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With the help of the generalized hyperbolic function, the subsidiary ordinary differential equation
method is improved and proposed to construct exact traveling wave solutions of the nonlinear
partial differential equations in a unified way. A class of nonlinear Schrödinger-type equations
including the generalized Zakharov system, the Rangwala-Rao equation, and the Chen-Lee-Liu
equation are investigated and the exact solutions are derived with the aid of the homogenous
balance principle and generalized hyperbolic functions. We study the effect of the generalized
hyperbolic function parameters p and q in the obtained solutions by using the computer
simulation.

1. Introduction

The nonlinear Schrödinger (NLS) equation is a ubiquitous and significant model that nat-
urally arises in many fields of physics, such as nonlinear optical systems, plasmas, fluid
dynamics, and Bose-Einstein condensation. In the last three decades, great progress has been
made on the construction of exact solutions of NLS equation. Many significant methods
have been established by mathematicians and physicists to obtain special solutions of
nonlinear partial differential equations (NLPDEs), including the inverse scattering method,
Darboux transformation, Hirota’s bilinear method, homogeneous balance method, Jacobi
elliptic function method, variational iteration method, the sine-cosine method, the (G′/G)
expansion method, tanh-function method, F-expansion method, Lucas Riccati method,
auxiliary equation method, algebraic method, and others [1–36]. The last five methods
mentioned above belong to a class of method called subsidiary ordinary differential equation
(sub-ODE) method. The key ideas of the sub-ODE method are that the travelling wave
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solutions of the complicated NLPDE can be expressed as a polynomial, the variable of which
is one of the solutions of simple and solvable ODE that called the sub-ODE. The sub-ODEs
which were often used are the Riccati equation, Jacobi elliptic equation, projective Riccati
equations, and so forth. With the development of computer science, recently, the sub-ODEs
with nonlinear terms of high order have attracted much attention [34, 35]. This is due to the
availability of symbolic computation systems like Mathematica or Maple which enable us
to perform the complex and tedious computation on computers. Recently, Sirendaoreji [21–
23] introduced the auxiliary equation method by using the six degree first-order nonlinear
differential equation,Wang et al. [24] proposed new sub-ODE equation involving an arbitrary
positive power to construct exact travelling wave solutions of NLPDEs in a unified way.
In this study, we improve the method presented by Wang et al. [24] and introduce some
solutions for the sub-ODE equation in terms of the generalized hyperbolic functions (GHFs)
[36].

The rest of this paper is organized as follows: in the following section, we introduce
the improved sub-ODE method to construct exact solutions of some NLPDEs in terms of the
GHFs. In Section 3, we apply this method to the generalized Zakharov system, the Rangwala-
Rao equation and the Chen-Lee-Liu equation. Finally, we conclude the paper and give some
futures and comments.

2. The Improved Subsidiary Ordinary Differential Equation Method

The main idea of this method is to express the solutions of NLPDEs as polynomials in the
solution of sub-ODE involving an arbitrary positive power of dependent variable that the
GHFs satisfy (see the appendix). Consider a given NLPDE

H(u, ut, ux, utt, utx, uxx, . . .) = 0. (2.1)

The improved sub-ODEmethod for solving NLPDE (2.1) proceeds in the following four steps
[36].

Step 1. We seek its traveling wave solution of (2.1) in the form

u(x, t) = u(ξ), ξ = kx −ωt, (2.2)

where k and ω are constants to be determined later. Substituting (2.2) into (2.1) yields an
ordinary differential equation

˜H
(

u, u′, u′′, u′′′, . . .
)

= 0, u′ =
du

dξ
, . . . , (2.3)

where ˜H is a polynomial of u and its various derivatives. If ˜H is not a polynomial of u and
its various derivatives, then we may use new variables v = v(ξ) which makes ˜H become
polynomial of v and its various derivatives.
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Step 2. Suppose that u(ξ) can be expressed by a finite power series of F(ξ)

u(ξ) = a0 +
n
∑

j=1

ajF
j(ξ), an /= 0, (2.4)

where n is a positive integer which can be determined by balancing the highest derivative
term with the highest nonlinear term in (2.3) and aj(j = 0, 1, . . . , n) are some parameters to
be determined. The function F(ξ) satisfies the sub-ODE with an arbitrary positive power

F ′2(ξ) = AF2(ξ) + BF2+ r(ξ) + CF2+2r(ξ), r > 0, (2.5)

where A,B, and C are parameters to be determined.

Step 3. Substituting (2.4) and (2.5) into the ODE (2.3), then the left-hand side of (2.3) can be
converted into a polynomial in F(ξ). Setting all coefficients of the polynomial to zero yields
system of algebraic equations for aj(j = 0, 1, . . . , n), k, and ω.

Step 4. Solving this system obtained in Step 3, then aj(j = 0, 1, . . . , n), k, and ω can be
expressed by A,B, and C. Substituting these results into (2.4), then the general formulae of
the travelling wave solution of (2.1) can be obtained. Selecting the values of A,B,C, and the
corresponding GHF solution F(ξ) of (2.5) given bellow to obtain the exact solutions of (2.1).
The definition and proprieties of the GHFs are given in the appendix.

We list various types of exact solutions of (2.5) as follows.

Case 1. If A > 0, B = 2σA, and C = (σ2 − pq)A, then (2.5) admits the following positive
solution:

F(ξ) =

⎡

⎢

⎣

1

coshpq
(

r
√
A ξ

)

− σ

⎤

⎥

⎦

1/r

, σ < 1. (2.6)

Case 2. If A > 0, B = 2σA, and C = (σ2 + pq)A, then (2.5) admits the following positive
solution:

F(ξ) =

⎡

⎢

⎣

1

sinhpq
(

r
√
A ξ

)

− σ

⎤

⎥

⎦

1/r

, σ < 1. (2.7)
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Case 3. IfA > 0, B = −2 √
AC, and C > 0, then (2.5) admits the following positive solution:

F(ξ) =

⎡

⎣

1
2

√

A

C

(

1 ± tanhpq
( r

2

√
A ξ

))

⎤

⎦

1/r

,

F(ξ) =

⎡

⎣

1
2

√

A

C

(

1 ± cothpq
( r

2

√
A ξ

))

⎤

⎦

1/r

.

(2.8)

Case 4. If A = 0, B = 4/r2, and C = − 4σ/r2, then (2.5) admits the following positive
solution:

F(ξ) =
[

1
ξ2 + σ

]1/r

, σ > 0. (2.9)

3. Applications

In the followingwe use the improved sub-ODEmethod to seek exact travelingwave solutions
of the class of nonlinear Schrödinger-type equations which are of interest in plasma physics,
wave propagation in nonlinear optical fibers, Ginzburg-Landau theory of superconductivity,
and so forth.

3.1. Generalized Zakharov System

In the interaction of laser-plasma the system of Zakharov equation plays an important
role. This system has wide interest and attention for many scientists. Let us consider the
generalized Zakharov system [18]:

utt − c2suxx = β
(

|E|2
)

xx
,

iEt + αExx − δ1uE + δ2 |E|2E + δ3 |E|4E = 0.

(3.1)

When δ2 = δ3 = 0, the generalized Zakharov system reduce to the famous Zakharov system
which describe the propagation Langmuir waves in plasmas. The real unknown function
u(x, t) is the fluctuation in the ion density about its equilibrium value, and the complex
unknown function E(x, t) is the slowly varying envelope of highly oscillatory electron
field. The parameters δ1, δ2, δ3 and cs are real numbers, where cs is proportional to the ion
acoustic speed (or electron sound speed). Here we seek its traveling wave solution in the
form

E(x, t) = H(ξ) ei(kx − ωt), u(x, t) = u(ξ), ξ = x − ct, (3.2)
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where k, ω, and c are constants andH(ξ) is real function. Therefore, system (3.1) is reduced
to

(

c2 − c2s
)

u′′ = β(H2)
′′
,

αH ′′ + i(2αk − c)H ′ +
(

ω − αk2
)

H − δ1uH + δ2H3 + δ3H5 = 0.

(3.3)

Integrating the first equation of (3.3)with respect to ξ and taking the integration constants to
zero yields

u =
β

c2 − c2s
H2, c2 − c2s /= 0. (3.4)

Substituting (3.4) into (3.3) results in

H ′′ +
1
α

[

(

ω − αk2
)

H +
(

δ2 −
δ1β

c2 − c2s

)

H3 + δ3H5
]

= 0, c = 2α k, α /= 0. (3.5)

Now, by balancing the higher order derivative term H ′′ to the higher power nonlinear term
H5 in (3.5), we have n+2r = 5nwhich gives 2r = 4n. Since nmust be a positive integer, thus
r = 2, 4, 6, . . . this gives n = 1, 2, 3, . . .. For simplicity, we take r = 2 and n = 1. We suppose that

H(ξ) = a0 + a1F(ξ). (3.6)

Substituting (3.6)with (2.5) into (3.5) and equating each of the coefficients of F(ξ) to zero, we
obtain system of algebraic equations. Solving this system by using Maple, yields

a0 = 0, c = 2αk, ω = α
(

k2 −A
)

, a1 = ±
√

3C
2δ3B

(

δ2 −
βδ1

4α2k2 − c2s

)

. (3.7)

Now based on the solutions of (2.5), one can obtain new types of solitary wave solution of
the generalized Zakharov system. The general formulae take the form

u(x, t) =
3Cβ

2δ3B
(

4α2k2 − c2s
)

(

δ2 −
βδ1

4α2k2 − c2s

)

F2(x − 2αkt),

E(x, t) = ±
√

3C
2δ3B

(

δ2 −
βδ1

4α2k2 − c2s

)

F(x − 2αkt)ei(kx−ωt).

(3.8)
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By selecting the special values of the A,B,C and the corresponding function F(ξ), we have
the following solutions of the generalized Zakharov system (3.1):

u1 =
3β

(

σ2 − pq)

4δ3σ
(

4α2k2 − c2s
)

(

δ2 −
βδ1

4α2k2 − c2s

)

⎡

⎢

⎣

1

coshpq
(

2
√
A (x − 2αkt)

)

− σ

⎤

⎥

⎦
,

E1 = ±

√

√

√

√

√

√

3
(

σ2 − pq)

4δ3σ

(

δ2 −
βδ1

4α2k2 − c2s

)

⎡

⎢

⎣

1

coshpq
(

2
√
A (x − 2αkt)

)

− σ

⎤

⎥

⎦
ei(kx− ωt),

(3.9)

u2 =
3β

(

σ2 + pq
)

4δ3σ
(

4α2k2 − c2s
)

(

δ2 −
βδ1

4α2k2 − c2s

)

⎡

⎢

⎣

1

sinhpq
(

2
√
A(x − 2αkt)

)

− σ

⎤

⎥

⎦
,

E2 = ±
√

3
(

σ2 + pq
)

4δ3σ

(

δ2 −
βδ1

4α2k2 − c2s

)

⎡

⎢

⎣

1

sinhpq
(

2
√
A(x − 2αkt)

)

− σ

⎤

⎥

⎦

1/2

ei(kx−ωt),

(3.10)

u3 =
3βC

8δ3A
(

4α2k2 − c2s
)

(

βδ1

4α2k2 − c2s
− δ2

)

[

1 ± tanhpq
(√

A (x − 2αkt)
)]

,

E3 = ±1
2

√

3C
2δ3A

(

βδ1

4α2k2 − c2s
− δ2

)

[

1 ± tanhpq
(√

A(x − 2αkt)
)]

ei(kx− ωt),

(3.11)

u4 =
3βC

8δ3A
(

4 α2k2 − c2s
)

(

βδ1

4α2k2 − c2s
− δ2

)

[

1 ± cothpq
(√

A(x − 2αkt)
) ]

,

E4 = ± 1
2

√

3C
2δ3A

(

βδ1

4α2k2 − c2s
− δ2

)

[

1 ± cothpq
(√

A(x − 2αkt)
)]

ei(kx− ωt),

(3.12)

u5 =
3σβ

2δ3
(

4α2k2 − c2s
)

(

βδ1

4α2k2 − c2s
− δ2

)

[

1

(x − 2αkt)2 + σ

]

,

E5 = ±
√

√

√

√

3
2δ3

(

βδ1

4α2k2 − c2s
− δ2

)

[

1

(x − 2αkt)2 + σ

]

ei(kx− ωt) .

(3.13)

In order to understand the significance of these solutions expressed by (3.9)–(3.13), the main
features of them are investigated by using direct computer simulations with the accuracy as
high as 10−9. We study the effect of the parameters p and q of the GHF in the solution u1
given by the first equation of (3.9) by choosing different values of the parameters p and q,
for A = δ1 = δ2 = δ3 = α = β = k = 1, σ = 0.9, and cs = 0.4, by means of Figures 1,
2, and 3 over same region {(x, t) : ‖x‖ ≤ 5, ‖t‖ ≤ 5}. From Figures 1, 2 and 3, we see that
the solution u1 describes dark soliton solution (increase, decrease, and have singularity with
the change of the two parameters p and q). Also, we discuss u2 given by the first equation
of (3.10), by taking the same value of the parameters by means of Figures 4, 5, and 6 over
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Figure 1: Evolutional behaviour of u1 describes dark soliton: (a) p = q = 1; (b) p = 1/32, q = 1/33,
(singular wave solution); (c) p = 23, q = 32; (d) p = 1/13, q = 11; (e) p = 13, q = 1/11 .

the region {(x, t) : ‖x‖ ≤ 5, ‖t‖ ≤ 5}. From Figures 4, 5, and 6, we see that the solution u2
describes singular wave solution changed with different value of the two parameters p and
q. Of course, we can plot the other figures of the exact solutions of (3.1), we omit them here
for convenience. As a result, we find that the parameters p and q affect the solution structure.

3.2. Rangwala-Rao Equation

The Rangwala-Rao equation [19]

uxt − β1uxx + u + iTβ2 |u|2ux = 0, T = ± 1, (3.14)

where β1 and β2 are real constants. Rangwala and Rao introduced (3.14) as the integrability
condition when they studied the mixed derivative nonlinear Schrödinger equations and
looked for the Bäckland transformation and solitary wave solutions.

Suppose the exact solutions of (3.14) is of the form

u(x, t) = e−ωt eiψ(x−ct) H(x − ct), (3.15)
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Figure 2: Evolutional behaviour of u1 describes dark soliton: (a) p = 1, q = 1/32 (singular wave solution);
(b) p = 1, q = 3; (c) p = 1, q = 27.
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Figure 3: Evolutional behaviour of u1 describes dark soliton: (a) p = 1/32, q = 1; (singular wave solution);
(b) p = 3, q = 1; (c) p = 27, q = 1.

where ω, c are constants determined later and ψ, H are undetermined real functions with
one variable only. Set the relation of ψ, H as

ψ ′(ξ) =
ω

2
(

c + β1
) +

Tβ2

4
(

c + β1
) H2(ξ), ′ =

d

dξ
, ξ = x − ct, (3.16)

substituting (3.15)with (3.16) into (3.14) simultaneously yields

H ′′ − 4
(

c + β1
) −ω2

4
(

c + β1
)2

H − Tβ2ω

2
(

c + β1
)2

H3 +
3T2β22

16
(

c + β1
)2
H5 = 0. (3.17)

Applying the homogeneous balance principle, to (3.17) we have r = 2, 4, 6, . . . this gives n =
1, 2, 3, . . .. For simplicity, we suppose

H(ξ) = a0 + a1F(ξ). (3.18)
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Figure 4: Evolutional behaviour of u2 describes singular wave solution: (a) p = q = 1; (b) p = 1/32, q =
1/33; (c) p = 23, q = 32; (d) p = 1/13, q = 11; (e) p = 13, q = 1/11 .

Substituting (3.18) with (2.5) into (3.17) and equating each of the coefficients of F(ξ) to zero,
we obtain system of algebraic equations. Solving this systemwith the aid of Maple, we obtain
the following solution:

a0 = 0, ω = ± 2
√

(

c + β1
)[

1 − (

c + β1
)

A
]

, a1 = ±
√

− 8Cω
3TBβ2

. (3.19)

The general formulae of the solution of Rangwala-Rao equation

u(x, t) = ±
√

− 8Cω
3TBβ2

F(x − ct) e−iωteiψ(x−ct), (3.20)

with ψ(ξ) = ω/(6 B (c + β1))
∫

[3B + 4CF2(ξ)] dξ, ω = ± 2
√

(c + β1)[1 − (c + β1)A]. By
selecting the special values of the A,B,C and the corresponding function F(ξ)yields

|u1(x, t)|2 = − 4
(

σ − pq)ω
3Tσβ2

[

coshpq
(

2
√
A (x − ct)

)

− σ
] , (3.21)
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Figure 5: Evolutional behaviour of u2describes singular wave solution: (a) p = 1, q = 1/32; (b) p = 1, q =
3; (c) p = 1, q = 27.
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Figure 6: Evolutional behaviour of u2 describes singular wave solution: (a) p = 1/32, q = 1; (b) p = 3, q =
1; (c) p = 27, q = 1.

|u2(x, t)|2 = − 4
(

σ + pq
)

ω

3Tσβ2
[

sinhpq
(

2
√
A (x − ct)

)

− σ
] . (3.22)

We omitted the reminder solutions for simplicity. Now, we study the affect of the parameters
p and q of the GHF in the intensity u1 given by the (3.21) by choosing different values of
the parameters p and q, for A = δ = c = β2 = T = 1, ω = 0.4, and σ = 0.9, by means
of Figure 7 over the region {(x, t) : ‖x‖ ≤ 5, ‖t‖ ≤ 5}. We have bright soliton which are
increase, decrease and have singularity with the different choose of the two parameters p and
q. This means that the parameters p and q affect in the solution structure.
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Figure 7: Evolutional behaviour of the intensity |u1|2 describes the bright soliton: (a) p = 1, q = 1; (b)
p = 1/332, q = 1/333 (singular wave solution); (c) p = 2.132, q = 1.723.

3.3. Chen-Lee-Liu Equation

The Chen-Lee-Liu equation [19]

iut + uxx + iδ|u|2ux = 0, (3.23)

were δ is a real constant. Similar as before, we suppose that the exact solution of (3.23)is of
the form

u(x, t) = e−ωteiψ(x−ct) H(x − ct). (3.24)

Set the relation of ψ, H as

ψ ′(ξ) =
c

2
+
δ

4
H2(ξ), ′ =

d

dξ
, ξ = x − ct, (3.25)

substituting (3.25)with (3.24) into (3.23) simultaneously yields

H ′′ +
1
4

(

4ω + c2
)

H − cδ

2
H3 +

3δ2

16
H5 = 0. (3.26)

According the homogeneous balance principle, we have r = 2, 4, 6, . . . and n = 1, 2, 3, . . ., we
let

H(ξ) = a0 + a1F(ξ). (3.27)

Substituting (3.27) with (2.5) into (3.26) and equating each of the coefficients of F(ξ) to zero,
we obtain system of algebraic equations. Solving this systemwith the aid of Maple, we obtain
the following solution:

a0 = 0, ω = A − c2

4
, a1 = ± 2

√

− cC
δβ2

. (3.28)
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Figure 8: Evolutional behaviour of the intensity |u1|2 describes the bright soliton: (a) p = 1, q = 1; (b)
p = 1/332, q = 1/333 (singular wave solution); (c) p = 2.132, q = 1.723.

The general formulae of the solution of Chen-Lee-Liu equation

u(x, t) = ± 2

√

− cC
δβ2

F(x − ct)e−iωtei ψ(x−ct), (3.29)

with ψ(ξ) = (c/2B)
∫

[B + 2CF2(ξ)] dξ, ω = A − (c2/4). By selecting the special values of the
A,B,C and the corresponding function F(ξ) yields

|u1(x, t)|2 = − 2c
(

σ − pq)

δσ
[

coshpq
(

2
√
A (x − ct)

)

− σ
] , (3.30)

|u2(x, t)|2 = − 2c
(

σ + pq
)

δσ
[

sinhpq
(

2
√
A (x − ct)

)

− σ
] . (3.31)

We omitted the reminder solutions for simplicity. Now, we show the effect of the parameters
p and q of the GHF in the intensity u1 given by the (3.30) by choosing different values of
the parameters p and q, for A = δ = c = 1, and σ = 0.9, by means of Figure 8 over the
region {(x, t) : |x| ≤ 5, |t| ≤ 5}. We have bright soliton which are increase, decrease and
have singularity with the different choose of the two parameters p and q. This means that the
parameters p and q affect in the solution structure.

Besides the solutions obtained above, the ODE equation (2.5), albeit with different
parameters, has been studied in the different context [20–24]. It has been shown that
this equation possesses abundant solutions, including Weierstrass function solutions, kink
solutions and periodic solutions, and so forth. To the best of our knowledge, some of our
explicit solutions are new.

Notice that the GHFs are generalization of the hyperbolic functions as stated in
the appendix. Also, the two parameters p and q describe the degree of the wave energy
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localization in the obtained solutions. Referring to [18, 19], it is easy to see that the obtained
results in this paper are new and the improved method is valuable.

4. Summary and Discussion

In this paper, a set of sub-ODEs are introduced by using GHFs. Also, we have obtained
many families of exact traveling wave solutions of a class of nonlinear Schrödinger equations
including the generalized Zakharov system, the Rangwala-Rao equation, and the chen-Lee-
Liu equation. We study and analyze the properties of these solutions by taking different
parameter values of the generalized hyperbolic functions p and q. As a result, we find
that these parameter values affect the solution structure. These solutions include the GHF
solution, hyperbolic function solution, q deformed hyperbolic function solution, and others.
The obtained solutions which depend on p and q may be of important significance for the
explanation of some practical physical problems. We believe that one can apply this method
to many other nonlinear differential equations in mathematical physics.

Appendix

The generalized hyperbolic sine, cosine, and tangent functions are

sinhpq(ξ) =
peξ − qe−ξ

2
, coshpq(ξ) =

peξ + qe−ξ

2
, tanhpq(ξ) =

peξ − qe−ξ
peξ + qe−ξ

, (A.1)

where ξ is an independent variable, p and q are arbitrary constants greater than zero and
called deformation parameters. The generalized hyperbolic cotangent function is cothpq(ξ) =
1/tanhpq(ξ), the generalized hyperbolic secant function is sechpq(ξ) = 1/coshpq(ξ), the
generalized hyperbolic cosecant function is cschpq(ξ) = 1/sinhpq(ξ), the above six kinds of
functions are said GHFs. These functions satisfy the following relations [9, 12]:

cosh2
pq(ξ) − sinh2

pq(ξ) = pq, coshpq(ξ) =
√

pq cosh
(

ξ − 1
2
ln
q

p

)

,

(

sinhpq(ξ)
)′ = coshpq(ξ),

(

coshpq(ξ)
)′ = sinhpq(ξ).

(A.2)

Note that if p, q /= 1 then sinhpq(ξ) is not odd and cos hpq(ξ) is not even:

sinhpq(−ξ) = −pq sinh(1/p)(1/q) (ξ), coshpq(−ξ) = pq cosh(1/p)(1/q)(ξ). (A.3)
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