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Among spinning objects, the tippe top exhibits one of the most bizarre and counterintuitive
behaviours. The commercially available tippe tops basically consist of a section of a sphere with a
rod. After spinning on its rounded body, the top flips over and continues spinning on the stem.
The commonly used simplified mathematical model for the tippe top is a sphere whose mass
distribution is axially but not spherically symmetric, spinning on a flat surface subject to a small
friction force that is due to sliding. Three main different dynamical behaviours are distinguished:
tipping, nontipping, hanging, that is, the top rises but converges to an intermediate state instead of
rising all the way to the vertical state. Subclasses according to the stability of relative equilibria
can further be distinguished. Our concern is the degree of confidence in the mathematical model
predictions, we applied 3D printing and rapid prototyping to manufacture a “3-in-1 toy” that could
catch the three main characteristics defining the three main groups in the classification of spherical
tippe tops as mentioned above. We propose three designs. This “toy” is suitable to validate the
mathematical model qualitatively and quantitatively.

1. Introduction

Spinning toys are among the most ancient toys, and there is a great variety of them. It is quite
simple to start spinning objects like a top or a gyroscope, and though it is simple to explain
their motion in general, it is challenging to write down the detailed equations of motion.
Among spinning objects, the tippe top exhibits one of the most bizarre and counterintuitive
behaviours. The commercially available tippe tops, patented in Denmark in the 50s, basically
consist of a section of a sphere with a rod. After spinning on its rounded body, the top flips
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Figure 1: The tippe top, showing inversion.

over and continues spinning on the stem. It is the friction with the bottom surface and the
position of the center of mass below the centre of curvature that cause the tippe top to rise its
centre of mass while continuing rotating around its symmetry axis (through the stem). See
Figure 1 for an illustration. Remarkably, at the inverted state, the center of mass lies higher
than at the initial condition, defying gravity. Experimentally, it is known that such a transition
occurs only if the initial spin exceeds a certain critical threshold.

The commonly used simplified mathematical model for the tippe top is a sphere
whose mass distribution is axially but not spherically symmetric, spinning on a flat surface
subject to a small friction force that is due to sliding. Adopting a bifurcation theory point
of view we reach a global geometric understanding of the phase diagram of this dynamical
system. According to the eccentricity of the sphere and the Jellett invariant (which includes
information on the initial angular velocity) six main classes of tops can be identified within
three main groups according to the distinguished dynamical behaviours: tipping, nontipping,
and hanging; see Figure 3. Note that objects displaying inversion properties such as the tippe
top have been known since the 1800s, see, for example, [1]. After the type of tippe top as in
Figure 1 was introduced in Denmark, several theoretical articles have been published since
then, see, for example, [2–6] for a survey of the literature. Since it was established that sliding
friction was necessary to explain the tippe top inversion [2, 7, 8], many studies have been
dedicated to the analysis of models for tippe tops, involving linear stability analysis of the
relative equilibria, numerical simulations, and so forth. Some studies have addressed the
occurrence of transitions between rolling and sliding during the motion, see [3, 4, 9]. In
this paper the presented mathematical results mainly reproduce those in [10–15] but our
approach is inspired by the hands-on numerical approach as first attempted by Cohen in [2].
We believe this approach is the best choice in giving a clear view of the role of the different
parameters that is necessary during the design process of an actual three-dimensional object
that effectively demonstrates the model. We remark that in the mathematical model we stick
to the common assumption that the only external force acting on the system consists of
a normal reaction force and a frictional force of viscous type opposing the motion of the
contact point in the supporting plane. This is the most common assumption in the literature,
though in [4] the inclusion of a nonlinear Coulomb-type friction is discussed. It is shown
there by numerical simulations that the Coulomb term contributes to the tippe top inversion
but the effect is weaker compared to the viscous term. The nonlinear Coulomb term results
in algebraic destabilization of the initially spinning top, whereas the viscous friction gives
exponential destabilization, see also [5]. This argument motivates our choice of including
viscous friction only.
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The phase diagram and bifurcation diagrams illustrate the main results that confirm
the findings described in [10]; the type of asymptotic dynamics is a function of the Jellett
invariant (which includes information on the initial angular velocity) and eccentricity of the
sphere. Either the asymptotic state is unique or the system is bistable. Three main different
regimes are distinguished: no tippe top phenomenon occurs no matter what the initial spin
is, tippe top dynamics may occur if the Jellett invariant (which is proportional to the initial
spin) is sufficiently large, or incomplete tippe top behaviour occurs, where the top rises but
converges to an intermediate state instead of rising all the way to the vertical state.

We underline that though the classification results can be obtained in a less
cumbersome way by using the Routhian reduction as in [10], the approach used in this
paper is standard and straightforward to implement from a prototyping point of view. Also,
it is amenable for extensions to include for example transitions from sliding to rolling and
vice versa. Our concern in this paper is the degree of confidence in the mathematical model
predictions. We wanted to be sure that the mathematical model as presented here and in [10]
reflected the reality. Our goal was to investigate if it was possible to make a “3-in-1 toy” that
could catch the three main characteristics tipping, nontipping, and hanging that define the three
main groups in the classification of spherical tippe tops as mentioned above. As far as we
know such a toy does not exist yet. We successfully applied the methodology for efficient use
of prototyping during the design process as presented in [16]. To the best of our knowledge
this is the first time that 3D printing and rapid prototyping is being applied to design and
to produce a “toy” suitable to validate the qualitative and quantitative mathematical model
describing the behaviour of a dissipative nonlinear dynamical system. From the bifurcation
diagram it was clear that it should be possible to hit three out of the 6 classes of tippe
tops (one type for each main group) by keeping one of the characterizing parameters of the
system fixed and varying the other. We believe that the realization of an actual toy is a more
powerful validation of the model than software simulations which are directly affected by
the underlying mathematical idealization assumptions.

Since the two parameters on which the whole classification is based, inertia ratio and
eccentricity, are not independent, the challenge was to come up with a feasible prototype
which could be easily mechanically driven. After detailed mathematical calculations and the
development of 3D animations (see electronic attachments or http://cage.ugent.be/∼bm/
tippetop/tippetop.html) we used 3D printing to create a functional model giving us a quick
and easy hands-on demonstration capability.

2. Mathematical Results

In this paper we consider a sphere whose mass distribution is axially but not spherically
symmetric, spinning on a flat surface subject to a small friction force that is due to sliding.
In [13], Ebenfeld and Scheck presented a detailed analysis of the dynamics of the eccentric
spinning sphere on a flat surface where friction is assumed to be only due to sliding, see
also [14]. Without making any other assumptions, we show that their results imply a full
qualitative understanding of the asymptotic long-term dynamics. Whereas the treatment of
[13, 14] is mainly analytical, here we adopt a bifurcation theory point of view leading to a
global geometric understanding of the phase diagram. The phase diagram in Figure 2 and
bifurcation diagrams in Figure 3 illustrate our main results. Recall that an ω-limit set of a
dynamical system is a closed invariant set that is accumulated by a (forward) trajectory [17].
Our main result is summarized in the following theorem.
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Figure 2: Phase diagram for the dynamics of the eccentric sphere with small sliding friction. The regions
of the phase diagram correspond to the qualitative types of bifurcation diagrams of SO(2)×SO(2) relative
equilibria in Figure 3.

Theorem 2.1. A spinning eccentric sphere on a flat surface with small slipping friction admits three
types of (asymptotically stable) ω-limit sets:

(i) vertically spinning top (θ = 0), which has its center of mass straight below its geometric
center,

(ii) vertically spinning top (θ = π), which has its center of mass straight above its geometric
center,

(iii) intermediate spinning top (0 < θ < π), whose center of mass is neither straight below nor
straight above its geometric center.

These are solutions of constant energy that are purely rolling due to the assumption on sliding friction
(i.e., they display no slipping). The vertical states are periodic, whereas, in general, the intermediate
states are quasiperiodic.

At most two of the above types of solutions can be stable at the same time. In case the stable
solution is unique its basin of attraction consists of almost the entire phase space (subset of full
measure). If the system is bistable, the separatrix between the two different domains of attraction for the
asymptotically stable states is expected to be formed by the stable manifold of an unstable intermediate
spinning top solution.

All the analytical results needed to arrive at this conclusion can in principle be found
in [13, 14]. However, these papers stop short of drawing the full global conclusions as
formulated in the above theorem, and also crucially they did not present the phase diagram
and bifurcation diagrams that we present in Figures 2 and 3.

We note that for the eccentric sphere in regime I, the state θ = 0 is always asymp-
totically stable and thus does not display the tippe top phenomenon. Similarly, no such
dynamics arises in regime III since there the inverted state θ = π is always unstable. Tippe top
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Figure 3: Qualitative bifurcation diagrams of SO(2) × SO(2) relative equilibria, for the different regions in
the phase diagram of Figure 2. Solid black branches correspond to stable relative equilibria, while dashed
black branches correspond to unstable ones. The vertical states θ = 0 and θ = π always exist, from which
intermediate states (with 0 < θ < π) may branch off.

dynamics may occur in regime II if the Jellett invariant (which is proportional to the initial
spin) is sufficiently large, corresponding to the empirical observation that tippe top dynamics
requires a sufficiently large initial spin. In the subregimes IIb and III it is also possible to
observe incomplete tippe top behaviour, where the top rises but converges to an intermediate
state instead of rising all the way to the vertical state θ = π . Note that, in regime I, tipping
might occur if the top is initially spun sufficiently fast under an angle not close to θ = 0.

It is important to recognize the existence of symmetries. Recall that symmetries are
transformations of the phase space that map solutions of a system to other solutions. In our
model of the eccentric sphere on a flat surface, symmetries arise due to the homogeneity of the
surface on which the sphere moves and the rotational symmetry of the eccentric sphere. The
combined symmetries are thus the Euclidean group E(2) (acting as translations and rotations
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in the xy plane) and the rotation group SO(2) acting as rotation of the sphere around its axis
of symmetry.

It turns out that theω-limit sets mentioned above are all relative equilibria with respect
to the symmetry group SO(2) × SO(2) < E(2) × SO(2), see Section 4. Recall that relative
equilibria with respect to a group Σ are equilibria for the associated flow on a reduced phase
space that is obtained from the original phase space by taking the quotient with respect
to the action of Σ. The existence and type of such relative equilibria depend solely on the
inertia ratio, the eccentricity of the sphere, and the Jellett integral of motion. We identify a
number of regimes characterizing the relative equilibria as a function of the Jellett invariant
(which is proportional to the initial angular velocity). The vertical states θ = 0 and θ = π
are always SO(2) × SO(2) relative equilibria and their stability depends on the inertia ratio,
the eccentricity of the sphere, and the Jellett integral of motion. In addition, intermediate
states may exist, which branch off from the vertically spinning solutions. We sketch the
phase diagram in Figure 2. For the labeled regions in this phase diagram, the corresponding
bifurcation diagrams for the relative equilibria are presented in Figure 3.

The proof of Theorem 2.1, which builds upon the results by [13, 14], can be found
in the appendix. In order to present our point of view clearly and in a self-contained way,
in Section 3 we also present a derivation of the equations of motion of the eccentric sphere
model of the tippe top, including a discussion of the symmetries and their consequences. Here
also, one finds a precise description of the assumed nature of the friction and a definition of
all the relevant variables that appear as parameters in Figures 2 and 3. In Sections 4 and 5
the relative equilibria of the system and their stability are discussed. The readers who are
acquainted with the topic can start reading from Section 6.

We would like to point out that the strategy of proof used here may well be applicable
to a large number of similar examples of mechanical systems under the influence of some
kind of friction, such as the Rattleback [18] or Hycaro tippe top of Tokieda [19]. The key
observation is that for mechanical systems under the influence of friction, in a natural way the
energy becomes a Lyapunov function since friction causes energy loss. The next observation is
that orbits which do not dissipate energy need to lie entirely on a subvariety of the phase
space that is defined by the condition that friction is absent. Equilibria naturally lie on this
subset since they have zero velocity and friction is absent at zero velocity. However, one
would expect that typically no solution lies entirely on this subvariety, unless the solution
lies on the orbit of a symmetry group that leaves the zero friction subvariety invariant. (One
can make this precise by constructing a small local perturbation that moves a solution off the
zero friction subvariety.) In many cases, the set of such relative equilibria can be accurately
analyzed, either analytically or numerically, and the local stability properties can be deduced
from a dissipation-induced instability point of view, based on the local stability properties
of the relative equilibria in the absence of friction. We note in this respect that the set of ω-
limit sets on the zero friction subvariety is independent of the form and size of the friction.
The final step is to draw global conclusions from this local information. The latter is within
reach if one has a good understanding of the ω-limit sets. We would like to stress that
Theorem 2.1 concerns the asymptotic dynamics. In an experiment with small friction, the
observation may well be dominated by transient dynamics which bears strong resemblance
(on short time scales) to the dynamics of the spherical top without friction. The dynamics of
the latter is rather complicated as it is a nonintegrable Hamiltonian system. In Section 7 we
present some results from numerical simulations demonstrating explicitly some examples
where the transient dynamics does not appear to prevent fast convergence to the asymptotic
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Figure 4: Eccentric sphere version of the tippe top. R is the radius of the sphere, the center of mass O is off
center by ε. The top spins on a horizontal table with point of contact Q. The axis of symmetry is Oz and
the vertical axis is OZ, they define a plane Π (containing OQ) which processes about OZ with angular
velocity ϕ̇. The height of O above the table is h(θ).

states (although of course for sufficiently small friction coefficient the transient dynamics
would dominate on finite time intervals).

3. The Equations of Motion

We consider an eccentric sphere as in Figure 4, where O denotes the center of mass and C the
center of the sphere. The line joining the center of mass and the geometrical center is an axis
of inertial symmetry: in the plane perpendicular to this axis the moment of inertia tensor of
the sphere has two equal principal moments of inertia.

We describe the motion of the sphere using three reference frames:

(I) an inertial (laboratory) frame Mxyz, where M is some point on the table and the
z-axis is the vertical.

(II) a (noninertial) rotating frame OXYZ whose origin is in the center of mass O and
whose 3rd axis is always parallel to the vertical. The X and Y axes are specified
below.

(III) a principal axis systemOxyz, whose z-axis is the symmetry axis of the sphere (Note
that in [5] the origin of the reference frames (II) and (III) is at the center of the
sphere, and not at the center of mass.)

The reference frames (II) and (III) are indicated in Figure 4. The eccentricity ε is the distance
between the center of mass O and the geometric center C of the sphere, with 0 < ε < R, where
R denotes the radius of the sphere. We denote the moments of inertia Ix = Iy =: A and Iz =: C.
The point of contact with the plane of support is denoted by Q.

Let (θ, ϕ, ψ) be the Euler angles of the body with respect to OZ, see Figure 5 for an
illustration. The OzZ-plane Π contains the vector q = OQ which joins the center of mass to
the point of contact. The plane Π is inclined at angle ϕ to the verticalMxz-plane and processes
with angular velocity ϕ̇ around the verticalOZ. We choose the horizontalOX in Π so thatOY
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Figure 5: Euler angles (ϕ, θ, ψ) to fully determine the body, given the coordinates of the center of mass O
in an inertial frame with center M.

is perpendicular to Π. For the rotating frame, Ox is in Π and perpendicular to the symmetry
axisOz and the axisOy coincides withOY . (Note that the axesOx andOy are principle axes,
but they are not body fixed.) The angle between the vertical OZ and the axis Oz of the top is
denoted by θ. The angular velocity θ̇ describes the nutation of the body in the vertical plane
Π. The angle ψ describes the orientation of the body with respect to theOXYZ frame and ψ̇ is
the spin of the sphere around its symmetry axis. We denote by e1, e2, e3 the unit vectors along
OX,OY, and OZ and by i, j, and k those along Ox,Oy, and Oz. Note that e2 = j. Because of
the inherent translational symmetry (of the body on the plane), it is convenient to describe
the body in terms of the relative (moving) reference frames (II) and (III), rather than in the
absolute reference frame (I). By doing so we thus ignore the translational motion on the plane
and focus on the relative motion of the body, which captures the tippe top behaviour.

The (relative) position vector of the body is

x = xi + yj + zk = Xe1 + Ye2 + Ze3, (3.1)

or x = (x, y, z)Oxyz = (X,Y,Z)OXYZ. Note that the coordinates of the reference frames (II) and
(III) are related by the relations

x = X cos(θ) − Z sin(θ),

y = Y,

z = X sin(θ) + Z cos(θ).

(3.2)
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The reference frames (II) and (III) rotate with respective angular velocities

ΩII =
(
0, 0, ϕ̇

)
OXYZ =

(−ϕ̇ sin(θ), 0, ϕ̇ cos(θ)
)
Oxyz,

ΩIII =
(−ϕ̇ sin(θ), θ̇, ϕ̇ cos(θ)

)
Oxyz.

(3.3)

The angular velocity of the body ω involves, in addition, the angular velocity ψ̇:

ω = −ϕ̇ sin(θ)i + θ̇j + nk

= ψ̇ sin(θ)e1 + θ̇e2 +
(
ϕ̇ + ψ̇ cos(θ)

)
e3

=
(
n − ϕ̇ cos(θ)

)
sin(θ)e1 + θ̇e2 +

(
ϕ̇sin2(θ) + n cos(θ)

)
e3,

(3.4)

where n := ψ̇ + ϕ̇ cos(θ) denotes the component of ω about Oz, better known as the spin.
For later use we introduce the notation ω = (ωi, ωj, ωk). Consequently, with I denoting the
inertia tensor of the sphere, the angular momentum of the sphere is given by

L = Iω = −Aϕ̇ sin(θ)i +Aθ̇j + Cnk

=
(
Cn −Aϕ̇ cos(θ)

)
sin(θ)e1 +Aθ̇e2 +

(
Aϕ̇sin2(θ) + Cn cos(θ)

)
e3.

(3.5)

The point of contact Q has coordinates

Q =
(
−h2(θ)

d

dθ

(
cos(θ)
h(θ)

)
, 0,−h2(θ)

d

dθ

(
sin(θ)
h(θ)

))

Oxyz

= (ε sin θ, 0, ε cos θ − R)OXYZ = (R sin θ, 0, ε − R cos θ)Oxyz.
(3.6)

The velocity of the point of contact Q is

VQ = vO +ω × q, (3.7)

where q = OQ denotes the vector from the center of mass O to the point of contact Q and
vO is the velocity of the center of mass. We set vO = Ue1 + V e2 +We3 and use the fact that
Q = (h′(θ), 0,−h(θ))OXYZ to obtain

ω × q =
(−θ̇h(θ), sin(θ)

(
εϕ̇ + Rψ̇

)
,−θ̇h′(θ))OXYZ

=
(−θ̇h(θ), sin(θ)

(
εϕ̇ + R

(
n − ϕ̇ cos(θ)

))
,−θ̇h′(θ))OXYZ.

(3.8)

Hence, we obtain

VQ =
(
U − θ̇h(θ), V + sin(θ)(εϕ̇ + R(n − ϕ̇ cos(θ))),W − θ̇h′(θ))OXYZ. (3.9)
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The fact that the sphere remains in contact with the table is expressed by the (holonomic)
constraint

zO = h(θ) = R − ε cos(θ), (3.10)

where h(θ) denotes the height of the center of mass O above the table, compare Figure 4.
From this constraint it follows that the e3 component of v0 is

W :=
d

dt
z0 = θ̇h′(θ) = εθ̇ sin(θ) (3.11)

so that the Z-component of VQ vanishes, consistent with the constraint.
We note that the physical interpretation of VQ concerns the phenomenon of slipping.

In case VQ /= 0 the body slips on the surface. In contrast, a rolling motion of the body is
characterized by the fact that VQ = 0.

The equations of motion will be derived, in Newton’s spirit, as a consequence of the
action of external forces. We distinguish the following forces acting on the sphere

(i) The gravitational force: G = −mge3, where m is the total mass of the sphere.

(ii) A force FQ = Rn + Rf acting on the point of contact Q, where Rn = Rne3, is the
normal reaction force at Q (due to the stiffness of the surface) and Rf is a friction
force. For completeness we mention [20] where a mathematical model for the tippe
top is proposed taking elasticity properties of the table and tippe top into account.

Friction is the resistive force acting between bodies that tends to oppose and damp out
motion. Friction is usually distinguished as being either static friction (the frictional force
opposing placing a body at rest into motion) or kinetic friction (the frictional force tending to
slow a body in motion). Importantly, we assume that the friction force is entirely due to the
slipping of the sphere on the surface and neglect all other sources of friction. Friction forces
can be complicated, and there are various models in circulation. We adopt the assumption of
viscous friction [9, 15, 21] and assume the friction force to be given by

Rf = −μRnVQ, (3.12)

where μ is the coefficient of sliding friction with the dimension of (velocity)−1. Rf is
proportional to the size of the normal reaction force and vanishes smoothly when VQ →
0. (An alternative model for the friction force is the so-called Coulomb friction Rf =
−μRn(VQ/|VQ|). This model is not appropriate when VQ → 0 due to the singular nature
of this force when VQ = 0.) Euler’s equations of motion for the sphere,

dL
dt

+Ω × L = q × FQ, (3.13)
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govern the evolution of the angular momentum L in a noninertial reference frame, rotating
with frequency Ω, due to the influence of the external torque q × FQ. The equation of motion
for the center of mass O in the rotating frame is

m

(
dvO
dt

+Ω × vO
)

= −G + FQ. (3.14)

In terms of the coordinates in reference frame (III) the equations of motion (3.13) yield

Aϕ̈ sin(θ) =
(
Cn − 2Aϕ̇ cos(θ)

)
θ̇ + zQFY ,

Aθ̈ = −ϕ̇ sin(θ)
(
Cn −Aϕ̇ cos(θ)

)
+ ZQFX −XQRn,

Cṅ = xQFY ,

(3.15)

where Q = (xQ, yQ, zQ)Oxyz = (XQ, YQ,ZQ)OXYZ and FQ = (FX, FY , FZ)OXYZ. From the
equation for the motion of the center of mass (3.14), in terms of reference frame (II), we
obtain

m
(
U̇ − ϕ̇V ) = FX,

m
(
V̇ + ϕ̇U

)
= FY ,

mẆ = Rn −mg.
(3.16)

Recalling that W = θ̇h′(θ), from the last of the latter equations we may derive an expression
for Rn:

Rn = mg +m
d

dt

(
θ̇h′(θ)

)
= mg +mε

(
θ̈ sin(θ) + θ̇2 cos(θ)

)
. (3.17)

The equations of motion (3.15) and (3.16) can be written as a system of six coupled first-order
nonlinear ordinary differential equations in the variables (u, v, α, ϕ, β, θ, n), where α := ϕ̇,
β := θ̇, u := mU, and v := mV .

Setting m = 1 for simplicity, these may be arranged in the standard form ḃ = f(b)
(when sin(θ)/= 0)

α̇ =
1

sin(θ)

[
C

A
nβ − 2α cos(θ)β + zQ

FY
A

]
,

β̇ =
1
A

[
α sin(θ)(Aα cos(θ) − Cn) − RnXQ + ZQFX

]
,

θ̇ = β,

ṅ =
xQFY

C
,

u̇ = αv + FX,

v̇ = −αu + FY ,

ϕ̇ = α,

ψ̇ = n − α cos(θ).

(3.18)
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It should be remembered that Rn, FX , and FY are still functions of the other variables. For
instance, from (3.17) and (3.18) one finds

Rn =
g + β2h′′(θ) + h′(θ)α sin(θ)(α cos(θ) − Cn/A)

1 + h′(θ)/A
[−h(θ)μ(U − βh(θ)) + h′(θ)] . (3.19)

Recall that we require that Rn ≥ 0. If this condition fails, the sphere loses contact with the
surface. Expressions for FX and FY follow similarly from (3.12).

It is important to recognize that some of the structure of the equations of motion (3.18)
is due to symmetry. We recall that the symmetries are the Euclidean group E(2) (acting as
translations, rotations, and reflections in the Mxy plane) and the rotation group SO(2) acting
as rotation of the sphere around its axis of symmetry. The effect of the Euclidean symmetry
is that the right-hand side of the equations of motion contain no reference to the position of
the sphere on the surface. In a similar way, due to the rotational symmetry the equations of
motion do not depend explicitly on ϕ. The system can be viewed as three coupled systems,
where the coupling is of skew product type: the evolution of α, β, θ, and n does not depend
on u, v, and ϕ, and the evolution of u, and v does not depend on ϕ. Moreover, note that the
position of the center of mass relative to the surface (in Mxy coordinates) could in principle
be obtained by integrating the velocities u and v over time. Because of the fact that we take
friction into account, Noether’s theorem does not apply, so the continuous symmetries we
observe need not (and do not) give rise to conserved quantities. However, it was discovered
by Jellett [8] by an approximate argument, and later proved by Routh [6], that the system
(3.18) has the following conserved quantity:

J = −L · q. (3.20)

Indeed, it follows from (3.13) that (dL/dt + Ω × L) ⊥ q, so that

d

dt
J = −L ·

(
d

dt
q +Ω × q

)
= −(Cn −Aϕ̇ cos(θ)

)
h′(θ)2 d

dt

(
sin(θ)
h′(θ)

)

︸ ︷︷ ︸
=0

= 0. (3.21)

Note that the Jellett invariant can be written as ([10, 15, 21])

J = Cn(R cos(θ) − ε) +Aϕ̇R sin2(θ). (3.22)

4. ω-Limit Sets Are Relative Equilibria

Our aim is to describe the asymptotic dynamics of the eccentric sphere. Recall that a subset
of the phase space is an ω-limit set if this set is accumulated by (forward) orbits. While
the friction force destroys the Hamiltonian nature of the dynamics, it greatly simplifies the
asymptotic dynamics. This follows from the fact that in the presence of friction the energy,
which is conserved in the absence of friction, is almost always decreasing along solutions.

The energy is given by E = T + V , where T = Trot + Ttr is the kinetic energy with its
rotational and translational part and V = mgh(θ) is the potential energy. With our choice of
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variables we may write Trot = (1/2)(Aω2
i +Aω

2
j +Cω

2
k) and Ttr = (1/2)m(ẋ2 + ẏ2 + ż2), where

ż = εm sin θθ̇.

Lemma 4.1 (see [13]). The energy E is a Lyapunov function (recall that a Lyapunov function is
nonincreasing along orbits) for (3.18). In particular,

d

dt
E = VQ · Rf ≤ 0. (4.1)

As Rf is parallel (and opposite) to VQ, (d/dt)E vanishes if and only if VQ vanishes. Observe
that E(t) decreases monotonically and hence is a suitable Lyapunov function. Moreover, E(t)
is analytic and therefore along orbits it is either strictly decreasing or constant. The energy E
is constant only if VQ = 0, that is in the absence of friction. Thus, the ω-limit sets must consist
of orbits which do not experience friction. We show that such orbits are necessarily relative
equilibria.

Proposition 4.2. Solutions have constant energy only if they are relative equilibria with respect to
the action of SO(2) × SO(2).

Proof. We already concluded that VQ needs to be equal to 0 along any orbit in an ω-limit set.
A straightforward calculation shows that VQ = (d/dt)VQ = 0 indeed implies that φ̇ = Ẋ = 0,
so that such a solution must be an SO(2) × SO(2) relative equilibrium.

This observation is in fact what one would generically expect to find. If M is a
submanifold of the phase space that corresponds to the absence of friction, in general it would
be quite unexpected to find a nonequilibrium solution that lies entirely inside M.

5. Stability and Bifurcations of Relative Equilibria

Having determined that the relative equilibria are the only possible asymptotic states in the
presence of friction, we derive in this section these solutions of constant energy using the
explicit equations of motion (3.15)-(3.16), see also [5, 13, 15]. With ϕ̇ = constant and VQ =
0, Rf = 0, the equations of motion yield α̇ = 0, β̇ = 0, β = 0, ṅ = 0, U = 0, W = 0 and

αV = 0,

α sin(θ)(Aα cos(θ) − Cn) −mgε sin(θ) = 0,

V + [R(n − α cos(θ)) + εα] sin(θ) = 0.

(5.1)

These equations have the following three types of solutions. The linear stability analysis
differs from [13, 14] in methodology.

Vertical States

(1) Vertical state θ = 0:

U = V = 0, θ = 0, n = arbitrary constant,

α = ϕ̇ = undefined constant.
(5.2)
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The top is spinning about its axle with center of mass straight below the geometric
center.

(2) Vertical state θ = π :

U = V = 0, θ = 0, n = arbitrary constant,

α = ϕ̇ = arbitrary constant.
(5.3)

The top is spinning about its axle with center of mass straight above the geometric center.

Intermediate States

For these solutions we have U = V = 0, 0 < θ < π , and n, α, and θ are related by

n = α cos(θ) − ε

R
α, (5.4)

α(Aα cos(θ) − Cn) −mgε = 0. (5.5)

Elimination of n from the above yields

α2 =
mgε

(A − C) cos(θ) + C(ε/R)
. (5.6)

Hence, the condition for the existence of intermediate states is

(
A

C
− 1
)

cos(θ) +
ε

R
> 0. (5.7)

It is natural to divide the solutions into three groups, according to regimes of the
parameters A/C and ε/R [21].

Group I: A/C < 1 − ε/R. Intermediate states exist with

θ > θc1 = cos−1
(

ε/R

1 −A/C
)
, with 0 < θc1 <

π

2
. (5.8)

Group II: 1 − ε/R < A/C < 1 + ε/R. Intermediate states exist with any 0 < θ < π .

Group III: A/C > 1 + ε/R. Intermediate states exist with

θ < θc2 = cos−1
(

ε/R

1 −A/C
)
, with

π

2
< θc2 < π. (5.9)

As in [10] we further refine this classification. Note that the intermediate states discussed
here correspond to the tumbling solutions discussed in [13].
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The intermediate states are completely determined by (5.4), (5.5), and the Jellett
invariant J . More precisely, combining the square of (3.22) with (5.4) and (5.6), they are
obtained by solving

f
(
J2, cos θ

)
:=

J2

mgεCR2

[(
A

C
− 1
)

cos(θ) +
ε

R

]
−
[(

cos(θ) − ε

R

)2
+
A

C

(
1 − cos2(θ)

)]2

= 0.

(5.10)

The next theorem summarizes the linear stability and local bifurcation results, as depicted in
Figure 3 (cf. [21]), and the proof is sketched in the Appendix. We identify six different groups
according to how the value of A/C is related to the eccentricity ε/R. In the literature, results
have previously been expressed in terms of variables n0 and nπ , referring to the spin of an
initial condition in a vertical state. We define n0 := J/C(R − ε), which is the value of the spin
n at θ = 0 for motion with Jellett invariant J . Similarly, nπ := −J/C(R + ε) denotes the spin of
the solution with Jellett invariant J at θ = π . Note that, for a fixed value of the Jellett invariant
J , these spins are related by n0 = −nπ(R + ε)/(R − ε). We further define

n± :=

√
±mgε

C[(1 ± ε/R) −A/C] (1±ε/R), b :=
ε/R−

√
(1/3)A/C

(
1 −A/C−(ε/R)2

)

1 −A/C ,

(5.11)

and θb := arccos(b). Furthermore we define c = ε/R/1 − (A/C) and θc := arccos(c).

Theorem 5.1. The bifurcation diagrams of the eccentric sphere spinning on a flat surface with small
friction fall in one of the following six categories (Figure 3).

Group I: A/C − 1 < −ε/R.
(i) The vertical state θ = 0 is stable for any value of J .

(ii) The vertical state θ = π is stable if |nπ | > n+ and unstable otherwise.

(iii) Intermediate states exist for all values of θ satisfying θ > θc.

Group Ia: b < −1. The entire branch of intermediate states is unstable.

Group Ib: b > −1. The branch of intermediate states has a fold point at θ = θb. The branch
with θ > θb is stable, while the branch with θ < θb is unstable.

Group II: −ε/R < (A/C − 1) < ε/R.

(i) The vertical state θ = 0 is stable if |n0| < n− and unstable otherwise.

(ii) The vertical state θ = π is stable if |nπ | > n+ and unstable otherwise.

(iii) Intermediate states exist for all θ. We distinguish the following three subgroups.

Group IIa: (A/C − 1) < −(ε/R)2 and |b| < 1. A fold bifurcation of intermediate states
occurs.

Group IIb: (A/C − 1) > −(ε/R)2 or b > 1. The entire branch of intermediate states is
stable.



16 Journal of Applied Mathematics

Group IIc: (A/C − 1) < −(ε/R)2 and b < −1. The entire branch of intermediate states is
unstable.

Group III: (A/C − 1) > ε/R.

(i) The vertical state θ = 0 is stable if |n0| < n−.
(ii) The vertical state θ = π is unstable for all J .

(iii) Intermediate states exist for θ < θc and are all stable.

The proof of Theorem 5.1 can be mainly recovered from [10]; for completeness we
provide the calculations based on a direct approach in the appendix.

6. Prototype of a Spherical Tippe Top

Rapid prototyping (RP) technologies enable solid models to be obtained from designs
generated with CAD applications. Their increasing popularity in industry is due to the
reduction in cost and time associated with the use of these models when verifying product
development stages and improvements in end quality. These technologies can also be applied
to verify the correctness and/or accuracy of mathematical models and last but not least to
enhance students’ active learning in the frame of a learning-by-doing approach. Students can
bring their designs to fruition and develop a deeper insight in abstract concepts. We made a
prototype of a spherical tippe top for educational use in the Product Development Laboratory
of Howest.

As pointed out earlier, to realize a 3-in-1 toy an axially symmetric sphere where one
has control over A/C and ε/R is needed. We considered three possible designs:

(1) a solid sphere with a cylindrical hole through the center where a setscrew can move;

(2) a hollow sphere with a cylindrical rod on which a weight can move;

(3) a hollow sphere with a toroidal band at the equator fitted with a cylindrical rod on
which a weight can be screwed.

From the bifurcation diagram in Figure 2, it is clear that it is possible to hit the three main
groups by fixing ε/R and changing A/C. Therefore, it is important to understand for the
three designs how A/C and ε vary with respect to each other when the weight is moved. We
set up a Maple worksheet based on the given mathematical description and calculated A/C
and ε in function of the position of the midpoint of the moving weight with respect to the
center of the sphere; this will be further on denoted by Z2. We took into account the physical
parameters: dimensions of the different parts (radii, heights, and thickness) and the density
of the materials.

From this we realized that for the solid sphere the goal of the three types is within
reach, whereas for the hollow sphere the design has to be modified. Our modifications
resulted in the third design as given above. We now discuss our findings for the realized
prototypes. Our realizations were all printed with the commercial available Dimension
SST1200es with printing technology based on the FDM principle (fused deposition modeling)
in ABSplus.
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Figure 6: First prototype of a spherical tippe top.

6.1. Sphere with Cylindrical Hole and Setscrew

For the first design we realized three different tops, varying the geometrical dimensions. This
was done because the calculation showed that for the given materials some zones are hard to
achieve or are very narrow, see Figure 7. The prototype consists of a sphere with a cylindrical
hole through the center, together with a piece of adjustable cylindrical iron wire (setscrew),
see Figure 6. With a caliper, it can be checked how deep the setscrew is set in the hole. The
position of the midpoint of the setscrew with respect to the center of the sphere is denoted
by Z2. The hole is suitable for a setscrew M12. The dimensions of the toy were chosen based
on the mathematical calculations derived from the model. The diameter of the sphere was
chosen so that one can comfortably spin the toy by hand. With a sphere of diameter 50 mm,
good values for the chosen design are a hole of radius 5.5 mm, filled with the setscrew of
height 15 mm, or a hole of radius 1.5 mm, filled with the setscrew of height 3 mm, see Figure 7.
The densities are 1.08 g/cm3 for ABSplus and 7.87 g/cm3 for the setscrew.

The prototype is axially symmetric; therefore, only the eccentricity ε and the moment
of inertia A are functions of Z2, they are easily calculated; C remains constant when moving
the setscrew up and down. In Figure 7 the quantities (A/C) − 1, ±ε/R, and −(ε(Z2)/R)

2 are
plotted as functions ofZ2, (a) for the prototype with a M12 setscrew and (b) for the prototype
with a M3 setscrew. The printed prototype in Figure 6, is of the first type and according to the
mathematical calculations will exhibit the predicted behaviour as follows: for Z2 between
0 mm and 7.95 mm the toy does not show tippe top dynamic no matter what the initial spin
is (type I), for Z2 between 7.95 mm and 17.76 mm complete tippe top dynamic is observed
(type IIc). For Z2 above 17.76 mm the top is of type IIb (incomplete tipping is observed if
initial spin is not sufficiently high).

For the different positions of the weight, we launched by hand the toy plenty (≥50)
of times and registered each time tipping, nontipping, or hanging. In Table 1 we report the
typical results for 5 launches. Note that the tippe top is hand spun, so there will be a deviation
from the starting position θ = 0. Tipping and nontipping were mostly observed in the setup



18 Journal of Applied Mathematics

Table 1: Hand launched tippe top. Observed occurrences of the different types on 5 launches.

Depth setscrew 17.5 12.5 7.5 2.5 −2.5
Z2 0 5 10 15 20

Nontipping 5 3 0 0 0
Tipping 0 1 5 4 0
Hanging 0 1 0 1 5

Theory I (sphere) I IIa IIa IIb

0.1

0.05

0

−0.05

−0.1

5 10 15 20 25

Z2

(a)

5 10 15 20 25

Z2

0.04

0.03

0.02

0.01

0

−0.01

−0.02

−0.03

(b)

Figure 7: Different tippe top regimes in function of the position Z2 of the midpoint of the setscrew. The
black lines are ±ε(Z2)/R, the blue curve is A(Z2)/C − 1, and the red curve is −(ε(Z2)/R)

2. On the left, the
result for the printed prototype with a M12 setscrew, see Figure 6. On the right, the result for a prototype
of the same shape but a setscrew M3.

of type IIa and I, respectively. For the setup of type IIb, the expected behaviour (tipping) was
not observed; we always observed the hanging behaviour. This is because we were not able
to launch the toy fast enough by hand and also because the setscrew sticking out the toy does
not allow ideal launching position. Our observations indicate that the prototype behaves as
predicted by the model. In details, tipping and hanging at Z2 = 5 can be explained by the
presence of a branch of intermediate states and stable π position that one could hit if the toy
is not launched exactly from the θ = 0 position, see Figure 3. The hanging at Z2 = 15 is due to
the fact that we did not launch the top fast enough.

For a prototype fit for a M3 screw, the intervals for Z2 are as follows: for Z2 between
0 mm and 3.33 mm the toy does not show tippe top dynamic no matter what the initial spin
is (type I); for Z2 between 3.33 mm and 18.20 mm complete tippe top dynamic is observed
(type II). For Z2 above 18.20 mm the top is of type III (incomplete tipping is observed). Also,
this prototype was spun ≥50 times, and we registered similar observations as for the previous
one.
We conclude that this prototype can give a working 3-into-1 toy but has some disadvantages.

(i) The setscrew can come loose after intensive use.

(ii) When there are three zones present, at least one of the zones is small.
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Figure 8: Design of the second prototype.

(iii) Using a caliper to know if the setscrew is in the center is not practical.

Several attempts were done in the computations to improve the design, for example,
by adding holes into the solid sphere. These attempts were not successful, so no other proto-
type was printed. Instead, we concentrated on the sphere with a cylindrical rod.

6.2. Sphere with Cylindrical Rod

The second design consists of a spherical shell with a cylindrical solid rod through the center
along which a symmetric bead is spun; this bead can be put at different heights along the
rod. In this design, the user must open the sphere and change the position of the weight by
screwing it up or down, after which the sphere can be closed and spun. See Figure 8.

The advantage of this design is that different ABS colors can easily be used for both
sides making the tipping more visible and that the rod can be marked at the critical positions.
Where in the first design setscrews of different length can be used, in this design weights
of different lengths and different widths can be considered within one toy. Also, different
materials for the rod can be considered.

However, computations show that a 3-into-1 toy was difficult to obtain with the chosen
materials: ABS, iron, and nylon. We briefly summarize our findings that form the basis of
further improvements that lead to the third prototype. We tried three different possibilities
for the rod: iron, nylon, and ABS. Nylon and ABS seem to work best. With an iron rod and
physical parameters that allow easy playing with the toy we did not succeed in catching all
the three zones. See below for the specific values of the parameters. As Figure 9(a) shows,
only zone three is hit, which means that this tippe top never shows complete inversion but
may tip up to a certain angle.

The prototype is axially symmetric; therefore, only the eccentricity ε and the moment
of inertia A are functions of Z2, they are easily calculated; C remains constant when moving
the weight up and down. The physical parameters for the construction are radius of the
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Figure 9: (a) Different tippe top regimes in function of the position of the midpoint of the setscrew. The
black lines are ±ε(Z2)/R, the blue curve is A(Z2)/C − 1, and the red curve is −(ε(Z2)/R)

2. The physical
parameters for the construction are radius of the spherical shell in ABS of 25 mm, thickness of the shell
of 2.5 mm, radius of the iron cylindrical rod of 3 mm, radius of the (iron) weight of 10 mm, and height
of the weight of 10 mm. (b) Different tippe top regimes in function of the position of the midpoint of the
setscrew. The black lines are ±ε(Z2)/R, the blue curve is A(Z2)/C − 1, and the red curve is −(ε(Z2)/R)

2.
The physical parameters for the construction are radius of the ABS spherical shell of 25 mm, thickness of
the shell of 2.5 mm, radius of the nylon cylindrical rod of 2.5 mm, radius of the (iron) weight of 10 mm, and
height of the weight of 10 mm.

spherical shell of 25 mm, thickness of the shell of 2.5 mm, radius of the cylindrical rod of
3 mm, radius of the weight of 10 mm, and height of the weight of 10 mm.

In the case of a nylon or ABS rod, it was possible to obtain a tipping top. As
illustrated in Figure 9(b), both zones II and III are hit, which means that complete tipping and
incomplete tipping may be observed according to the position of the weight. Note that the
section of the blue curve in zone III is very small, which makes it very difficult to observe the
hanging phenomenon. A similar observation holds for the section of the blue curve in zone I;
this is so small that nontipping behaviour cannot in practice be observed. Many launches of
this prototype only confirmed the observations above. This seems to be a good type II tippe
top, but we were not able to observe the other behaviours.

6.3. Sphere with a Toroidal Band and a Cylindrical Rod

The third design consists of a spherical shell with a toroidal band around the equator and a
cylindrical solid rod through the center along which a symmetric bead is spun. Also in this
design, the user must open the sphere and change the position of the weight by screwing it
up or down, after which the sphere can be closed and spun. See Figure 10.

Adding a toroidal band was a way to find a compromise between a spherical shell and
a solid sphere. The prototype is still axially symmetric, and the band provides a better click
system to open and close the toy. The physical parameters for the construction are radius of
the spherical shell of 25 mm, thickness of the shell of 3 mm, radius of the cylindrical rod of
3 mm, radius of the weight of 6 mm, and height of the weight of 10 mm. The band has the
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Figure 10: Design of the third prototype.

form of a solid of revolution generated by an ellipse rotating around the rod, the semiaxes
of the ellipse measure, respectively, 7 mm and 4 mm. The rod is made of iron. According to
the mathematical model, the top should behave as follows: forZ2 between 0 mm and 4.14 mm
the toy does not show tippe top dynamic (type I); for Z2 between 4.14 mm and 16.8 mm
complete tippe top dynamic is observed (type II). For Z2 above 16.8 mm the top is of type III
(incomplete tipping is observed).

The toy was launched many times, allowing to observe without problems zones I and
II predicted by the model. Zone III is, however, difficult to observe at first, the maximum
Z2 that can be obtained with the constructed prototype was only 15 mm (due to the fastening
system of the rod), and moreover θc > 2π/3 which is not so easy to see. Different weights can,
however, be used so that zone III becomes visible; for example, this is the case when using an
iron weight with radius 8 mm and height 5 mm. We conclude that this last prototype is a good
candidate for the 3-in-1 toy, although some further optimizations of the physical parameters
can be considered (Figure 11).

7. Numerical Illustrations

7.1. System Trajectories

In this section we present some simulations of (3.15)-(3.16). We focus on the parameter
regime of Group II since these are the tops exhibiting “tipping” behaviour. Indeed, if the
initial spin |n0| > max(n−, n2 := n+(R + ε)/(R − ε)), then tipping occurs. The trajectories lie
in the (reduced) 6-dimensional phase space (we ignore the ϕ̇ equation); here we show their
projections in the 3-dimensional subspace of the variables (α, θ, n).

Figure 12 shows a number of trajectories for a tippe top of Group IIb starting
from initial conditions u = 0, v = 0, θ = 0.01, n = arbitrary and α = (1/2A)(Cn +√
C2n2 + 4Amgε). Other input parameters are m = g = 1, the friction coefficient μ = 0.04,

the eccentricity ε/R = 0.3, and inertia ratio A/C = 0.92. Points with n < n− are stable whereas
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Figure 11: Different tippe top regimes in function of the position of the midpoint of the setscrew. The
black lines are ±ε(Z2)/R, and the blue curve is A(Z2)/C − 1, the red curve is −(ε(Z2)/R)

2. The physical
parameters for the construction are here: radius of the ABS spherical shell 25 mm, thickness of the shell
3 mm, radius of the cylindrical rod 3 mm, radius of the (iron) weight 6 mm, height of the weight 10 mm,
semi-axis of the ellipse generating the torus 7 mm and 4 mm.

those for which n > n− are unstable. Let n∗ = −n+(R + ε)/(R − ε) be the value of the initial
spin calculated for the angle θ = 0 at the Jellett where the change in stability for the inverted
position (θ = π) occurs. Trajectories originating near an unstable noninverted position are
attracted either to one of the intermediate states at an angle θ > 0 when n− < n < n∗ or when
n > n∗ to a steady state for which θ = π ; in this case, the ball rises fully to a stable inverted
vertical (tippe top) position with a final spin n determined by the Jellett. The blowups in the
insets show oscillations in the immediate neighborhood of the fixed points; these depend on
the precise initial conditions. We note also that changing μ does not affect the final destination
of the trajectories but it does affect the time needed to follow such trajectories in phase space,
this at least within our parameter range of computations.

Figure 14 shows a number of trajectories for a tippe top of Group IIa with friction
coefficient μ = 0.04, starting now under an angle close to the inverted position θ = π . Physical
parameters are m = g = 1, ε/R = 0.5, and A/C = 0.55.

Recall from Figure 3 that trajectories starting near the inverted position will,
depending on the initial spin, remain in the neighborhood of θ = π go all the way down
to the noninverted position θ = 0, or reach a stable intermediate state. For a clearer overview
of the possible behaviours we use the symmetry (n, α) → (−n,−α) and sketch in Figure 13
the curve of intermediate states (5.10) in (J, θ)-plane also indicating the essential n’s at which
changes in stability type occur. Recall that for a given θ the relations (5.6) and (5.4) determine
α and n.

The depicted trajectories have been obtained with the initial conditions u =
0, v = 0, θ = π − 0.01, n is arbitrary, and α is one of the following: α = −(Cn −√
C2n2 − 4Amgε)/(2A) =: s1(n), α = −(Cn +

√
C2n2 − 4Amgε)/(2A) =: s2(n), or α =

−Cn/2A =: s3(n). These choices were made to reduce to a minimum in the drawings the
initial oscillations in the α-direction. We start near the equilibrium on the eigenvector of the
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Figure 12: Trajectories of the system (3.15)-(3.16) projected onto the subspace of variables (α, θ, n) for
an eccentric ball of Group IIb with friction μ = 0.04. The bold-solid curve is that of intermediate states
(5.4), (5.5), and (5.10); the line S in the (α, n)-plane represents the initial condition α = (1/2A)(Cn +√
C2n2 + 4Amgε). For n > n−, fixed points on θ = 0 are unstable. Trajectories are then attracted to a stable

intermediate state (a point on the solid curve) for n− < n < n∗ or to a point on the plane θ = π (i.e., flipping
occurs) for n > n∗. The two insets are details at the starting position, one for the stable case and one for the
unstable case. The parameters are chosen as m = g = 1, ε/R = 0.3, and A/C = 0.92.
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Figure 13: Curve of intermediate states (5.10) in (J, θ)-plane.

positive eigenvalue(s) so that the motion quickly evolves in the unstable direction away from
the initial position. Trajectories originating near an unstable inverted position will either
reach a stable intermediate state at θ > θb when nb < |n| < n+ or fall in the noninverted
vertical position when |n| < nb. Here nb is the value of the initial spin corresponding to the
angle θ = θb at which intermediate states change stability type. Points on θ = π with |n| > n+
are stable and trajectories starting near the inverted state will be attracted to it.
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Figure 14: Trajectories of the system (3.15)-(3.16) projected onto the subspace of variables (α, θ, n) for an
eccentric ball of Group IIa with friction μ = 0.04. The bold curves are the intermediate states (5.10). The
curves s1, s2, and s3 in (α, n)-plane represent the curves on which the initial value of α is chosen. The
starting angle is θ = π − 0.01. The arrows indicate the final position. Points on the plane θ = π are stable
if |n| > n+, unstable otherwise. Trajectories are attracted to a noninverted position on the plane θ = 0 for
|n| < nb, or they reach a point on the red curves otherwise. Two trajectories are added to illustrate the initial
wild oscillations when α is not chosen on one of the si curves. We used m = g = 1, ε/R = 0.5, A/C = 0.55,
and μ = 0.04.

7.2. 3D Animations

In this section we comment on the 3D animations illustrating the phenomena of “tipping”
or “hanging on an intermediate state” for an eccentric sphere (http://cage.ugent.be/∼bm/
tippetop/tippetop.html). In the films, the eccentric sphere is drawn as a transparent ball with
a top in it. We focus on eccentric spheres belonging to Groups IIb and IIa, see Figure 3 for
the corresponding bifurcation diagrams. The films have been made using Maple to solve the
ODE system and feeding the results to Povray, Imagemagick and ffmpeg. The films are in
5x slow motion for the sake of clarity, so 1 second takes 5 seconds in the animation, with 30
frames for every second. For the sake of clarity the evolution of the nutation angle θ is shown
in each film.

The films for a top of Group IIb show a complete flip (See http://cage.ugent.be/∼bm/
tippetop/tippetop IIb flip.mpg), and the rising to a stable intermediate state (http://
cage.ugent.be/∼bm/tippetop/tippetop IIb IntSt Comp.mpg) for a top of Group IIa the film
shows how the top launched upside-down migrates to a stable intermediate state (http://
cage.ugent.be/∼bm/tippetop/tippetop IIaComb.mpg).

In the first film one sees a complete flip (tippe top effect) of the sphere; the physical
parameters used arem = 6 gram,R = 1.5 cm, e/R = 0.5,A = 0.82 mg/m2, andC = 0.7 mg/m2.
The friction coefficient μ is 0.3. We show 90 seconds, which is presented as 7.5 minutes of the
film.

The second film shows the motion towards a stable intermediate state from the
unstable noninverted or unstable inverted position. The initial data is chosen so that the Jellett
coincides with that of a stable intermediate state. It corresponds to 45 seconds of the tippe
top movement. The physical parameters are here as in the first film except for the friction
coefficient which is now μ = 0.1. The initial conditions around θ = 0 and θ = π are chosen



Journal of Applied Mathematics 25

to correspond to a Jellett of approximately 0.84 · 106. The intermediate state is at θ = 134.5
degrees.

The animations for a top out of Group IIa are meant to illustrate how, depending
on the initial conditions, the top started at the inverted position (θ = π) can fall either
to an intermediate state or to the noninverted position (θ = 0), see Figure 3. The physical
parameters are m = 6 gram, R = 1.5 cm, eccentricity e = 50%, A = 0.385 mg/(m2), and
C = 0.7 mg/(m2). The friction coefficient μ is 0.08. In the left of the animation we see the
behaviour in which the tippe top flips towards the noninverted state. However, oscillation
of theta occurs. To the right, we see the movement for a slightly different initial state, with
motion towards an intermediate state. Also here oscillation of theta occurs.

8. Further Remarks

Global Dynamics

Concerning Theorem 2.1 we wish to stress the importance of the local bifurcation diagrams
for the global dynamics. Clearly, if we have a unique asymptotically stable ω-limit set it is
clear that the basin of attraction for this set is equal to nearly the full measure set of the phase
space defined by the complement to the stable manifolds of all coexisting (unstable) ω-limit
sets.

It thus remains to analyze the situation when we have two coexisting asymptotically
stable ω-limit sets. From the bifurcation analysis we know that in such case the coexisting
stable ω-limit sets are the vertical states.

Theorem 8.1. The ω-limit sets of the eccentric sphere on a flat surface with small friction are
asymptotically stable relative equilibria (with respect to SO(2) × SO(2)). The ω-limit set is a unique
relative equilibrium, in which case the basin of attraction is the complement of the stable manifolds of
the unstable relative equilibria (and hence dense, and of full measure, in the phase space). Otherwise,
there are at most two stable relative equilibria (the vertical states) and the system is bistable. In this
case, the union of the basins of attraction of the two vertical states is the complement of the stable
manifold of the unstable relative equilibria, which is an intermediate state. This union is dense and of
full measure in the phase space. The separatrix between the two basins of attraction (inside a level set
of the Jellett invariant) consists of the stable manifold of an unstable intermediate state.

Proof. Most of the above statement is a direct consequence of the existence of the energy
as a Lyapunov function (through La Salle’s principle). One readily verifies (from the local
bifurcation analysis) that the stable manifold of the intermediate state coexisting with two
asymptotically stable vertical states has codimension one (inside the level set of the Jellett
invariant) and divides the phase space into two parts.

The regions of bistability (as a function of the Jellett invariant J) follow from the local
bifurcation diagrams discussed in Theorem 5.1.

Remark 8.2. Note that the specific n’s where the changes in stability type of the steady states
occur do not depend on μ. The viscous friction influences the time needed for an orbit to
reach such a point. This fact was already clear in [13] and could be proved in advance also in
our setup. The result remains true also for more general forms of friction laws proportional
to VQ such as those proposed in [4]. This suggests that the study of the asymptotic dynamics
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of other (mechanical) problems, as for example the rattleback, might notably simplify by the
introduction of viscous friction in the model.

Rolling Model

A “rolling” eccentric ball does not tip. In this section we give a simple argument showing
that, if pure rolling is assumed, then the tippe top phenomenon cannot occur.

Solving the tippe top under the constraint of pure rolling (i.e., when the nonholonomic
constraint VQ = 0 is satisfied) allows for complete reduction of the equations of motion to a
second-order ode. See [3] for a discussion of this approach. In the pure rolling regime the
system is not anymore dissipative and admits three conserved quantities: the energy, E, the
Jellett J as before, and the Routhian, Routh, given by [3]

Routh =
[

1
2
C +

1
2
mR2sin2(θ) +

1
2
m
C

A
(R cos(θ) − ε)2

]
ω2

k. (8.1)

“Tipping” in the rolling model would violate the conservation of Routh. Indeed, from
the Jellett invariant we know that the sign of ωk has to change in a complete inversion since
ωk(θ = π) = −((R − ε)/(R + ε))ωk(θ = 0) and R > ε > 0. But this is not allowed if Routh =
constant has to hold.

The motion in the rolling model is governed by a functional relation of the type θ̇2 =
f(θ). Indeed, the conserved quantities give three relations for the components of the angular
velocity ωi, ωj, and ωk. In details, for a given θ, the Routhian (8.1) fixes ωk, then the Jellett
fixes ωi, and finally the energy E fixes the tipping rate θ̇ = ωj (cf. (3.4)), yielding a functional
relation of the type θ̇2 = f(θ). Note further that the constraint VQ = 0 gives U(θ), V (θ) from
(3.9). In this approach, as mentioned in [3] one has to check whether a found solution is
physically possible, that is, one has to take into account that rolling cannot be sustained if
|Rt| < μsRn, where μs is the coefficient of static friction. In [3] it is remarked that only a few
pure rolling precessional solutions satisfy this condition. The analysis, however, leaves open
the possibility to have pure rolling periodic motions around the intermediate states as we
discuss below.

Sliding versus Rolling

A debatable issue is whether transitions between sliding and rolling are possible during the
motion of the top. As it was pointed out in [9], such transitions must also be considered
when setting up a realistic model to describe the dynamics of the tippe top. To the different
regimes there correspond different sets of equations. A switch between sliding and rolling
occurs as the absolute contact velocity VQ vanishes. In the Coulomb-friction model, a switch
from rolling to sliding occurs when the tangent reaction force required to maintain rolling
exceeds μsRn. We refer to [4] for considerations and simulations on this topic and to [3] for a
detailed analysis of the pure rolling model. We consider two test cases, the pendulum motion
and the behaviour of the tippe top around a stable intermediate state.

(i) The pendulum motion is easily observed by placing the tippe top on the ground,
rotating it under an angle θS, and releasing it. We have J = 0 = Routh in this
regime. Normally a pure rolling motion is observed. Only when θS is large, some
slipping might be observed initially. Solved under the pure rolling constraint,
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Figure 15: Periodic motion around intermediate state (IS) in (θ, θ̇) frame, m = 1 = g, ε = 0.3R, and A =
0.92C. Solution (i) is the pure rolling case for J = 0.63, E = 1.1, and Routh = 0.33, (ii) is the pure slipping
case for μ = 0 and (iii) is for μ = 0.1, and (iv) for μ = 10, the first 100 s. The data is chosen for a stable IS
at θIS = π/6, and the initial condition for (ii), (iii), and (iv) is a point on the solution curve of (i). For (i) a
periodic motion is obtained, and for (ii) a quasiperiodic motion is observed as it is sketched in the (θ, θ̇, α)
frame. For μ > 0 the trajectories spiral inwards towards the IS. For large friction, this motion is very slow
(only the first 100 s is depicted). Also the speed at the contact point, |vQ|, is given. In case (iii) this speed is
large when far from the IS, and for (iv) this speed is very small corresponding to the very slow spiraling
motion. Note that at t = 0, vQ = 0 as it is expected.

the solution is pendulum-like. In contrast the sliding equation of motion (3.18),
gives a qualitatively different solution. For μ = 0, the solution is the pure sliding
pendulum, where the center of mass remains fixed, but the tippe top makes a
pure slipping periodic pendulum motion. (Recall that for μ = 0 periodic solutions
are possible, which was also clear from the Hopf bifurcation. However they all
disappear when μ > 0.) On activation of μ, we have that θ = 0 is stable, and the
slipping pendulum solution slowly degrades towards the stable point. In this case,
the tippe top is best modeled with the pure rolling equations.

(ii) Periodic motion around an intermediate state is characterized by the precession
of the tippe top axle around the z-axis combined with a nutation θ(t) where
0 < θm ≤ θ(t) ≤ θM < π . In the pure rolling case periodic solutions can be
obtained exactly. Using a point on this periodic solution as initial condition for
(3.18) allows to investigate the persistence of this solution when friction is added,
see Figure 15. For μ = 0 a quasiperiodic motion is obtained around the pure rolling
solution. Activating μ makes this motion unstable, and the solution goes towards
the intermediate state, this behaviour is already dominant for μ = 0.1 (note also
the high |vQ| value). However, for ever larger μ the decay slows down, the solution
remaining very long in the neighborhood of the pure rolling solution. The |vQ| value
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in this case is very small, indicating that the condition for transition from slipping
to rolling is satisfied.

Appendices

A. Proof of Theorem 5.1

For the interested reader, the following sections contain the calculations needed for a
straightforward linear stability analysis of the steady states. These form the proof of
Theorem 5.1.

A.1. Stability of the Vertical State θ = 0

With the Taylor expansions in θ

ZQ = −h(θ) ≈ −R + ε − εθ
2

2
+O
(
θ3
)
, XQ = h′(θ) ≈ ε

(

θ − θ3

6

)

+O
(
θ4
)
, (A.1)

linearizing VQ in θ

VX,Q ≈ U − (R − ε)θ̇, VY,Q ≈ V + nRθ − (R − ε)ϕ̇θ, VZ,Q ≈ 0 (A.2)

and noting that Rn ≈ mg and n = const, the linearization of the equations of motion (3.16)
and (3.15) at θ = 0 yields

U̇ − ϕ̇V = −μg(U − θ̇(R − ε)), (A.3)

V̇ + ϕ̇U = −μg(V + Rnθ − (R − ε)ϕ̇θ), (A.4)

A
(
ϕ̈θ + 2ϕ̇θ̇

) − Cnθ̇ = μmg(R − ε)(V − (R − ε)ϕ̇θ + Rnθ
)
, (A.5)

A
(
θ̈ − ϕ̇2θ

)
+ Cnϕ̇θ = −mgεθ + μmg(R − ε)(U − θ̇(R − ε)). (A.6)

Introducing the complex coordinates

ξ = θeiϕ, w = (U + iV )eiϕ, (A.7)

(A.3)–(A.6) can be reduced to two complex equations. The addition (A.3) + i(A.4) yields

ẇ = μg
(−w + (R − ε)ξ̇ − iRnξ), (A.8)

whereas i(A.5) + (A.6) leads to

Aξ̈ − iCnξ̇ = μmg
(
(R − ε)w − (R − ε)2ξ̇ + iR(R − ε)nξ

)
− εmgξ. (A.9)
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These equations admit a solution of the form (ξ,w) = (ξ, w)eλt when λ satisfies the
determinant equation

D
(
λ, μ
)

: = −Aλ3 +
(
−μmgε2 − μgA + 2μmgRε + iCn − μmgR2

)
λ2

+
(
iμmgR2n −mgε + iμgCn − iμmgRnε

)
λ − μmg2ε = 0.

(A.10)

When μ = 0 the roots λ(μ) of (A.10) are

λ1(0) = 0, λ2,3(0) = i
Cn ± S

2A
, (A.11)

where we set

S2 := C2n2 + 4Amgε. (A.12)

In the absence of friction, that is, when μ = 0, the vertical state θ = 0 is marginally stable as
λ2,3(0) are purely imaginary since n2 > −4Amgε/C2.

We now analyze the effect of small friction (0 < μ 
 1) by examining how the roots
(A.11) are perturbed to first order in μ:

λ1
(
μ
)
= −μg,

λ2,3
(
μ
)
= λ2,3(0) − μ

(
mg(R − ε)

AS
[S(R − ε) ∓ARn] ± 2m2g2ε(R − ε)2

S(Cn ± S)

)

.
(A.13)

As Re(λ1(μ)) < 0, the vertical state θ = 0 is stable if Re(λ2,3(μ)) < 0. This is the case when

n2
[
A

C
−
(

1 − ε

R

)]
<
mgε

C

(
1 − ε

R

)2
. (A.14)

It follows that, in Group I (A/C < (1 − ε/R)), the vertical state θ = 0 is always stable, while
for Group II and Group III (A/C > (1 − ε/R)) stability requires that n0 < n−.

It remains to be shown how Re(λ2,3(μ)) < 0 yields the relation (A.14). We focus on the
inequality Re(λ2(μ)) < 0, the arguments are similar for Re(λ3(μ)). The inequality Re(λ2(μ)) <
0 yields

− 1
A
[S(R − ε) −ARn] < −2mgε

R − ε
Cn + S

⇐⇒ (Cn + S)
(
Rn − S

A
(R − ε)

)
< −2mgε(R − ε).

(A.15)

Using (A.12), this gives

(
R − C

A
(R − ε)

)(
n2C + Sn

)
< 2mgε(R − ε). (A.16)
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Note that if (R − (C/A)(R − ε)) < 0 the above condition is satisfied for all n. If on the other
hand the inequality (R−(C/A)(R−ε)) > 0 holds, then (0 <)Sn < 2mgε(R−ε)/(R−(C/A)(R−
ε)) − n2C; squaring both sides yields

n2 <
mgε

A

R

K (1 − εR)2, (A.17)

where K := (R − (C/A)(R − ε)). Since we are in the case K > 0, we can rewrite this last
condition as (A.14).

Remark A.1. Ignoring translational effects, that is, throwing everything in the variablew away
(cf. [5]), one is left with

ẇ = μ(R − ε)ξ̇ − iμRnξ, (A.18)

Aξ̈ − iCnξ̇ = −μ(R − ε)2ξ̇ − (ε − iμRn)ξ, (A.19)

where we set for simplicity m = 1, g = 1. Equation (A.19) is of Maxwell-Bloch type [5] and
allows us to recover the analysis carried out in [5]. An analogous result holds when lineariz-
ing around θ = π .

A.2. Stability of the Vertical State θ = π

The stability of the vertical state θ = π is studied in a similar way as in Section A.1. From the
equation of motion (3.15)-(3.16), introducing complex coordinates

ξ = (θ − π)eiϕ, w = (U + iV )eiϕ, (A.20)

we obtain the coupled complex equations

ẇ = −μg(w + (R + ε)ξ̇ + iRnξ
)
,

Aξ̈ + iCnξ̇ = μmg
(
(R + ε)w − (R + ε)2ξ̇ − iR(R + ε)nξ

)
+mgεξ.

(A.21)

The corresponding determinant equation for eigenvalue λ is given by

D
(
λ, μ
)
= −Aλ3 +

(
−2 μmgεR − μgA − μmgε2 − iCn − μmgR2

)
λ2

+
(
−iμmgR2n +mgε − iμgCn − iμmgεRn

)
λ + μg2mε.

(A.22)

When μ = 0, the roots λ(μ) of (A.22) are

λ1(0) = 0, λ2,3(0) = −iCn ∓ S
2A

, with S2 := C2n2 − 4Amgε. (A.23)
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Thus, at μ = 0, the vertical state θ = π is at most marginally stable, when λ2,3(0) is purely
imaginary, that is, when

|n| > 2

√
Amgε

C
=: n. (A.24)

This is of course also a necessary condition for stability if μ is small. Provided S/= 0,
corresponding to a resonance λ2(0) = λ3(0) at |n| = 2

√
Amgε/C, the roots of (A.22) are

perturbed at order μ to

λ1
(
μ
)
= −μg,

λ2,3
(
μ
)
= λ2(0) + μ

(
mg(R + ε)

AS
(−S(R + ε) ∓AnR) ± 2m2g2e(R + e)2

S(Cn ∓ S)

)

.
(A.25)

Thus, for stability we have to require Re(λ2,3(μ)) < 0, which yields

n2
[(

1 +
ε

R

)
− A

C

]
>
mgε

C

(
1 +

ε

R

)2
. (A.26)

Condition (A.26) is never satisfied for Group III, so θ = π is unstable. In the case of Groups I
and II, when A/C < (1 + ε/R), the condition for stability is

nπ >

√
mgε

C[(1 + ε/R) −A/C]
(

1 +
ε

R

)
=: n+. (A.27)

Note that for tippe tops of Group I and II n2
+ ≥ n2

, with n := 2
√
Amgε/C. The equality

n2
 = n

2
+ holds when A/C = (1/2)(1 + ε/R).

A.3. Stability of Intermediate States 0 < θ < π

In this section we consider intermediate asymptotic states, which exist if the condition (5.7)
is satisfied. Such a state, if it exists, is of the form v0 = (0, 0, α, 0, θ, n), with α, θ, n constant
and related by (5.4). In order to study the stability properties, we study the eigenvalues of
the SO(2)(ϕ)-reduced equations of motion, obtained from (3.18) by omitting the ϕ̇ equation.

With J0 denoting the corresponding Jacobian of this reduced equation, eigenvalues λ
satisfy the determinant equation

D
(
λ, μ
)

:= det(J0 − λI6) = λp5(λ) = 0, (A.28)

where I is the (six-by-six) identity matrix and p5(λ) is a polynomial of degree 5 in λ. So, 0 is
always a solution of (A.28).

Remark A.2. It is not possible to reduce the system to a “Maxwell-Bloch” form around an
intermediate state as on the contrary was the case around the two vertical spin states.
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When μ = 0 the six roots of (A.28) are

λ1,2 = 0, λ3,4 = ±iα0, λ5,6 = ±iα0
√
A, (A.29)

where

A :=
A2 + 2AB cos

(
θ
)
+ B2

A
(
mε2sin2

(
θ
)
+A
) > 0, with B := (A − C) cos

(
θ
)
+ C

ε

R
, (A.30)

and α is given by (5.6). Note that B > 0 from (5.7). All the eigenvalues λj , j = 1, . . . , 6 are on
the imaginary axis, and the intermediate states at μ = 0 are marginally stable.

Remark A.3. It is worth noting that for μ = 0 the resonance λ3,4 = λ5,6 = ±iα occurs when A = 1.
Using the expressions for α and A given before, one checks that this equality is satisfied when
the equation

[(
A

C
− 1
)(

3
A

C
− 1
)
+
A

C2
mε2
]

cos2
(
θ
)
+ 2

ε

R

(
2
A

C
− 1
)

cos
(
θ
)
+
ε2

R2
− A

C2
mε2 = 0 (A.31)

admits a real root between −1 and 1. The resonance disappears when higher-order terms in μ
are added.

When μ is small, 0 < μ
 1, we write the first-order perturbation of the roots as

λj
(
μ
)

:= λj(0) + μqj , j = 1, . . . , 6. (A.32)

From (A.28) it follows that

q1 = 0, q2 = m3g3ε2R4sin2
(
θ
)
g
(

cos
(
θ
))

DE,

q3 = q4 = −mg, q5 = q6 = a0(a1m + a2), with a0 :=
m3g3ε2

2A2R2B2F2α4
0A

> 0,
(A.33)

α2 and λ5 are as before and

g
(

cos θ
)

:=
(
A

C
− 1
)
+

4
[
(A/C − 1) cos

(
θ
)
+ ε/R

]2

(A/C)sin2
(
θ
)
+
(

cos
(
θ
)
− ε/R

)2
. (A.34)

The coefficients a1 and a2 are given by

a1 := −ε2sin2(θ0)
[
AR
(
R cos2(θ0) − 2ε cos(θ0) + R

)
− C(R cos(θ0) − ε)2

]2
< 0,

a2 := AC2R4f

(
A

C
;
ε

R
, cos(θ0)

)
,

(A.35)
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with

f

(
A

C
;
ε

R
, cos(θ0)

)
:= f2

A2

C2
+ f1

A

C
+ f0, (A.36)

where

f2 := −2 + 6
ε

R
cos(θ0) − 5

(
ε2

R2
+ 1

)

cos2(θ0) + 10 cos3(θ0)
ε

R
−
(

1 + 3
ε2

R2

)

cos4(θ0),

f1 := −4
ε

R

(
ε2

R2
+ 2

)

cos(θ0) + 6

(

1 + 3
ε2

R2

)

cos2(θ0) − 4
ε

R

(

4 +
ε2

R2

)

cos3(θ0)

+ 2

(

1 + 2
ε2

R2

)

cos4(θ0) + 2
ε2

R2
,

f0 := − ε
2

R2
− ε4

R4
− 2

ε

R

(

−1 − 3
ε2

R2

)

cos(θ0) +

(

−1 − ε4

R4
− 10

ε2

R2

)

cos2(θ0)

− 2
ε

R

(

−3 − ε2

R2

)

cos3(θ0) −
(
ε2

R2
+ 1

)

cos4(θ0).

(A.37)

The coefficients D,E are calculated with the help of Maple

D := B2 −A
(

A − C + C
ε2

R2

)

,

E := − (A − C)
AB2

[
−m(RεB − ε2C)2 + R2(C −A)2(mε2 +A)

] .
(A.38)

For tippe tops of Group II they have a fixed sign for θ0 varying in (0, π). Note that q3,4 < 0 and
q5,6 < 0. The first inequality is obvious, and the second is less straightforward and is proved
below. The friction is stabilizing at O(μ) when q2 < 0.

The sign of q2 depends on g(cos θ) only, since the two terms D, E are never zero for
0 < θ < π . The zero of g(cos θ) is the bifurcation point where the change in stability type
happens. When q2 > 0 the intermediate states are not anymore stable. For the sake of brevity
we refer to [10] for the details on the behaviour of g(cos θ), where the same crucial function
is encountered in the stability analysis via the Routhian reduction. This analysis completes
the proof of Theorem 5.1.

Proof of q5 < 0. To prove that q5 < 0 it is sufficient to prove that a2 ≤ 0, see (A.33), since a0 > 0
and a1 < 0. The sign(a2) is determined by sign(f(A/C; ε/R, cos(θ0))). Considering f as a
square polynomial in A/C, f̃(A/C), we have that the discriminant of f̃(A/C) = 0 is given
by

Δf := −sin2(θ0)
(
−1 +

ε

R
cos(θ0)

)2

⎡

⎢⎢
⎣

( ε
R

cos(θ0) − 1
)2

+ 1 − 2
ε

R
cos(θ0) +

ε2

R2
︸ ︷︷ ︸

>0

⎤

⎥⎥
⎦, (A.39)
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which is negative for all θ0, ε/R. Hence, the sign of f̃ remains fixed. It is easily
verified that for θ0 = 0, π or π/2, sign(a2) is always negative (e.g., f(A/C; ε/R, 1) =
−2(ε/R − 1)2(ε/R + 2(A/C) − 1)2), hence a2 ≤ 0 for all ε/R, A/C and θ0. We conclude that
q5 ≤ 0.
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