SQEP is extended to develop
the concept of α-well-posedness (resp., in the generalized sense) for SMQVLI.

(ii) Since the system of mixed quasivariational-like inequalities (SMQVLIs) is more
general and more complicated than the symmetric quasiequilibrium problem
(SQEP), the assumptions in our results are very different from the corresponding
ones in [35]; see, for instance, the assumptions imposed on the single-valued
mappings A,B and η̂, η.

(iii) The new technique of arguments are applied to deriving our main results. As a
matter of fact, in the process of proving our main results, our arguments depend on
the properties of the mappings η̂, η, the uniform boundedness principle for a family
of linear continuous functionals, the completion of the Banach space (X × Y, ‖ · ‖),
and so forth. For instance, see the proof of Theorem 3.4.
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