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We first introduce the iterative procedure to approximate a common element of the fixed-point
set of two quasinonexpansive mappings and the solution set of the system of mixed equilibrium
problem (SMEP) in a real Hilbert space. Next, we prove the weak convergence for the given
iterative scheme under certain assumptions. Finally, we apply our results to approximate a
common element of the set of common fixed points of asymptotic nonspreading mapping and
asymptotic T/ mapping and the solution set of SMEP in a real Hilbert space.

1. Introduction

Let H be a real Hilbert space with inner product (:,-) and norm || - ||, let C be a nonempty
closed convex subset of H, and let T be a mapping of C into H, then T : C — H is said to be
nonexpansive if |[Tx-Ty| < ||x—y| forall x, y € C. Amapping T : C — H is said to be quas-
inonexpansive if ||[Tx - y|| < ||x —y| forallx e Cand y € F(T) := {x € C : Tx = x}. Itis well
known that the set F(T) of fixed points of a quasi-nonexpansive mapping T is a closed and
convex set [1]. A mapping T : C — C is said to be firmly nonexpansive [2] if

|Tx - Ty||> < (x -y, Tx - Ty), (1.1)
for all x, y € C, and it is an important example of nonexpansive mappings in a Hilbert space.
Let ¢ : C — R be a real-valued function, and let F : C x C — R be an equilibrium

bifunction, that is, F(u, u) = 0 for each u € C. The mixed equilibrium problem is to find x € C
such that

F(x,y) +9(y) —9(x) 20 VyeC. (12)
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Denote the set of solution of (1.2) by MEP(F, ¢). In particular, if ¢ = 0, this problem reduces
to the equilibrium problem, which is to find x € C such that

F(x,y) >0 VyeC. (1.3)

The set of solution of (1.3) is denoted by EP(F).

The problem (1.2) is very general in the sense that it includes, as special cases, optimi-
zation problems, variational inequalities, Min-Max problems, the Nash equilibrium problems
in noncooperative games, and others; see, for example, Blum and Oettli [3] and Moudafi [4].
Numerous problems in physics, optimization, and economics reduce to find a solution of
(1.3).

Let Fi,F; : C x C — R be two monotone bifunctions and p > 0 is constant. In 2009,
Moudafi [5] introduced an alternating algorithm for approximating a solution of the system
of equilibrium problems, finding (x’, ') € C x C such that

F1(x',z)+l<y’—x’,x’—z> >0, VzeC(C,
(SEP) A (1.4)
FZ(V,/Z)+E<X’—y',]/—Z>20, Vz e C.

For such mappings F; and F, and two given positive constants A,y > 0, Plubtieng and
Sombut [6] considered the following system of mixed equilibrium problem, finding (x, y') €
C x C such that

Fi(x,z) + ¢(z) — p(x) + %(y’ -x,x'-z)>0, VzeC,
(SMEP) (1.5)

1
F (v, 2) +9(z) - o(y') + ﬁ<x’ -y, y'-z)>0, VzeC.

In particular, if A = g and ¢ = 0, then problem (SMEP) reduces to (SEP). Furthermore,
Plubtieng and Sombut [6] introduced the following iterative procedure to approximate a
common element of the fixed-point set of a quasi-nonexpansive mapping T and the solution
set of (SMEP) in a Hilbert space H. Let {x,}, {yx}, and {u,} be given by

x1 € C chosen arbitrary,

u, €C, Fz(un,z)+q)(z)—(p(un)+l(z—un,un—xn)20, Vz e C,
3 (1.6)

1
Yn€C, Fi(yn z) +9(2) —p(yn) + X<Z ~YnYn—1Un) >0, VzeC,

X1 = Xy + (1 —an)Ty,, VneN,

where {a,} C [a,b] for some a,b € (0,1) and satisfying appropriate conditions. The weak
convergence theorems are obtained in a real Hilbert space.
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On the other hand, in 1953, Mann [7] introduced the following iterative procedure to
approximate a fixed point of a nonexpansive mapping T in a Hilbert space H:

Xpi1 = apXy + (1 —a,)Tx,, VneN, (1.7)

where the initial point xy is taken in C arbitrarily, and {a,} is a sequence in [0, 1].
For two nonexpansive mappings T1, T, of C into itself, Moudafi [4] studied weak con-
vergence theorems in the following iterative process:

xp € C chosen arbitrary,

(1.8)
Xn+l = ApXy + (1 - an)(ﬂnTlxn + (1 - ,Bn)Tan)/

for all n € N, where {a,} and {f,} are appropriate sequences in [0, 1] and F(T1) N F(Tz) #0.
Recently, Iemoto and Takahashi [8] also considered this iterative procedure for T; is a
nonexpansive mapping and T, : C — C is a nonspreading mapping. Very recently, Kim [9]
studied the weak and strong convergence for the Moudafi’s iterative scheme (1.8) of two
quasi-nonexpansive mappings.

In this paper, inspired and motivated by Plubtieng and Sombut [6], Moudafi [4],
Iemoto and Takahashi [8], and Kim [9], we first introduce the iterative procedure to approxi-
mate a common element of the common fixed point set of two quasi-nonexpansive mappings
and the solution set of SMEP in a real Hilbert space. Next, we prove the weak convergence
theorem for the given iterative scheme under certain assumptions. Finally, we apply our
results to approximate a common element of the set of common fixed point of asymptotic
nonspreading mapping and asymptotic T] mapping and the solution set of SMEP in a real
Hilbert space.

2. Preliminaries

Throughout this paper, let N be the set of positive integers, and let R be the set of real
numbers. Let H be a real Hilbert space with inner product (:,-) and norm || - ||, respectively,
and let C be a closed convex subset of H. We denote the strong convergence and the weak
convergence of {x,} tox € H by x, — x and x,, — x, respectively.

From [10], for each x,y € H and A € [0, 1], we have

[l + (1= Dy = Maxll? + A = D]ly|* = 20 =) ||x - y]||*- (2.1)
For every point x € H, there exists a unique nearest point in C, denoted by Pcx, such that
lx = Pex|| < [lx —y|| ¥y eC. (2.2)

Pc is called the metric projection of H onto C. It is well know that P¢ is a nonexpansive map-
ping of H onto C and satisfies

|| Pex - Pcy||2 <(Pcx-Pcy,x-y) Vx,y€H. (2.3)
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Moreover, Pcx is characterized by the following properties: Pcx € C,

(x=Pcx,Pcy-y) >0,
) , s (2.4)
lx=v||” > llx = Pex||” + ||y - Pcy||” VxeH, yeC.

Further, forallx e Hand y € C, y = Pcxifand only if (x -y, y —z) >0, forall z € C.

Lemma 2.1 (see [11]). Let C be a nonempty closed convex subset of a real Hilbert space H. Let P be
the metric projection of H onto C, and let {xy},cy be in H. If

12¢ns1 = ull < [l2cn = ul], (2.5)

forallu € Cand n € N. Then, { Pcx,} converges strongly to an element of C.

Theorem 2.2 (Opial’s theorem, [10]). Let H be a real Hilbert space, and suppose that x,, — x, then

lim inf||x,, — x|| < liminf||x, - y|, (2.6)

forally € Hwith x#y.

All Hilbert space and I (1 < p < oo) satisfy Opial’s condition, while LF with1 < p #2 <
co do not.

For solving the mixed equilibrium problem for an equilibrium bifunction F : C x C —
R, let us assume that F satisfies the following conditions:

(A1) F(x,x)=0forallx € C,
(A2) F is monotone, thatis, F(x,y) + F(y,x) <0forallx,y € C,
(A3) foreach y € C, x — F(x,y) is weakly upper semicontinuous,

(A4) for each x € C, y — F(x,y) is convex and semicontinuous.
The following lemma appears implicitly in [3, 12].
Lemma 2.3 (see [3]). Let C be a nonempty closed convex subset of H, and let F : C x C — R bea
bifunction satisfying (A1)-(A4). Let v > 0 and x € H, then there exists z € C such that

F(z,y)+%<y—z,z—x>20 Yy e C. (2.7)

The following lemma was also given in [12].

Lemma 2.4 (see [12]). Let C be a nonempty closed closed convex subset of H and let F : CxC — R
be a bifunction satisfying (Al)—(A4), then, for any r > 0 and x € H, define a mappingT,x : H — C
as follows:

Tr(x):{zeC:F(z,y)+%(y—z,z—x)20,‘v’yEC}, (2.8)
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forall z € H,r € R. Then the following hold:
(i) T, is single valued,

(ii) T, is firmly nonexpansive, that is,

|Tox - Ty|* < (T,x-T,y,x-y), VxyeH; (2.9)

(iii) F(T,) = EP(F),

(iv) EP(F) is closed and convex.
We note that Lemma 2.4 is equivalent to the following lemma.

Lemma 2.5 (see [6]). Let C be a nonempty closed convex subset of a real Hilbert space H. Let
F : CxC — R bean equilibrium bifunction satisfying (A1)-(A4) and let ¢ : C — R be a lower
semicontinuous and convex functional. For each r > 0 and x € H, define a mapping

Sr(x)={yEC:F(y,z)+(p(z)—(p(y)+%<y—x,z—y>ZO,VZEC}, Vxe H. (210)

Then, the following results hold:
(i) for each x € C, S, (x) #0,
(ii) S, is single valued,

(iii) S, is firmly nonexpansive, that is, for any x,y € H,
15 (x) = S: (W < (S+ () = Sr (v), x =), (211)

(iv) F(S;) = MEP(F, p),
(v) MEP(F, p) is closed and convex.

3. Main Results

In this section, we prove the weak convergence for approximating a common element of the
common fixed point set of two quasi-nonexpansive mappings and the solution set of the
system of mixed equilibrium problems in a Hilbert space.

To begin with, let us state and proof the following characterizations of the solution set
of GMEP.

Lemma 3.1. Let C be a closed convex subset of a real Hilbert space H. Let Fy and F, be two mappings
from Cx C — R satisfying (A1)~(A4), and let Sy \ and Sy, be defined as in Lemma 2.5 associated to
F1 and F», respectively. For given x',y' € C, (x',y') is a solution of problem (1.5) if and only if x' is a
fixed point of the mapping G : C — C defined by

G(x) = S11(S2ux), VxeC, (3.1)

where y' = Sp,x".
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Proof. For given x',y' € C, we observe the following equivalency:

(Fl(x’,z)+go(z)—(p(x’)+ %(y’ -x',x' - z) >0

Vz e C,
(x', ') is a solution of problem (1.5) & <

1
Fx(y', z)+ ¢(2) -tp(y’)+;<X’ ¥,y -2)20

{ Vz e C,
S =Sy ¥ =S,x,
= x' = 51/1 (Szlﬂx’),
— x' = Gx".
(3.2)
This completes the proof. O

We note from Lemma 3.1 that the mapping G is nonexpansive. Moreover, if C is
a closed bounded convex subset of H, then the solution of problem (1.5) always exists.
Throughout this paper, we denote the set of fixed points of G by Q.

Theorem 3.2. Let C be a nonempty closed convex subset of a real Hilbert space H. Let Fy and F, be
two bifunctions from C x C — R satisfying (A1)-(A4). Let r,\ > 0 and S1, and S, be defined as in
Lemma 2.5 associated to Fy and F, respectively. Let T; : C — C, i =1, 2, be two quasi-nonexpansive
mappings such that I —T; are demiclosed at zero, that is, if {w,} C C, w, — w, and (I - T;)w, — 0,
then w € F(T;), with F(T1) N F(T,) N Q # 0. Let the sequences {x,},{y,}, and {u,}, be given by

x1 € C chosen arbitrary,

1
u, €C, Fo(uy, z) +¢(z) —p(uy,) + X<Z — Uy, Uy —Xy) >0, VzeC(,

(3.3)
1
Yn€C, Fi(yn z) +9(z) —p(yn) + ;(z — VY Yn—Ua) 20, VzeC,
X1 = AnXp + (1= ay) (buTiyn + (1 - by)Toy,), VneN,
where {ay}, {b,} C [a,b] for some a,b € (0,1), and satisfy
liminfa,(1-a,) >0, liminfb, (1 -b,) >0, (3.4)

then x, — X = limy, ., o Pr(1y)nE(my)naXs and (X, ) is a solution of problem (1.5), where i = Sy, X.

Proof. Let x* € F(T1) N F(T2) N Q, then x* = T1x* = Tox* and x* = 51, (S2.x7).
Putting v* = S»0x*, yu = S1,Un, and u, = Sy 1 x,, we have

lyn = x*|| = || S1rttn = S1,7%|| < ||ttn = 7| = 11S2.0%0 — Soax™|| < [|oen — x| (3.5)
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Next, we prove that

lim ||x;, — x*|| exists. (3.6)
n—oo

Since T; and T; are quasi-nonexpansive, we obtain that
[16aT1 Y + (1 = b)) Ty = || = |[bu(Tiyn = x7) + (1 = by) (Tayn - x7)||”
= bal|Tryn = " |I* + (= b) [ Toy = x|
~bu(1=bo) [ Tiya =~ Toya

< b || Tiyn — x| + (1= b) || Ty — ¥ (3.7)

< bullyn =% [* + (1= ba) [lyn - x°|
= llyn - |I”
< o — 27|17,
which gives that
xne1 = [ = [|@nxn + (1= @n) (buTryn + (1 = by) Toy) — x°|?
= [|an(xn = x*) + (1 = @) (buTryn + (1 = by) Tay — x|
= aylxy = 27 + (1 - an) |baTayn + (1 = b) Ty — ° ||

— an(1 = an) || % = BuTay + (1 = by) Toy) ||
(3.8)
< aullxcy = x| + (1 = an)l|xc, — x|
— an(1 = ap)||%n = BaTryn + (1= b)) Toya) |1
= [lxy - x*”Z —ay(1-ay) ”xn - (bnTl]/n +(1- bn)szn)Hz

<l = x|

Hence, {||x, — x*||} is a nonincreasing sequence, and hence, lim,_, . ||x, — x*|| exists. This
implies that {x,}, {yn}, {ttn}, {T1yn}, and {T>y,} are bounded. From (3.8), we have

an(1 = an)||xn — B T1yn + (1 = by) Toyn) ||2 < loen = x*|P = ll2cne1 — x| (3.9)
Since liminf,, _, ,a, (1 — a,) > 0, this implies that

Jim [|xn = (BnTiyn + (1= ba) Taya) || = 0. (3.10)
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Furthermore, since 0 < a < a, <b <1, we have

||xn+l - xn” = ”anxn + (1 - an) (bnlen + (1 - bn)TZyn) - xn”
= ”(1 - ay) (bnTl]/n +(1- bn)TZ]/n) - (1 - an)xn”

(3.11)
=(1-ay) ”bnTl]/n + (1 -by) Ty, - xn”
< (1-a)||buTiyn + (1 = bp) Toyn — x|
From (3.10), we conclude that
nhjr;o”xnﬂ — x|l =0. (3.12)
From (3.7), we have
bu(1 = b) | T1yn = Toyul|”* = bu| Ty = x°|1* + (1= b) | Tay - ||
- ”bnTl]/n + (1 - bn)TZyn - x*Hz
< bullyn = |* + (1 =) [l —x°
- ”bnlen + (1 - bn)TZyn - x*”2
= ||y = x*||* = |baTryn + (1 = b)) Toy — x°||° (3.13)

< otw = %% = [|baTayn + (1 = b)) Ty — x*||°
= (llxn = X"l = [|baT1yn + (1 = ba) Toyn — x°||)

x (||xn = x*[ + ||baTryn + (1 = bu) Ty — x°||)
< M([l2tn = x| = [|[baT1yn + (1 = by) Doy — x*|))

< M(||xn = (baTryn + (1= ba) Toyn) ||),

where M is a constant satisfying M > sup,. [||lxn = x*|| + [bxT1yn + (1 = b)) Toyn — x*[|]. Again
from (3.10), we conclude that

1im by (1= by) || 1y — Toyal| = 0. (3.14)
Using liminf, b, (1 - b,) > 0, we have
Jim || Tyyy = Toya|| = 0. (3.15)
Now, we prove that

nli_r)rgollxnﬂ - len” = 0/ nli_{rc}()”xnﬂ - TZyn” =0. (316)
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We observe that

|2¢ns1 = Tiyn|| = ||ann + (1 = @n) (baTiyn + (1 = b)) Toyn) = Trya||
= || anxn + (1 = an) (baTiyn + (1 = bu) Tayn) = (an + (1 = an))Tiya) ||
= ||l an(xn = Tiyn) + (1 = an) (buT1yn + (1 = ba) Tayn — Tiyn) ||
= [|lan(xn = Tayn) + (1 = an) (baT1yn + Toyn = baToyn = Tiyn) ||
= ||an(xn = Tayn) + (1 = @) (1 = b)) Toyn = (1 = ba) Try) ||
= |lan(xn = Tayn) + (1 = an) (1 = bn) (T2yn — Tayn) ||
< ap||xn = Taya|| + (1= an) (1 = ba) || Toyn — Taya||

= an”xn — Xn41 T Xps1 — len" + (1 - an)(l - bn)”TZyn - len”

< an”xn - xn+1|| + an”xn+1 - len” + (1 - an)(l - bn) ”TZ]/n - Tl]/n ’
which gives that
(1- an)”xnﬂ - Tl]/n” < anllxn = xpaall + (1= an) (1 = by) ”szn - Tl]/n”-

Since0 < a<a, <b<1,wehave

an(1-ay) ||xn+1 - Tl]/n” <(1-ap) ||xn+1 - Tl]/n”
< an”xn - xn+1|| + (1 - an)(l - bn)”szn - len”

Using (3.12) and (3.15), we conclude that

nlgrgoan(l - an)||Xne1 = Tayau|| =0,

which gives that

nlijl}o”xm—l - Tl]/n” =0,

since liminf, _, ,a,(1 — a,,) > 0. Similarly, we have

1 = Toyul = [|@nxn + (1 = an) (buT1yn + (1 = b)Tayu) = Toyu|
= ||an (xn = Toyu) + (1 = an) (baTryn + (1 = by) Ty — Toyn) ||
= [|an(xn = T2yn) + (1 = an)bu(Tryn — Toya) ||
< anl|xn = Toyn| + (1 = aw)ba|| Tiyn = Toya||
= an||xn = xni1 + Xni1 = Toyu| + (1 = @) || Ty = Tiya|

< ap||lxy = Xpa || + an”xrﬁ—l - TZyn” +(1- an)bn”TZyn - Tl]/n”/

(3.17)

(3.18)

(3.19)

(3.20)

(3.21)

(3.22)
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which implies that
(1 - an)”xn+1 - T2]/n|| < an”xn - xn+1” + (1 - an)bn”TZyn - len”
Thus, we have

an(1 = an)||x%ne1 = Toyu|| < (1 = an) || 301 = Toyn|
< anllxn = Xl + (1= an)ba || Toyn — Trya||
< bl|xn = Xl + (1= @) | T2y = Tayal|
<bl|xy = x| + (1= @) || Tayn = Taya |-

Hence, limy, _, ,an(1 — a,)||xp+1 — Toyn|| = 0. Since liminf,, , ,a,(1 — a,) > 0, we have
i [ = Togi| =0,
Next, we prove that
Jim [lyn = Tayal| =0, lim [[yn = Toya|| = 0.
Since S;, and S, are firmly nonexpansive, it follows that
= ¥ ||” = 1152020 = S22 |1 < (Sa2n = Sanx*, % = X*) = (1 — y*, X — X*),
which gives that

”(un -y~ (xn - X*)||2 = ”un - y*||2 = 20U — Y, X0 = X") + ||x - X*”z
<Nt =7 |1* = 2lfsn =y I + e = "I

= —[lstn =¥ |” + 120 — 7|12
This implies that
ot =y I < e = 17 = | ot = ) = (= ) |
By the convexity of || - |2, we have

||2n41 = x*”2 = ”anxn +(1- an)(bnTl]/n +(1- bn)oy,) - x*”Z

= [|@n(xn = x%) + (1 = @) (b Tryw + (1 = b)) Tay — x°) ||

(3.23)

(3.24)

(3.25)

(3.26)

(3.27)

(3.28)

(3.29)
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< aullxcn = X7 + (1 = an) || baT1yn + (1= b)) Toyn — x*||2
< aulloen =P + (1= an) [y - x|
< ayllxn = 2| + (1= an) | = |
< gl =2 1P + (1= @) (e = 21 = [| Gt = 77) = G = )

= [t = *12 = (1 = @) || (st = y*) = (00 = 2 ||
(3.30)

Thus,

2 < ot = P = floemsr = %1% (3.31)

(1= an)||(un = y*) = (x, — x*)
Since0<a<a, <b<1,wehave

2 * *
< Jlxtn = X% = [[xne1 = x|
(3.32)

(1=D)[| (un = y*) = Ce = x)||* < (1= @) || n = ¥*) = (200 = )

Since lim, .., ||x, — x*|| exists, we have
nhf(}o”u” —x,+ X" =y =0. (3.33)
Similarly, we have
[y = %" 11" = St ttn = S1y*II” < (Suttn = S1n ¥ ttn = y*) = (yn = X" = ), (3.34)
which gives that
1 =x%) = Gt = yI* = Ny = 27 = 20y = " 00 = )+ [l = 7|
<y =1 =20y =" + e =y (3.35)
= My =2 |+l =y
This implies that
=217 < Nt = [ = Ny = w0 = x" + 7| (3.36)
By the convexity of | - ||>, we have

|21 = x*llz = ”anxn +(1- an)(bnlen +(1- bn)TZ]/n) - X*H2

< anllxn - x*HZ +(1- an)”yn - x*”2



12 Journal of Applied Mathematics
< aulln = X7+ (1= @) ([l =y [P = llyn = 00 = x"+ )
< agllxn = '+ (1= @n)l|xn = x*1* = (1= an) lyn — 1w = x* + y* ||

= Jlxw = x* 1P = (1= an) || (ya - x*) = (- y) ||
(3.37)

Thus,
(A= an)||Yn = ttn = x* + y*||” < %0 = ¥ = (|01 — x| (3.38)
Since0 < a<a, <b<1,wehave

2
< ot = 27 = [lxner = 271

< -ap)||yn—tn-x"+y

A -b)||yn—ttn —x* +y*

(3.39)
Since lim,, _, . ||x, — x*|| exists, we have
lim [lyn = un = %" + 3" = 0. (3.40)
Hence,
[ nTiyn + (1= bu) Toyn) =y
= || (buTryn + (1 = b)) Toyn) — Xn + Xn — Uy + Uy — Y* + Y = X"+ X" = | (3.41)
< 1 OnTayn + (1 =ba)Toyn) = xul + [|x0 = s = %"+ 7| + =y + %" = 7.
It follow from (3.10), (3.33), and (3.40) that
Jim | (baTryn + (1= bu)Toyn) = yal| =0, (3.42)

from which it follows that
”yn - xn” = ”]/n - (bnlen +(1- bn)TZy") + (bnlen +(1- bn)TZyTl) - x"”
< ”]/n - (bnTl]/n +(1- bn)TZVn) ” (3.43)
+ || (BnTayn + (1 = bu)Tayn) = Xn|| — 0 as n — oo,
that is,

lim ||y, — x,|| = 0. (3.44)

n— oo

Thus,

”yn - len” < ”yn - xn” + || = X + ”xn+1 - len” — 0. (3.45)
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Similarly, we have ||y, — Toy,|| — 0. Since {y,} is bounded sequence, there exists a subse-
quence {y,,} of {y,} such that y,, — X asi — oo. Since Ty and T, are demiclosed at 0, we
conclude that x € F(T1) N F(T). Let G be a mapping which is defined as in Lemma 3.1. Thus,
we have

[y = G(yn) || = [IS1rS202n = G(ym) || = [|G(xn) = G(yn) || < || =y, (3.46)
and hence,

llxn = G(xn)ll = ”xn “YntYn-— G(]/n) + G(]/n) - G(xn) ”
< loen = yull + llyn = G(yn) || + |G (yn) = Glxn) |

<t =yl + 1 = wll + =
= 3% - all — 0.

(3.47)

This together with x,, — X implies that X € F(G) := Q, if {y,,} is another subsequence of
{yn} such that Yn, — X asi — oo. Since T; and T; are demiclosed at 0, we conclude that
X € F(T1) N F(T2) N Q. From x,, — X and x,; — X, we will show that x = x. Assume that X # x.
Since lim,, _, oo ||x, — x*|| exists for all x* € F(T1) N F(T>) N Q, by Opial’s Theorem 2.2, we have

lim [|x, — || = lim infjx,, - ||
n— oo i— o

< liminf||x,, — X||
1— o0

= lim [|x, - ]|
n—oo

= liminf|(x,, - 3?” (3.48)
j—
<timintf, =]

= lim ||, — X]-
n—oo

This is a contradiction. Thus, we have x = X. This implies that y, — x € F(T;) N F(T) N Q.
Since ||x, — yall — 0, we have x, — x. Put z, = Pr(r,)nr()neXns. Finally, we show that
x =lim, ., z,. Now from (2.4) and x € F(T1) N F(T,) N Q, we have

(X = zp,z2n—x,) 2 0. (3.49)

Since {||x,, — x*||} is nonnegative and nonincreasing for all x* € F(T;) N F(T>) N Q, it follows
by Lemma 2.1 that {z,} converges strongly to some x € F(T;) N F(T,) N Q. By (3.49), we have

(x-%,%-%) 0. (3.50)

Therefore, x = x. O
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Setting T := Ty = T in Theorem 3.2, we have the following result.

Corollary 3.3 (see [6]). Let C be a closed convex subset of a real Hilbert space H. Let Fy and F, be
two bifunctions from C x C — R satisfying (A1)~(A4). Let A, > 0, and let Sy, and S, ,, be defined
as in Lemma 2.5 associated to Fy and F, respectively. Let T : C — C be a quasi-nonexpansive
mapping such that I — T is demiclosed at zero and F(T) N Q#@. Suppose that xo = x € C and
{xn}, {yn}, and {z,} are given by

2, € C, Fa(zn,z) +¢(2) —(zn) + %(z —Zn, Zn—Xy) >0, Vze(,

1 3.51
Yn€C, Fi(yn z) +¢(z) —9(yn) +X<z—yn,yn—zn> >0, VzeC, (3:51)

Xn+l = AnXp + (1 - an)Tyn/

for all n € N, where {a,} C [a,b] for some a,b € (0,1), and satisfy liminf, _, ,a,(1 — a,) > 0,
then {x,} converges weakly to X = limy, _, . Pr(r)nax, and (x,y) is a solution of problem (1.5), where
Y =S5y,X.

Setting F1 = F» =0, ¢ = 0 in Theorem 3.2, we have the following result.
Corollary 3.4 (see [9]). Let H be a Hilbert space, let C be a nonempty, closed, and convex subset

of H, and let Ty, T, be two quasi-nonexpansive mappings of C into itself such that I — Ty, I — T, are
demiclosed at zero with F(Ty) N F(T,) #@. For any x1 in C, let {x,} be defined by

Xp1 = (1= ap)x, + a,(b,Tix, + (1 =by,)Thxy,), (3.52)

where {a, } and {b,} are chosen so that

liminfa,(1-a,) >0 liminfb,(1-b,) >0, (3.53)
then x,, — pE F(Tl) N F(Tz)

4. Applications

In this section, we apply our results to approximate a common element of the set of common
fixed points of an asymptotic nonspreading mapping and an asymptotic T ] mapping and the
solution set of SMEP in a real Hilbert space. We recall the following definitions. A mapping
T :C — Cis called nonspreading [13] if

2||Tx - Ty”2 <||Tx- y||2 +||Ty - x||2 Vx,y € C. (4.1)

Furthermore, Takahashi and Yao [14] also introduced two nonlinear mappings in Hilbert
spaces. A mapping T : C — Cis called a T] — 1 mapping [14] if

20 Tx - Tyl = -yl + [T - v, 42)
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forall x,y € C. Amapping T : C — Ciscalled a T] -2 [14] mapping if
3||Tx - Tyl = 2||Tx - y||* + || Ty - x||° (4.3)
y y y=x[" :

for all x,y € C. For these two nonlinear mappings, T] — 1 and T] — 2 mappings, Takahashi
and Yao [14] studied the existence results of fixed points in Hilbert spaces. Very recently, Lin
et al. [15] introduced the following definitions of new mappings.

Definition 4.1. Let C be a nonempty closed convex subset of a Hilbert space H. We say that
T : C — Cisanasymptotic nonspreading mapping if there exist two functionsa : C — [0,2)
and f: C — [0,k], k <2, such that
(A1) 2|Tx - Ty|* < a(0)|Tx -y + p)|ITy - x|? forall x,y € C,
(A2) O < a(x) +p(x) <2forallx € C.
Remark 4.2. The class of asymptotic nonspreading mappings contains the class of nonspread-
ing mappings and the class of T] — 2 mappings in a Hilbert space. Indeed, in Definition 4.1,
we know that
(i) if a(x) = p(x) = 1 for all x € C, then T is a nonspreading mapping,
(ii) if a(x) =4/3 and p(x) =2/3 forall x € C, then T is a T] — 2 mapping.
Definition 4.3. Let C be a nonempty closed convex subset of a Hilbert space H. We say T :
C — Cis an asymptotic T] mapping if there exists two functions a : C — [0,2] and f: C —
[0,k], k < 2, such that
(B1) 2| Tx - Tyl < a(x)llx — yI + pe0)|Tx — y| for all x,y € C,
(B2) a(x) + p(x) <2forall x € C.
Remark 4.4. The class of asymptotic T] mappings contains the class of T] — 1 mappings and
the class of nonexpansive mappings in a Hilbert space. Indeed, in Definition 4.3, we know
that
(i) if a(x) = 2 and f(x) = 0 for each x € C, then T is a nonexpansive mapping,
(ii) if a(x) = p(x) = 1 for each x € C, then T is a T] — 1 mapping.
It is well known that the set F(T) of fixed points of a quasi-nonexpansive mapping T
is a closed and convex set [1]. Hence, if T : C — C is an asymptotic nonspreading mapping

(resp., asymptotic T ] mapping) with F(T) #0, then T is a quasi-nonexpansive mapping, and
this implies that F(T') is a nonempty closed convex subset of C.

Theorem 4.5 (see [15]). Let C be a nonempty closed convex subset of a real Hilbert space H, and let
T : C — C be an asymptotic nonspreading mapping, then I — T is demiclosed at 0.

Theorem 4.6 (see [15]). Let C be a nonempty closed convex subset of a real Hilbert space H, and let
T :C — C bean asymptotic T ] mapping, then I — T is demiclosed at 0.

Applying the above results, we have the following theorem.
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Theorem 4.7. Let C be a nonempty closed convex subset of a real Hilbert space H. Let Fy and F, be
two bifunctions from C x C — R satisfying (A1)—(A4). Let r,\ > 0 and Sy, and S ) be defined as in
Lemma 2.5 associated to Fi and F,, respectively. Let T; : C — C, i = 1,2, be any one of asymptotic
nonspreading mapping and asymptotic T | mapping such that F(T1) N F(To) NQ#0. Let {x,}, {ya},
and {uy,} be given by

x1 € C chosen arbitrary,

u, €C, Fo(uy, z)+¢(z) —p(u,) + %(z — Uy, Uy —Xy) 20, VzeC,

(4.4)
Yn €C, 2F1(Yn 2) +¢(2) = p(yn) + %(z ~Yn Yn—Un) 20, Vz€C,
X1 = AnXp + (1= ay) (bnT1yn + (1 = by)Toy,), VneN,
where {ay,}, {b,} C [a,b] for some a,b € (0,1) and satisfying
liminfa,(1-a,) >0, liminfb,(1-b,) >0, (4.5)

then x, — X = limy, _, o Pr(1)nE(my)n0Xn, and (X, ) is a solution of problem (1.5), where yj = S\, X.
Setting F1 = F := F and ¢ = 0 in the above theorem, we have the following result.

Corollary 4.8. Let C be a nonempty closed convex subset of a real Hilbert space H. Let F be the
bifunctions from C xC — Rsatisfying (A1)-(A4). Let T; : C — C,i = 1,2, be any one of asymptotic
nonspreading mapping and asymptotic T ] mapping such that ¥ = F(T1) N F(T,) N EP(F) #@. For
given u € C and r > 0, let the sequences {x,} and {u,} be defined by

x1 € C chosen arbitrary,
1
u, €C, F(un,vy) +;<y—un,un—xn> >0 VyeC, (4.6)

Xpe1 = AnXy + (1 —a,) (byThuy, + (1 = by)Tou,) VneN,
where {ay}, {b,} are two sequences in (0, 1) satisfying

liminfa,(1-a,) >0, liminfb,(1-b,) >0, (4.7)
n— oo n—oo

then x, — w for some w € ¥.

Setting F1 = F» = 0 and ¢ = 0 in Theorem 4.7, we have the following result.
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Corollary 4.9 (see [15]). Let C be a nonempty closed convex subset of a real Hilbert space H, and let
T; : C — C,i=1,2, be any one of asymptotic nonspreading mapping and asymptotic T | mapping.
Let  := F(Ty) N F(T,) #0. Let {ay,} and {b,} be two sequences in (0,1). Let {x,} be defined by

x1 € C chosen arbitrary,
(4.8)
Xpi1 = ApXy + (1 — ay) (b, T1x, + (1 - by) Tax,).

Assume that liminf, _, a,(1 — a,) > 0 and liminf, _, .b,(1 — b,) > 0, then x, — w for some
w € F.
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