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This paper presents numerical solution of elliptic partial differential equations (Poisson’s
equation) using a combination of logarithmic and multiquadric radial basis function networks.
This method uses a special combination between logarithmic and multiquadric radial basis
functions with a parameter r. Further, the condition number which arises in the process is
discussed, and a comparison is made between themwith our earlier studies and previously known
ones. It is shown that the system is stable.

1. Introduction

Many problems in applied sciences and engineering are reduced to a set of partial differential
equations (PDEs). Analytical methods are frequently inadequate for obtaining solution, and
usually numerical methods must be resorted. Radial basis function network is a well-known
method to interpolate unknown functions and approximate numerical solutions. We have
some radial basis functions such as “spline functions,” “Gaussian functions,” “multiquadric
functions,” and “logarithmic functions.” All of researchers have tried to increase accuracy of
approximate solutions while the stability of their suggested system is stable (the condition
number is near to unity as possible). In multiquadric radial basis functions (MQ-RBFs), there
are some parameters that influence accuracy of the solution, for instance, the width parameter
of a basis function, scattered data points, and so on. In recent years, many researchers have
worked on these parameters. They have tested many cases and have obtained different
relations for such parameters. Kansa [1] has found that the best results are achieved by MQ
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approximation scheme when the parameter r2 (equivalent to the RBFs width parameter in
this paper) is varied according to the following expansion:

r2
(
j
)
= r2min

(
r2max

r2min

)(j−1)/(N−1)
, (1.1)

where r2min and r2max are two input parameters; superscript j indexes the jth data point; N
is the number of data points. However, in (1.1), Kansa [1] did not report how r2min and
r2max should be chosen until later, when Moridis and Kansa [2] have stated that the ratio
r2max/r

2
min must be in the range of 101–109. Sharan et al. [3] have suggested some relations

for these parameters to obtain more accurate solutions and having stable systems. Kansa
and Hon [4] have used MQ-RBFs for ill-conditioning problems. They showed that, in using
finite element method (FEM) to simulate large scale complex PDE problems, the resulting
coefficient matrices even with finite band widths can still be ill conditioned, though by using
MQ-RBFs, we can solve these problems. Mai-Duy and Tran-Cong [5] have developed the new
methods based on the MQ radial basis function networks (RBFNs) for the approximation of
both functions and their first and higher derivatives. The so-called direct RBFN (DRBFN)
and indirect RBFN (IRBFN)methods were studied, and it was found that the IRBFN method
yields consistently better results for both functions and their derivatives. In the IRBFN
method, they have set the unknown function as the following relation:

ujj(X) =
N∑

i=1

wigi(X) =
N∑

i=1

wi

√
ri2 + a2

i , (1.2)

wherein gi is a MQ-RBF and a2
i = (x −xi)

2 + (y −yi)
2 is in a two-dimensional PDE. They have

let the values of ri (named as width parameter of the ith neuron (center) of MQ-RBF) as the
following relation:

ri = βdi, (1.3)

where di’s are distances between the points (xi, yi) and the nearest point. They introduced
a range for parameter β that in that range they have more accurate approximated solution
and have a stable system. Fedoseyev et al. [6] improved MQ approximation scheme for
elliptic partial differential equations via PDE collocation. They formulated an improved
Kansa-MQ approximation scheme with the PDE collocation on the boundary. The idea of
the method is to add an additional set of nodes adjacent to the boundary and, accordingly, an
additional set of collocation equations obtained via collocation of the PDE on the boundary.
Galperin and Kansa [7] have used MQ-RBFs with global optimization to numerical solutions
of weakly singular Volterra integral equations. Mai-Duy and Tran-Cong [8] improved their
results for approximation of unknown function and its derivatives. Also, Mai-Cao [9] solved
transient PDEs using IRBFN method and showed that it gives better accuracy as before, but,
in parabolic PDEs, this method and its ranges for opting the values of β do not work as well
as elliptic PDEs, and, in some cases, they have inaccurate solution and ill-conditioned system.
Buhmann [10] has discussed MQ-RBFs in solving n-dimensional PDEs and has introduced
his results. Ling and Kansa [11] have experimented with different implementations of
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the coupling of approximate cardinal basis functions preconditioning technique. They used
MQ-RBFs with domain decomposition method. They showed that it can be used MQ-RBFs
in solving problems of higher dimensions as the six-dimensional Boltzmann equation or the
molecular Schrodinger equation to have better results than traditional methods such as finite
difference method and FEM. Later, Aminataei and Mazarei [12] have studied on the width
parameter of MQ-RBFs for one- and two-dimensional PDEs and have introduced a new
range for the width parameter. Aminataei and Sharan [13] have used MQ approximation
scheme on the numerical solution of ODEs with a singularity point and PDEs in one
and two dimensions incorporating the domain decomposition method. Brown et al. [14]
have applied the MQ-RBFs on approximate cardinal preconditioning methods for solving
PDEs. Munoz-Gomez et al. [15] have proposed an overlapping domain decomposition
method with RBFs for transient PDEs. Mazarei and Aminataei [16] have worked on the
parameter β in DRBFN and IRBFN methods and have made a comparison between the
RBFNmethods (DRBFN and IRBFNmethods)with Adomian double decomposition method
and showed that these RBFNs yield better accuracy than Adomian double decomposition
method. Recently, Aminataei and Mazarei [17] have used the DRBFN and IRBFN methods
on the polar coordinate and have achieved better accuracy. In addition, MQ-RBFs collocation
method has been applied with great success to obtain approximate solution for a large variety
of problems such as in delay differential equations [18], differential algebraic equations [19],
and integral equations [20]. In the present paper, we have combined logarithmic and MQ-
RBFs with a parameter r and have improved the accuracy of our earlier works, but more
important thing is about the condition number of the system that becomes equal to unity.
Hence, the stability of the system in this new way is assured.

The organization of the present paper is as follows. In Section 2, we give the theories
of the new method. In Section 3, we provide some numerical experiments on the two-
dimensional Poisson’s equation with the Dirichlet, the Neumann, and curved boundary
conditions and we propose to examine the stability of the method and its behavior towards
input variations. Finally, in Section 4, some conclusions are presented.

2. The New Method of the Present Study

The form of a Poisson’s equation is as follows:

∇2u = f(X), (2.1)

in which f(X) is a known function. Also, Poisson’s equation can be in the following two
Dirichlet and Neumann boundary conditions:

u = f1(X), on Γ1, (2.2)

−→
n ·

−→
∇u= f2(X), on Γ2, (2.3)

where Γ1 and Γ2 are boundaries of the domain. Also, the vector �n is the outer unit normal
to the boundaries and f1, f2 are two known functions of X. In MQ approximation scheme,
we approximate the unknown function u(X) by an expression. In this study, we consider
two-dimensional Poisson’s equation.
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In this method, we use the following expression:

u
(
x, y

)
=

N∑

i=1

wi ln
(√

(x − xi)2 +
(
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)2 + r2
)
. (2.4)

The derivatives in the two-dimensional Cartesian coordinates are presented in the following:
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(2.5)

In expression (2.4), the set of weights {wi}Ni=1 is to be found. In the present study, the
closed form of approximation function (2.4) is first obtained from a set of training points and
the derivative functions are then calculated directly by differentiation of such closed activity.
The nonzero parameter r protects of having zero values inside the logarithmic function.
Also, we decrease the parameter r to improve approximate solutions. In fact, this parameter
controls the accuracy and the stability of the system. In each experiments, we evaluate the
condition number of the system (condition number = ‖A‖ · ‖A−1‖, that A is the coefficient
matrix of the system) and try to inspect the affect of the parameter r on the stability of our
system.

3. Illustrative Numerical Experiments

In this section, we present three experiments, wherein their numerical solutions illustrate
some advantages of the new method with high accuracy and show that, in this new way, the
system is not ill conditioned.

3.1. Stability of the Solution

A method is said to be stable when the obtained solution undergoes small variations as
there are slight variations in inputs and parameters and when probable perturbations in
parameters that are effective in equations and conditions prevailing them do not introduce,
in comparison to the physical reality of the problem, any perturbations in what is returned.
We propose here to compare the new method with other numerical methods (i.e., DRBFN
and IRBFN methods) by offering experiments and examining the stability of the new
method (Tables 1 and 3).
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Experiment 1. Consider the following two-dimensional Poisson’s equation:

∇2u = xey, (3.1)

with the following Dirichlet boundary conditions on 0 ≤ x ≤ 2 and 0 ≤ y ≤ 1:

u(x, 0) = x, u(x, 1) = xe,

u
(
0, y

)
= 0, u

(
2, y

)
= 2ey.

(3.2)

The exact solution is: ue(x, y) = xey.
We denote the root-mean-square error by the RMSE from the following relation:

RMSE =

√√√
√ 1

N

N∑

k=1

(
uk
e − uk

) 2
, (3.3)

where uk
e is exact solution and uk is approximate solution at points (xk, yk). We have

considered those 20 points that we had used for IRBFNmethod on the polar coordinates [17].
As we have shown in earlier work [17], the parameter r influences on accuracy, partially.
We have shown that increasing the values of this parameter causes instability, and usually
can not affect on accuracy adequately (see Table 4). Although, in that method, we could
improve our results by focusing on other parameters such as substituting the scattered point
places, in this new way, we can improve our solutions by changing the values of parameter r
without having instability. In contrast of MQ-RBFs, in this special combination, as parameter
r decreases, the accuracy increases. Also, since, for values greater than 10−2, the condition
number is not near to unity and we will not have a stable system sufficiently, so we have
considered at least r = 0.01. For instance, for this value of r, we have RMSE = 1.99 × 10−15,
and, when we continue to decrease this parameter over and over, we get a better solution.
For instance, in the best position RMSE = 2.26 × 10−16 while in IRBFN method on the polar
coordinates [17] in the best position, we had RMSE = 4.36×10−11. Also, in this newway, when
r reaches to about 10−9 and smaller values, our accuracy and condition number are almost
fixed. As we are decreasing parameter r, the accuracy is going to be better (see Table 2).
Further, when we decrease r values quite enough, the accuracy and condition number almost
do not change (see Table 2). Note that, for smaller values of r, condition number is very near
to unity (equals unity in double precision).

Experiment 2. Consider the following two-dimensional Poisson’s equation:

∇2u =
(
λ2 + μ2

)
eλx+μy, (3.4)

with the following Neumann and Dirichlet boundary conditions on 0 ≤ x ≤ 1 and 0 ≤ y ≤ 1:

ux = λeλx+μy at x = 0, x = 1,

u = eλx+μy at y = 0, y = 1.
(3.5)
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Table 1:Comparison between exact solution and approximate solution of the newmethod of Experiment 1.

xi yi Exact solution Approximate solution of
the new method Error of the new method

0.3333 0.2 0.4070935392947847 0.4070935392947850 3 × 10−16

0.3333 0.4 0.4972251717238353 0.4972251717238351 2 × 10−16

0.3333 0.6 0.6073121961701566 0.6073121961701570 4 × 10−16

0.3333 0.8 0.7417727914665396 0.7417727914665393 3 × 10−16

0.6667 0.2 0.8143092188653853 0.8143092188653852 1 × 10−16

0.6667 0.4 0.9945995259174347 0.9945995259174348 1 × 10−16

0.6667 0.6 1.214806604220352 1.214806604220355 3 × 10−15

0.6667 0.8 1.483768137025928 1.483768137025920 8 × 10−15

1.0000 0.2 1.221402758160170 1.221402758160172 2 × 10−15

1.0000 0.4 1.491824697641270 1.491824697641277 7 × 10−15

1.0000 0.6 1.822118800390509 1.822118800390500 9 × 10−15

1.0000 0.8 2.225540928492468 2.225540928492466 2 × 10−15

1.3333 0.2 1.628496297454955 1.628496297454971 1.6 × 10−14

1.3333 0.4 1.989049869365105 1.989049869365101 4 × 10−15

1.3333 0.6 2.429430996560666 2.429430996560662 4 × 10−15

1.3333 0.8 2.967313719959008 2.967313719959003 5 × 10−15

1.6666 0.2 2.035589836749739 2.035589836749740 1 × 10−15

1.6666 0.4 2.486275041088941 2.486275041088940 1 × 10−15

1.6666 0.6 3.036743192730822 3.036743192730820 2 × 10−15

1.6666 0.8 3.709086511425547 3.709086511425548 1 × 10−15

The exact solution is ue(x, y) = eλx+μy, where λ and μ are, respectively, 2 and 3. This
experiment was solved using MQ approximation scheme by Kansa [1]. The author used a
total of 30 points, including 12 scattered data points in the interior and 18 along the boundary.
The reported results showed that the norm of error is 2.25 × 10−2. Later, Mai-Duy and Tran-
Cong [5] used IRBFN method and got a greater accuracy. They reported the norm of error is
2.2 × 10−4 for this experiment. In this study, we have used those same points (see Figure 1)
and have achieved better accuracy in comparison with those two previous works. By using
present approach, the norm of error that we have gotten in the best position is 3.26 × 10−7

(r = 10−8). The results are shown in Tables 5 and 6. There are the same properties and results
about this new way that we have explained in Experiment 1 (more accuracy and stability).

Experiment 3. Consider the following two-dimensional Poisson’s equation in the elliptical
region:

uxx + uyy = −2. (3.6)

The great diameter of the ellipse is a, and small diameter is b. The boundary condition is u = 0
on all of boundary points. The equation of ellipse is

x2

a2
+
y2

b2
= 1. (3.7)
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Table 2:Values of condition number and RMSE for some values of r of Experiment 1 (for the newmethod).

r Condition number RMSE

10−1 1.616697379470667 2.06 × 10−15

10−2 1.005685744274181 1.99 × 10−15

10−3 1.000056810457828 2.97 × 10−15

10−4 1.000000568099880 2.34 × 10−15

10−5 1.000000005680999 1.03 × 10−15

10−6 1.000000000056810 5.05 × 10−16

10−7 1.000000000000585 1.32 × 10−15

10−8 1.000000000000003 7.77 × 10−16

10−9 1.000000000000000 2.26 × 10−16

10−10 1.000000000000000 2.26 × 10−16

10−11 1.000000000000000 2.26 × 10−16

0 0.2 0.4 0.6 0.8 1
0

0.2

0.4

0.6

0.8

1

Points (xi, yi)

Figure 1: Location of scattered data points (12 of these points are interior points, and 18 points are
boundary points) of Experiment 2.

Since the above ellipse is a symmetrical region, then we have solved this equation on the first
quarter. The Dirichlet and the Neumann boundary conditions are

ux = 0 on the line x = 0,

uy = 0 on the line y = 0,

u = 0 on the bound of ellipse.

(3.8)

The analytical solution is ue(x, y) = −[(x2/a2) + (y2/b2) − 1][a2b2/(a2 + b2)].



8 Journal of Applied Mathematics

Table 3: Comparison between exact solution and approximate solution of IRBFN method on the polar
coordinate of Experiment 1 [17].

xi yi Exact solution
Approximate solution of

IRBFN method on the polar
coordinate

Error of IRBFN method on the
polar coordinate

0.3333 0.2 0.4070935392947847 0.407093539278427 1.64 × 10−11

0.3333 0.4 0.4972251717238353 0.497225171776793 5.29 × 10−11

0.3333 0.6 0.6073121961701566 0.607919812163175 3.95 × 10−11

0.3333 0.8 0.7417727914665396 0.741772791449410 1.71 × 10−11

0.6667 0.2 0.8143092188653853 0.814309218844426 2.09 × 10−11

0.6667 0.4 0.9945995259174347 0.994599525931543 1.41 × 10−11

0.6667 0.6 1.214806604220352 1.214806604225190 4.84 × 10−12

0.6667 0.8 1.483768137025928 1.483768136992937 3.30 × 10−11

1.0000 0.2 1.221402758160170 1.221402758117891 4.23 × 10−11

1.0000 0.4 1.491824697641270 1.491824697612953 2.83 × 10−11

1.0000 0.6 1.822118800390509 1.822118800390206 3.03 × 10−11

1.0000 0.8 2.225540928492468 2.225540928445109 4.74 × 10−11

1.3333 0.2 1.628496297454955 1.628496297401382 5.37 × 10−11

1.3333 0.4 1.989049869365105 1.989049869316768 4.84 × 10−11

1.3333 0.6 2.429430996560666 2.429430996510109 5.06 × 10−11

1.3333 0.8 2.967313719959008 2.967313719902712 5.63 × 10−11

1.6666 0.2 2.035589836749739 2.035711976964034 6.16 × 10−11

1.6666 0.4 2.486275041088941 2.486424223498127 6.06 × 10−11

1.6666 0.6 3.036743192730822 3.036925404550813 6.01 × 10−11

1.6666 0.8 3.709086511425547 3.709309065459067 5.94 × 10−11

Table 4: Values of condition number and RMSE for some values of r of Experiment 1 (for IRBFN method
on the polar coordinate [17]).

r Condition number RMSE

0.005 1.471481785169896 9.17 × 10−10

0.01 2.037248475218950 4.36 × 10−11

0.5 4.678768168755817 4.92 × 10−11

1.0 7.977675155476113 2.24 × 10−11

1.5 10.67180878932467 5.17 × 10−11

2.0 16.72051422331341 2.08 × 10−11

2.5 17.54142375428882 3.22 × 10−11

3.0 22.68488788104916 1.38 × 10−11

3.5 94.83497808866327 9.66 × 10−12

4.0 687.3099630448350 6.79 × 10−12

4.5 2251.857925768735 7.09 × 10−11
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Table 5:Comparison between exact solution and approximate solution of the newmethod of Experiment 2.

xi yi Exact solution Approximate solution of the new method

0.0 0.0 1.000000000000000 1.000000001520331

0.0 .25 2.117000016612675 2.116999962177082

0.0 .5 4.481689070338065 4.481689131011527

0.0 .75 9.487735836358526 9.487735908103340

0.0 1 20.08553692318767 20.08553702346013

1 0.0 7.389056098930650 7.389056124466515

1 .25 15.64263188418817 15.64263190711622

1 .5 33.11545195869231 33.11545243577679

1 .75 70.10541234668786 70.10541228133020

1 1 148.4131591025766 148.4131603446419

.2 0.0 1.491824697641270 1.491824709011273

.2 1 29.96410004739701 29.96410038594428

.4 0.0 2.225540928492468 2.225540978673106

.4 1 44.70118449330082 44.70118489448246

.6 0.0 3.320116922736547 3.320116658933115

.6 1 66.68633104092514 66.68633190025831

.8 0.0 4.953032424395115 4.953032677031149

.8 1 99.48431564193381 99.48431532815737

.05 .05 1.284025416687741 1.284025760755220

.13 .26 2.829217014351560 2.829217082663191

.46 .16 4.055199966844675 4.055199961753327

.31 .42 6.553504862191149 6.553504821832245

.07 .58 6.553504862191149 6.553504889746486

.12 .73 11.35888208000146 11.35888287993308

.42 .91 35.51659315162847 35.51659237035928

.51 .57 15.33288701990720 15.33288705221003

.68 .82 45.60420832084874 45.60420881755932

.84 .37 16.28101980178843 16.28101996810631

.97 .68 53.51703422749116 53.51703410219755

.17 .93 22.87397954244081 22.87397949274820

The results have been computed for a = 10 and b = 8. We have used 28 points that
17 of them are boundary points and 11 are interior points (see Figure 2) which were selected
at random. In this new way, we have achieved a better accuracy in comparison with IRBFN
method in the polar coordinates [17] (see Tables 7, 8, and 9). When we decrease parameter
r, RMSE decreases too, and so we have better accurate solution. Also, the condition number
closes to unity more and more. For r = 10−9 (RSME = 9.50 × 10−12), it almost equals to unity
(see Table 8).

We have shown in [17], in using of MQ-RBFs on the polar coordinate, when we have
used 28 data points and we have been increasing the width parameter r, the accuracy of our
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Table 6:Values of condition number and RMSE for some values of r of Experiment 2 (for the newmethod).

r Condition number RMSE

10−1 15.34291952699858 8.11 × 10−4

10−2 4.566804572945806 5.72 × 10−4

10−3 2.134108059285889 1.03 × 10−4

10−4 1.082012712119965 2.06 × 10−4

10−5 1.010904486607965 6.33 × 10−5

10−6 1.003900496513122 5.70 × 10−5

10−7 1.001720933454105 4.61 × 10−7

10−8 1.001551378516199 3.26 × 10−7

10−9 1.001534906804984 3.98 × 10−7

10−10 1.001537639564036 6.78 × 10−7

10−11 1.002332833767664 4.13 × 10−7

Points (xi, yi)

1086420

8

7

6

5

4

3

2

1

0

Figure 2: Location of scattered data points (11 points are interior points, and 17 points are boundary points)
of Experiment 3.

solution has been increasing a little, though our system has been going to nonstability (see
Table 9). In contrast, in this new way, when we are decreasing the parameter r, the accuracy
of our solution is increasing too. Also, the condition number of our system is decreasing and
closes to unity (see Table 8).

Here, we would like to emphasize that this experiment had been also solved by [1]
and [3], and the norm of error is 3.57 × 10−4 in the DRBFN method [1], wherein the norm of
errors in the DRBFN and the IRBFN methods are 1.36 × 10−5 and 5.41 × 10−7 [3], respectively.
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Table 7:Comparison between exact solution and approximate solution of the newmethod of Experiment 3.

xi yi Exact solution Approximate solution of the
new method Error of the new method

0.0 0.5 38.87195121951220 38.87195121952383 1.16 × 10−11

0.0 1.5 37.65243902439024 37.65243902440016 9.92 × 10−12

0.0 3.5 31.55487804878049 31.55487804879181 1.13 × 10−11

0.0 5.5 20.57926829268293 20.57926829269648 1.35 × 10−11

0.0 7.5 4.72560975609756 4.72560975611862 2.11 × 10−11

2.0 0.0 37.46341463414634 37.46341463417008 2.37 × 10−11

4.0 0.0 32.78048780487805 32.78048780491504 3.70 × 10−11

6.0 0.0 24.97560975609756 24.97560975615097 5.34 × 10−11

8.0 0.0 14.04878048780488 14.04878048786474 5.99 × 10−11

10.0 0.0 0.00000000000000 0.00000000005427 5.43 × 10−11

2.0 1.6 35.90243902439024 35.90243902440453 1.43 × 10−11

4.0 1.6 31.21951219512195 31.21951219515048 2.85 × 10−11

6.0 1.6 23.41463414634146 23.41463414638886 4.74 × 10−11

8.0 1.6 12.48780487804878 12.48780487810293 5.41 × 10−11

2.0 4.0 27.70731707317073 27.70731707318550 1.48 × 10−11

4.0 4.0 23.02439024390244 23.02439024392700 2.46 × 10−11

6.0 4.0 15.21951219512195 15.21951219516124 3.93 × 10−11

8.0 4.0 4.292682926829268 4.29268292687660 4.73 × 10−11

2.0 5.6 18.34146341463414 18.34146341465220 1.81 × 10−11

4.0 5.6 13.65853658536585 13.65853658539350 2.76 × 10−11

6.0 5.6 5.85365853658536 5.85365853662464 3.93 × 10−11

9.798 1.6 −0.00031375609756 −0.00031375604674 5.08 × 10−11

8.660 4.0 0.00171707317073 0.00171707321643 4.57 × 10−11

7.141 5.6 0.00238790243902 0.00238790247911 4.01 × 10−11

2.0 7.838 0.00350975609756 0.00350975612416 2.66 × 10−11

4.0 7.332 0.00108292682927 0.00108292685914 2.99 × 10−11

6.0 6.4 0.00000000000000 0.00000000003483 3.48 × 10−11

8.0 4.8 0.00000000000000 0.00000000004390 4.39 × 10−11

4. Conclusion

In the present paper, we have introduced a new way for numerical solution of Poisson’s
partial differential equation by a special combination between logarithmic and MQ-RBFs.
We have showed that by this new method it does not need to control the parameter r (the
width parameter) all times for preventing inaccuracy of solutions or increasing the value of
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Table 8:Values of condition number and RMSE for some values of r of Experiment 3 (for the newmethod).

r Condition number RMSE
10−1 2.817474760824544 1.02 × 10−10

10−2 1.590396300485768 3.62 × 10−11

10−3 1.253627364959679 1.49 × 10−10

10−4 1.062100283211657 6.82 × 10−11

10−5 1.050234416869035 4.53 × 10−11

10−6 1.030320686741992 2.75 × 10−11

10−7 1.015443720207797 4.46 × 10−11

10−8 1.005553497698158 1.76 × 10−11

10−9 1.003855850797432 9.50 × 10−12

10−10 1.002467354513745 2.02 × 10−11

10−11 1.000616708637105 3.82 × 10−11

Table 9: Values of condition number and RMSE for some values of r of Experiment 3 (for IRBFN method
on the polar coordinate [17]).

r Condition number RMSE
0.001 1.433292009119422 7.73 × 10−8

0.01 1.833381468640938 3.31 × 10−8

0.5 1.641721037366621 6.01 × 10−8

1.0 2.368533981239234 2.91 × 10−8

1.5 6.742734977317889 3.47 × 10−8

2.0 7.268116615890860 1.33 × 10−8

2.5 19.12284221789496 8.78 × 10−9

3.0 56.72352660443333 9.62 × 10−9

3.5 83.76935856474893 2.20 × 10−8

4.0 101.1762326758897 9.00 × 10−9

4.5 164.9216307945755 6.81 × 10−9

condition number and having an ill-conditioned system. In this new way that is enough to
consider the value of the parameter r smaller than 10−9. In the aforesaid experiments, the
accuracy is better than those before results obtained by [1, 3, 5, 16, 17] and the condition
number of the systems is equal to unity. So we have some complete stable systems and more
accurate solutions.

It should be noted that the computations associated with the experiments discussed
above were performed by using Maple 13 on a PC, CPU 2.4GHz.
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